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Abstract

Agriculture  is  a  complex  social-ecological  system  with  numerous  interactions  and  feedbacks  between 

policies,  markets,  farm  management,  landscapes,  and  ecosystems.  Because  of  these  interconnections, 

policy  changes,  societal  trends,  and  environmental  crises  can  have  widespread  knock-on  effects  that 

threaten the stability of the entire system.

Agent-based models have become a valuable tool  used for studying agricultural  systems and providing 

policy advice. However, they often only consider one or few aspects of the complete social-ecological sys -

tem. Here, we review 50 agent-based models and analyse which aspects of agricultural systems they in-

clude.

We find that there has been significant work done in the last decade, both in monodisciplinary and interdis-

ciplinary models. There is a particularly robust tradition of using agent-based models for economic impact 

analyses of policy changes. Many models also study environmental impacts of agriculture. However, ecolo-

gical and biodiversity-oriented models continue to be largely disconnected from the rest of the agricultural  

modelling literature.

Based on our review, we provide recommendations for future research in ecological, socio-eco-

nomic, and social-ecological modelling of agriculture. Areas of possible improvement include simu-

lating farm management and landscape dynamics in ecological models, risk management in eco-

nomic models, and bidirectional human-nature interactions in social-ecological models. Building 

on these recommendations, we develop a concept for an integrated model that could be used to 

study the impacts of agricultural policy on both farms and biodiversity.
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1. Introduction

Agriculture today faces a multitude of economic, social, and environmental challenges that urgently need to 

be addressed (Ambikapathi et al., 2022; Foley et al., 2011). In Europe, but also elsewhere, socio-economic 

challenges  include  volatile  markets,  high  regulatory  burden,  difficult  working  conditions,  and  rural 

depopulation (Debonne et al., 2022). These have contributed to a shrinking number of farms, an ageing 

rural  population,  and  high  farmer  dissatisfaction  (Mohr  et  al.,  2023;  Nowack  et  al.,  2023).  On  the 

environmental side, modern agricultural practices have led to widespread pollution from agrochemicals, soil 

erosion and degradation, high greenhouse has emissions, and ecosystem service losses (Campbell et al.,  

2017; Godfray & Garnett, 2014). They are also a leading contributor to biodiversity loss, with species in  

agricultural landscapes experiencing drastic declines across taxa (Rigal et al., 2023; Warren et al., 2021).

One  of  the  worldwide  largest  efforts  to  alleviate  these  problems  is  the  European  Union’s  Common 

Agricultural  Policy  (CAP),  a  complex system of  regulations and annual  subsidies  worth 55 billion Euros 

(European  Commission,  2023).  Yet,  even  this  has  repeatedly  failed  to  bring  significant  improvements 

(Biagini et al., 2023; Pe’er et al., 2014, 2020). On the contrary, it has been criticised for primarily subsidising 

large-scale industrial agriculture, increasing the regulatory burden on farmers, and failing to set adequate 

environmental standards or incentives (Pe’er et al., 2017; Scown et al., 2020). Still, its continent-wide scope, 

massive financial  endowment, and global market impacts make it  a key policy to effect environmental,  

social, and economic improvements in agriculture (Pe’er & Lakner, 2020).

The numerous interactions between these different aspects of agriculture means that challenges must be 

addressed in a concerted manner, using a social-ecological systems approach that considers both human 

and natural domains (Fischer et al., 2015; Norton, 2016). Otherwise, solution attempts may overlook the  

positive and negative interactions between the two, thus ignoring possible synergies and trade-offs (Allen et 

al., 2014; Rasmussen et al., 2024) as well as feedback loops and tipping points (Brown & Rounsevell, 2021; 

Pörtner et al., 2022).

This close coupling of human and natural systems is also relevant for research. Traditionally, scientific study  

of  agriculture  has  been segregated along disciplinary  lines,  looking  separately  at  its  agronomic,  social, 

economic,  political,  environmental,  and  ecological  dimensions.  However,  there  is  now  a  widespread 

agreement  that  the  numerous  interactions  and feedbacks  between these  dimensions  necessitate  joint 

interdisciplinary study in the form of an SES approach (e.g. Ostrom, 2009; Reyers et al., 2018).

Agent-based models (ABMs1) are one important tool for studying social-ecological systems. They are well-

established  in  multiple  disciplines  related  to  SES,  including  economics,  political  science,  and  ecology 

(Vincenot, 2018), as well as being used for integrated interdisciplinary analyses (M. A. Janssen & Ostrom, 

2006; Schulze et al., 2017). Their approach is to represent a system as a collection of unique agents (such as  

farmers or animals), whose local, process-based interactions give rise to system-level patterns (Grimm & 

Railsback, 2005). This makes them well-suited to simulating the heterogeneity and dynamic processes in  

1Note that in the ecological literature, ABMs are usually referred to as individual-based models, or IBMs.
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social and ecological systems, and analysing both spatial and temporal phenomena (DeAngelis & Mooij,  

2005; Heckbert et al., 2010).

This suitability for SES research potentially also makes agent-based models good tools to support decision-

makers in policy and management in agricultural contexts. Indeed, ABMs are frequently used for research  

on agricultural policy (Kremmydas et al., 2018), including for policy impact assessments in the European 

Union (Reidsma et al., 2018). Still, their potential for policy support is not yet achieved, with impediments 

including issues such as lack of data availability or infrequent contact between modellers and decision-

makers (Will et al., 2021).

In this review, we want to take stock of the current state of agent-based modelling in agriculture. We want  

to know how existing models conceptualise and represent agricultural  SES,  and how the integration of  

different disciplines into agricultural ABMs can be improved in order to better address the multi-faceted 

challenges related sustainable farming systems. To this end, we analyse how different categories of study 

are included in a selection of 50 socio-environmental models found in the literature. We are particularly  

interested in models that contain a broad range of categories, which can be used to study social-ecological  

interactions. By this we do not imply that all models should be broad in this sense, but believe that the  

development of some such models is necessary for a model-based investigation of SES  (Cabral et al., 2023). 

Based  on  these  results,  we  then  offer  suggestions  for  how  ecological  and  socio-economic  ABMs  of 

agriculture can be brought together into a joint SES modelling framework. Throughout, we keep in mind the  

Figure  1:  Agricultural  systems  contain  multiple  subsystems  (circles),  that  have  traditionally  been  perceived  as 

categories  of  study  for  dedicated  disciplines.  Within  a  social-ecological  systems  approach,  the  interrelationships 

(arrows) between the subsystems, and between the human and natural domains, are brought into focus. This allows a  

more comprehensive study of how changes to one part of the system may affect other subsystems, including the 

behaviour of feedback loops and tipping points.
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question of how agricultural ABMs can be used to support decision-makers and provide policy-relevant 

research.

For the purposes of this paper,  we conceptualise agricultural  SES as containing a human and a natural 

domain,  each in  turn  containing  multiple  subsystems,  or  categories  of  study  (Figure  1).  In  the  human 

domain,  we  look  at  agricultural  policy,  farmer  decision-making,  and  market  dynamics.  In  the  natural  

domain,  we  include  land  use  and  land  use  change  (i.e.  landscape  dynamics),  and  environments  and 

ecosystems. The two domains are linked by agricultural practice, i.e. the production of crops and livestock,  

which  is  the  point  at  which  human and natural  processes  most  directly  interact.  Finally,  research and 

monitoring efforts produce information about the different parts of the system, which can help inform the 

actions of decision-makers. While this is a very simplified conceptualisation that glosses over many of the 

complexities of agricultural SES, it does capture the conceptual structure of most of the models that we 

review.

Previous reviews in  this  area have focussed on the use of  economic  and environmental  modelling  for 

agricultural policy assessment (Beaussier et al., 2019; Kremmydas et al., 2018; Reidsma et al., 2018), or the 

development of social-ecological models more generally (Filatova et al., 2013; Lippe et al., 2019). Our work  

complements  these  by  bringing  together  the  perspectives  of  agricultural  SES  research,  agent-based 

modelling,  and  policy  assessment,  and  provides  an  insight  into  the  more  recent  work  in  this  field.  In  

addition, we develop a proposal for a new modelling framework to integrate these different strands of  

research. Thus, the overall aim of our review is to help build bridges between the multiple communities of  

agricultural agent-based modellers.

2. Methods

2.1. Literature search

We conducted a two-stage literature search for ABMs of agricultural social-ecological systems. To get an 

initial overview of the field, we interviewed two modelling experts about their experiences with agricultural  

social-ecological modelling, and searched the Web of Science Core Collection using different combinations 

of relevant key words. In the main search, we then queried the Web of Science Core Collection in January 

2024 with the following search string:

(agent-based OR individual-based) model AND (agric* OR farm*) 

AND (policy OR market OR econom* OR "farm management" OR "agricultural practice" OR 

"decision making") 

AND (landscape OR "land use" OR biodiversity OR ecosystem OR environment*) 

NOT (hydrology OR groundwater OR archaeology OR disease OR veterinary OR fish* OR forestry 

OR review)

We scanned the title and abstract of all publication returned by both searches to find models that were 

relevant to our purpose, for which we defined three core criteria:

1. The model must be at least partially an ABM/IBM.
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2. It must have a direct link to agriculture.

3. It must include both human and natural processes, factors, or outcomes.

We further  tightened the scope by focussing on models  that  explicitly  considered agroecosystems,  i.e. 

terrestrial environments dominated by agricultural land use (thereby excluding studies that solely focus on 

forests or water resources). We tagged relevant papers by regional (e.g. Europe, Asia) and environmental 

focus (e.g. biodiversity,  nutrients, pesticides),  and identified which model was used in each publication. 

Finally,  we used a  stratified sampling  approach to  select  models  for  detailed  analysis,  considering  the 

distribution  of  regional  and  environmental  foci  and  preferentially  selecting  models  with  multiple 

publications. If a model had been used for more than one study, we additionally tried to track down its first  

publication as well as any recent expansions, in order to consider the full capabilities of a given model in our 

analysis.

2.2. Model analysis

Based on the conceptual diagram of agricultural SES in Figure 1, we identified seven categories in which we 

compared  models  against  each  other.  These  include:  Input  Data,  Policy  Assessment,  Economic 

Considerations, Agricultural Decision-Making, Farm Production, Landscape Composition and Dynamics, and 

Environments and Ecosystems.

We then evaluated how models implement these categories using a total of 26 yes-or-no criteria (Figure 2). 

The criteria were developed in an iterative process, in which the lead authors selected an initial set of  

Figure 2: A) Categories by which we assessed the comprehensiveness of models. B) Criteria that were checked within 

each category (colours correspond to the categories in A). C) Distribution of model comprehensiveness scores, showing  

how many models included how many criteria.
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criteria based on the conceptual diagram and the exploratory literature search, and then refined these in 

discussion with the whole author team. The aim was to develop a set of criteria that are evenly balanced 

among research disciplines, and can show relevant similarities and differences in the way existing model  

represent agricultural SES. We also wanted to look beyond established modelling approaches and include 

aspects that have been discussed in the wider SES literature, but are not yet commonly studied using ABMs.  

Overall, our review process is similar to that used by (Urban et al., 2022) for biodiversity models.

The definitions for the final set of criteria are listed in Table 1. Note that while most criteria are independent 

of each other, the first criteria in some categories (specifically P1, E1, D1, L1, and N1) are used as “umbrella”  

criteria. These are meant to show whether a model considers this category at all,  with the subsequent  

criteria  in  the  category  addressing  specific  modelling  approaches.  For  each  model,  we  checked  which 

criteria it fulfils based on its description in the associated papers, and counted how often each criterion 

appears in the reviewed models.

We specifically wanted to address the following questions:

1. Which criteria do different models cover?

2. Which criteria are frequently addressed, or overlooked?

3. Which criteria are well-connected, and where are there silos?

4. Which criteria can pose barrier for ensuring policy-relevance?
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Table 1: Models found by the literature search were evaluated across seven categories of study, to reflect all  

major  components  of  agricultural  SES.  We  used  26  yes-or-no  criteria  to  characterise  how  the  models 

implemented each category.

Category Criterion Additional explanation

Input data I1 The model uses real-life maps 

(e.g. remote sensing land cover maps, 

administrative field maps).

The model map is based on a real geographical 

area, rather than using an abstract, generated 

landscape.

I2 The model uses empirical economic 

data (e.g. market prices, farm data).

e.g. from the EU’s Farm Accountancy Data 

Network (FADN)

I3 The model uses empirical data to 

parameterize abiotic environmental 

variables (e.g. weather, soil, nutrient 

flows).

I4 The model uses empirical data to 

parameterize ecological variables 

(e.g. species population sizes, green 

infrastructure, ecosystem service 

delivery).

Policy P1 The model assesses policy 

interventions, including hypothetical 

options.

Umbrella criterion (P2 and P3 necessarily 

include P1).

P2 The model assesses real policy 

interventions, which have been or are 

planned to be implemented.

This includes ex ante or ex post assessments of 

policies such as new regulations of the CAP, or 

the Chinese “Grain-to-Green” programme.

P3 The model assesses policy instruments 

other than area-based payments for 

environmental measures (like the 

CAP's AECM or ecoschemes). This 

includes any other payments, 

directives, or market instruments of 

relevance to agriculture (e.g. direct 

payments, rural development funds, 

anti-pollution regulations, trading 

agreements, labelling and 

certification, insurances).

Economics E1 The model considers farm economics 

(e.g. input and product prices, 

Umbrella criterion (E2 and E3 usually include 

E1).



Category Criterion Additional explanation

operating costs).

E2 The model uses endogenous input 

and/or output markets (i.e. uses 

demand and supply to calculate 

prices).

E3 The model considers land tenure 

(e.g. via land markets).

Decision-

making

D1 The model has land users as decision-

making agents.

Umbrella criterion (D2, D3, and D4 usually 

include D1).

D2 The model uses bounded rationality 

theory (i.e. farmers cannot perform 

absolute optimisations).

This  may include satisficing,  heuristic decision-

making,  or  optimisation  with  a  limited 

perception (Schlüter et al., 2017).

D3 The model includes goals other than 

profit maximisation 

(e.g. environmental stewardship, 

farming as tradition, risk aversion).

D4 The model considers relational 

interactions among farmers 

(e.g. imitation, cooperation, social 

norms).

Farm 

production

F1 The model includes a crop-growth 

model.

Crop growth and/or yield is calculated based on 

environmental and management parameters.

F2 The model simulates crop cultivation 

(e.g. tillage, chemical input).

F3 Crop growth and/or farming 

operations are linked to farm costs 

and profits.

F4 The model considers practical 

constraints of farm operations 

(e.g. availability of labour force, 

driving distance).

F5 The model includes environmental 

and/or economic risk events.

Landscape L1 The model is spatially explicit. Umbrella criterion (L2 and L3 usually include L1).



Category Criterion Additional explanation

dynamics L2 The amount of land under active 

cultivation changes over time 

(e.g. land clearing, land abandonment, 

crop rotation with fallows).

L3 The landscape composition and/or 

configuration changes over time due 

to internal model processes (e.g. crop 

rotation, agri-environment schemes).

Environment 

and 

ecosystems

N1 The model includes abiotic and/or 

biotic environmental outcomes.

Umbrella criterion (N2, N3, and N4 usually 

include N1).

N2 The model simulates individuals 

and/or populations of non-domestic 

animals and/or plants.

This  can  include  IBMs,  (meta-)population 

models,  or  analytic/statistical  biodiversity 

models based on landscape structure.

N3 The model considers non-provisioning 

ecosystem service delivery as an 

output (i.e. regulating, supporting, or 

cultural services).

e.g. pollination, pest control, prevention of soil 

erosion,  water  retention  and  filtration, 

landscape aesthetics

N4 The model considers feedback from 

regulating and supporting ecosystem 

services to production.

e.g.  through  coupling  crop  yield  to  pollinator 

abundance



3. Results

Our main literature search yielded 432 papers, of which we classified 143 as relevant and selected 87 for 

further analysis, which amounted to 37 models. To this we added 13 models that we previously found in the 

preliminary search, bringing the total number of analysed models to 50 (Table 2).  We verified that the 

addition of models from the preliminary search did not alter the results (see Supplementary Material). The 

reviewed models and which criteria they include are depicted in Figure 3, while Figure 4 shows how many 

models included each criterion.

In the following, we will give a general overview of the comprehensiveness of existing models of agricultural 

SES, before briefly summarising the current status of modelling in each category, and finally presenting the 

results of the multiple correspondence analysis.

3.1. Model comprehensiveness

Based on the number of included criteria, it is possible to divide the reviewed models into four groups, with 

an approximately bimodal distribution (Figure 2c, cf. Figure 3).

Only two models included more than 20 out of the total of 26 criteria. These are MPMAS (Schreinemachers 

& Berger, 2011) and ALMaSS (Topping et al., 2003), covering 24 and 21 criteria, respectively. To give readers 

a  more  concrete,  qualitative  insight  into  the  state-of-the-art  in  agricultural  agent-based  modelling,  we 

present these two comprehensive models in more detail (Box 1 & 2).

The second group (15-19 included criteria)  contains 20 models.  Most of  these include criteria from all 

categories, and they often have a strong empirical basis (as shown by the number of criteria they include  

from the Input Data category).

The third group (9-14 included criteria) also has 20 models. Many of these leave out one or more categories  

entirely, and are often quite conceptual, usually using little or no empirical input data.

Finally, there are eight models that include eight or fewer criteria. These have a strong ecological focus, but 

consider few other categories, and are mostly conceptual in nature.

3.2. Input Data

Six models included empirical data for all four criteria: ALMaSS, AgriPoliS, SEEMS, WICM, and the models by  

Roeder et al. and Granco et al.. Nine models were purely conceptual and used no empirical data.

Socio-economic model components most frequently used empirical data (D2), namely in the case of two 

thirds of models (35 of 50). By contrast, empirical ecological data (D4) were least frequently used for model 

input, by around one third of models (17 of 50).

3.3. Policy

Two-thirds  of  models  included  some  form  of  policy  interventions  (37  of  50;  P1).  Twenty-two  models  

evaluated  policies  that  actually  exist  or  are  planned  to  be  implemented  (such  as  policies  within  the 
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framework of  the CAP,  rather  than hypothetical  policy  interventions;  P2).  Twenty-one models  included 

policy  interventions  other  than agri-environment  schemes (AES;  P3)2.  This  included,  for  example,  farm 

advisory services and forest protection (Brinkmann et al., 2021), insurance against climate risks (Choquette-

Levy et al., 2021), or the abolition of CAP direct payments (Van Berkel & Verburg, 2012).

3.4. Economics

The majority  of  models  (36 of  50)  included farm economics  (E1)  using,  for  example,  income or  profit  

functions. The composition and complexity of the underlying economics differed depending on the models’ 

purpose. Only few models (8 of 50) developed endogenous input and/or output markets (E2) using supply  

and demand to calculate prices in recurring periods. Just under half of the models (21 of 50) included land  

tenure (E3) or took into account underlying land markets.

3.5. Decision-making

Most models have farmers, or land users more generally, as decision-making agents (38 of 50; D1). The 

majority of these models have moved beyond simple profit-maximisation to represent more complex forms 

of  decision-making.  Common  elements  in  this  included  bounded  rationality  (e.g.  limited  knowledge, 

heuristic decision-making; 25 of 50; D2), aims other than profit maximisation (e.g. risk aversion, landscape 

conservation, or farming-as-tradition; 28 of 50; D3), and relational interactions between farmers (e.g. peer 

learning; 24 of 50; D4).

3.6. Farm production

The most commonly included criterion in this category was the connection of farming operations to farm 

costs and profits (31 of 50; F3) - in almost all of these cases, models also considered input and product 

prices (E1) and vice versa.

Approximately  half  of  the  models  also  simulated  specific  crop  cultivation  practices  such  as  tillage  or 

chemical  input  (27  of  50;  F2)  and  almost  as  many  considered  practical  constraints  such  as  variable  

availability of farm workers (22 of 50; F4).

A third of the models implemented a crop or plant growth model (18 of 50; F1). Most models that included  

a crop growth (sub-)model also linked this to crop cultivation (F2) and farm costs and profits (F3).

Less than a quarter of models evaluated the effect of economic or environmental risk on farm production 

(11 of 50; F5). Most of these based their risk assessment on IPCC climate change scenarios (e.g. ALUAM-AB, 

SEALM).

3.7. Landscape dynamics

2We here follow the normal usage in the ecological  literature,  where the term “agri-environment scheme” means 

“area-based payments for environmental measures“. We recognise that in a policy context the term is sometimes used 

to refer specifically to a set of second-pillar payments in the CAP, and want to clarify that we use it in a broader sense,  

independent of any particular policy. For our precise definition, see criterion P3 in Table 1.
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Almost all models were spatially explicit (44 of 50; L1). In most models the landscape was dynamic, with its 

structure changing over time through endogenous land use processes such as agricultural expansion or land 

abandonment (21 of 50; L2), or crop rotations or other compositional changes (36 of 50; L3).

3.8. Environment and ecosystems

Most models evaluated environmental outcomes (43 of 50; N1). Approximately a third simulated population 

dynamics of non-agricultural plants and animals explicitly (19 of 50; N2) and/or modelled non-provisioning 

ecosystem services (19 of  50;  N3).  Only 20% of  models  included a feedback loop from regulating and 

supporting ecosystem services to farm production (13 of 50; N4).

Five models included all criteria in this category: CRAFTY (through its coupling with RangeShifter; Synes et 

al., 2019), TrophicLink, EEEworm, and the models by Granco et al. (2022) and Martinet & Roques (2022). 

The most detailed representation of biodiversity is found in ALMaSS (Box 2).
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Table 2: List of analysed models and their key references, sorted by the number of included criteria (most to least). Models that were not given a name by their authors are  

listed here under their first author’s name. Only selected sources are given for models with many publications. The spatial scale is given qualitatively, in decreasing order  

of size: continent, country, region, landscape, field. In the environmental outcome column, GHG = green house gas emissions and ESS = ecosystem services. The purpose is  

classified according to (Edmonds et al., 2019).

Model name Source papers Region Spatial scale Spatial 

resolution

Temporal 

resolution

Environmental 

outcome

Purpose

MPMAS (Carauta  et  al.,  2021;  Schreinemachers  & Berger,  2011;  Troost  et  al.,  

2012, 2015)

multiple region field daily hydrology, soil, nu-

trients, GHG

explanation

ALMaSS (Malawska & Topping, 2016, 2018; Topping et al., 2003, 2019) Europe landscape 1m² daily biodiversity prediction

AgriPoliS (Happe et al., 2006; Hristov et al., 2020; Piorr et al., 2009) Europe region field annual biodiversity, ESS, 

nutrients, hydrology

prediction

Aporia (Guillem et al., 2015; Murray-Rust, Robinson, et al., 2014) Europe landscape field annual biodiversity, ESS explanation

LUDAS (Le et al., 2008, 2010) Asia landscape not specified annual land use prediction

SEALM (Brinkmann et al., 2021) Africa landscape 100m² annual land use explanation

SEEMS (Chen et al., 2023) Asia landscape field annual biodiversity prediction

ALUAM-AB (Briner et al., 2012; Huber et al., 2017) Europe landscape 1ha annual land use prediction

Bazzana et al. (Bazzana et al., 2022) Africa landscape field annual none theoretical 

exploration



Model name Source papers Region Spatial scale Spatial 

resolution

Temporal 

resolution

Environmental 

outcome

Purpose

SWISSLAND (Möhring et al., 2010; Schmidt et al., 2017; Zimmermann et al., 2009) Europe country farm annual nutrients prediction

Roeder et al. (Roeder et al., 2010) Europe landscape not specified not specified biodiversity prediction

AgriLOVE (Coronese et al., 2023) abstract landscape field arbitrary land use theoretical 

exploration

PALM (Bakam & Matthews, 2009; Brown et al., 2016; Matthews, 2006) multiple region n/a annual GHG explanation

WICM (Van Schmidt et al., 2019) N America landscape 1ha annual biodiversity explanation

CRAFTY (Brown et al., 2019, 2021; Murray-Rust, Brown, et al., 2014; Synes et al., 

2019)

Europe continent various annual biodiversity, ESS explanation

Schulze et al. (Schulze et al., 2017) Europe region 25ha annual biodiversity, ESS explanation

Delmotte et al. (Delmotte et al., 2016) Europe region field annual none social learn-

ing

REGMAS (Lobianco & Esposti, 2010) Europe region 25ha annual none prediction

SERA (Schouten et al., 2012, 2013) Europe region not specified annual biodiversity explanation

Granco et al. (Granco et al., 2022) N America region not specified annual hydrology, biod-

iversity

illustration



Model name Source papers Region Spatial scale Spatial 

resolution

Temporal 

resolution

Environmental 

outcome

Purpose

Pampas (F. Bert et al., 2015; F. E. Bert et al., 2011; García et al., 2019) S America region 25ha annual hydrology, land use explanation

RF-MAS (Kaye-Blake et al., 2009, 2014, 2019) Australasia region not specified annual nutrients, GHG explanation

ABM+LCA (Bayram et al., 2023; Marvuglia et al., 2017, 2022) Europe region field monthly GHG explanation

EFForTS-ABM (Dislich et al., 2018; Mahnken, 2018) Asia landscape 0.25ha annual biodiversity, ESS explanation

Martinet & 

Roques
(Martinet & Roques, 2022) abstract landscape 1ha annual ESS theoretical 

exploration

FARMIND (Huber et al., 2022, 2023; Kreft et al., 2023) Europe region n/a annual pesticides, nutri-

ents, GHG

prediction

Bourceret et al. (Bourceret et al., 2022) abstract landscape arbitrary annual hydrology, nutrientstheoretical 

exploration

Tieskens et al. (Tieskens et al., 2017) Europe landscape 1ha annual none social learn-

ing

Valbuena et al. (Valbuena, Verburg, Bregt, et al., 2010; Valbuena, Verburg, Veldkamp, et 

al., 2010; Van Berkel & Verburg, 2012)

Europe region 1ha annual land use explanation

ALABAMA (Bartkowski et al., 2020) abstract landscape 1ha not specified biodiversity, water theoretical 

exploration



Model name Source papers Region Spatial scale Spatial 

resolution

Temporal 

resolution

Environmental 

outcome

Purpose

Choquette-Levy 

et al.
(Choquette-Levy et al., 2021) Asia region n/a semi-annual none explanation

Cong et al. (Cong et al., 2014, 2016) abstract landscape field annual ESS theoretical 

exploration

SPASIMv1 (Millington et al., 2008) Europe landscape 0.1ha quarterly wildfire risk explanation

AG-ADAPT (Sanga et al., 2021) Asia region 1080m annual none explanation

AMBAWA (Berre et al., 2021) Africa landscape 1ha half-daily ESS prediction

Drechsler (Drechsler, 2017) abstract landscape field not specified biodiversity theoretical 

exploration

Gielda-Pinas et 

al.
(Giełda-Pinas, Dzieszko, et al., 2015; Giełda-Pinas, Ligmann-Zielińska, et 

al., 2015)

Europe landscape 25ha annual nutrients, soil, wa-

ter, land use

explanation

IFM-CAP (Espinosa et al., 2020; Louhichi et al., 2018) Europe continent n/a not specified none prediction

BEEHAVE (Baden-Böhm et al., 2022; Becher et al., 2014) Europe landscape not specified daily biodiversity prediction

DYPAL (Gaucherel et al., 2010, 2006) Europe landscape 7m annual land use explanation

Manson et al. (Manson et al., 2016) N America region 25ha annual land use description



Model name Source papers Region Spatial scale Spatial 

resolution

Temporal 

resolution

Environmental 

outcome

Purpose

FEARLUS-

SPOMM
(Gimona & Polhill, 2011; Polhill et al., 2013) abstract landscape field annual biodiversity theoretical 

exploration

GMSE (Duthie et al., 2018) abstract landscape arbitrary arbitrary biodiversity theoretical 

exploration

TrophicLink (Caron-Lormier et al., 2009, 2011; Raybould et al., 2011) abstract 100m² not specified daily biodiversity theoretical 

exploration

EEEworm (Johnston et al., 2015, 2018; Roeben et al., 2020) abstract 3m 1cm² hourly biodiversity explanation

Bakam et al. (Bakam et al., 2012) Europe country n/a annual GHG prediction

Evans et al. (Evans et al., 2019) abstract 1km² 5m² second biodiversity prediction

GRASSMIND (Schmid et al., 2022; Taubert et al., 2020a, 2020b) multiple field 1m² daily biodiversity explanation

Rands & 

Whitney
(Rands, 2014; Rands & Whitney, 2010) abstract landscape field n/a ESS theoretical 

exploration

Meli et al. (Meli et al., 2013, 2014) abstract 1m² 1cm² hourly biodiversity explanation



Figure 3: Table of criteria (columns) included in each model (rows), sorted by category. A coloured tile denotes that this 

model includes this criterion. For criteria definitions, see Table 1.
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Figure  4:  Number of  models  including each criterion.  Each coloured tile represents  one model.  For  more detailed 

definitions of the criteria, see Table 1.
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Box 1: MPMAS

MPMAS  (Mathematical  Programming-based  Multi-Agent  System)  is  an  agricultural  systems  model  that 

shares  a  common origin  with  AgriPoliS,  another  widely  used  model  in  our  review.  However,  whereas  

AgriPoliS is explicitly an economic model (though it has been coupled to environmental modules), MPMAS 

was designed from the beginning to simulate the interactions between economic, social, and environmental 

processes (Schreinemachers & Berger, 2011).

It does so by simulating farmer households on a gridded landscape. Households are microeconomic units 

with individual properties (e.g. land endowment, labour supply, farm equipment, attitude to innovations) 

that maximise expected household income while considering additional goals. The resulting land use feeds 

into  various  biophysical  submodels,  which  calculate  crop  yield,  water  flows,  and  soil  quality.  Different 

submodels are available for these tasks (both inbuilt and via model coupling), that can be selected based on 

the desired level of detail.  The biophysical state of the landscape then feeds back into agents’ decision 

making.  Within  this  general  framework,  several  socio-technical  processes  can  be  simulated,  including 

irrigation, technology diffusion and land and water markets. 

Although the main application focus of MPMAS is smallholder agriculture in developing countries, it has 

been applied to a broad range of case studies from across the world, including in Germany (Troost et al.,  

2015), Brazil (Carauta et al., 2021), Uganda, and Chile (Berger et al., 2006). Research questions include, for 

example, the evaluation of policies aimed at greenhouse gas reduction (Carauta et al., 2021), competition 

between subsidies for bioenergy and biodiversity (Troost et al., 2015), and the adaptation of farmers to 

climate change (Troost et al., 2012).
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Box 2: ALMaSS

ALMaSS  is  the  most  detailed  biodiversity  model  in  our  review,  and  after  MPMAS  the  second-most 

comprehensive  model  overall.  First  published  by  Topping  et  al.  (2003),  it  contains  a  farm  module,  a 

landscape module, and a variety of animal modules.

The farm module simulates the production of numerous crops, considering their seasonality, crop rotations, 

and  cultivation  actions  such  as  ploughing  and  harvesting.  Different  farm types  are  initialised  that  use 

different crops and follow different management plans.

The landscape module simulates a real landscape, the weather (from historical weather data), and plant 

growth. Plant growth is modelled for each grid cell using species-specific mathematical models dependent 

on the weather, season, fertiliser or pesticide application, and cutting/harvesting. The model works at a 1 

m² spatial resolution and uses daily time steps.

Animal modules exist for a range of different non-domestic species from different taxa (including sky larks,  

roe deer, ground beetles, spiders, and voles), though only one species is simulated at a time. All modules  

are individual-based and use a state/transition principle, i.e. individuals exhibit certain behaviour (are in a 

certain state) until internal or external conditions cause them to transition to another state. Behavioural  

states typically include movement, territoriality, feeding, mating, and growth.

ALMaSS has been used to study species responses to pesticides  (Topping & Odderskær,  2004), organic 

farming (Topping, 2011), and the Common Agricultural Policy (Langhammer et al.,  2017; Topping et al.,  

2019). The farm module has been expanded to simulate more nuanced farmer decision-making (Malawska 

& Topping, 2016). New animal modules are also being added over time, with 17 found in the codebase as of  

2023.
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4. Discussion

4.1. Lessons for ecological modelling

About 60% of the models in our review considered biodiversity and/or ecosystem services in some form or 

another.  This  reflects  the  importance of  biodiversity  conservation and ecosystem health  in  agricultural 

systems research. However, we observe several issues that negatively impact the ability of these models to 

help us understand agroecosystems, as well as their utility for agricultural policy analyses.

First,  and  most  importantly,  many  of  the  models  are  highly  simplified  with  regards  to  ecology,  either 

ignoring ecological  processes or simulating very abstract  systems. Several  models use correlations with  

environmental  values or indices based on landscape structure as a proxy for biodiversity or ecosystem 

services (e.g. Brady et al., 2012; Cong et al., 2016). Quite a few others do use process-based models such as 

IBMs,  but  are  very  abstract  and conceptual  (e.g.  Caron-Lormier  et  al.,  2011;  Gimona & Polhill,  2011).  

Indeed,  the  lower  part  of  Figure  3 shows a  cluster  of  ecological  models  that  are  based on very  little 

empirical data and include few other aspects of agricultural systems. This means that there are few models  

that can be used for applied studies of the impacts of agricultural policy and practice on the ecological 

processes of real landscapes and species (such as Guillem et al., 2015; Van Schmidt et al., 2019). We found 

this predominance of conceptual models surprising, as many IBMs in other contexts (such as forestry and 

fisheries) are quite detailed and tend to be highly specific to contexts and species (DeAngelis & Grimm, 

2014; Stillman et al., 2015). This raises the question of why there are not more applied agroecological IBMs? 

Given the success of applied IBMs in other ecosystems, this strikes us as a remarkably underexplored area  

of ecological research.

Second,  many  ecological  models  ignore  temporal  landscape  dynamics  and  crop  growth/cultivation. 

Whereas many of the socio-economic models are spatially dynamic, only half of the reviewed ecological 

models simulate landscapes that change over time. This is despite extensive empirical research showing 

that spatio-temporal dynamics of landscapes are among the most important drivers of biodiversity change 

in  agroecosystems  (Estrada-Carmona  et  al.,  2022;  Vasseur  et  al.,  2013).  Furthermore,  only  a  third  of 

biodiversity models also include crop growth and/or crop cultivation. Yet this would be important for three  

reasons.  First,  because  the  above-mentioned  landscape  dynamics  are  the  product  of  agricultural  

management. Second, because growth of crops and cultivation practices such as tillage or the application of  

agrochemicals  play  a  major  role  in  shaping  biodiversity  patterns  (Wittwer  et  al.,  2021).  And  third,  a 

comprehensive ecological policy evaluation should be able to take into account changes in field-level yields  

(both gains and losses) associated with biodiversity-improving measures.

Finally, modelling the feedbacks from biodiversity and ecosystems to yields and farm economics remains a 

big challenge. Less than 40% of the models in our review considered non-provisioning ecosystem services as 

an environmental outcome, and only a quarter explicitly included a feedback of ecosystem services on yield. 

This is understandable, as quantitatively predicting levels of ecosystem service provision is notoriously hard 

and remains an active research question (Alexandridis et al., 2021, 2022). However, being able to link crop 

growth  models  with  landscape-scale  biodiversity  models  could  be  a  decisive  step  towards  a  better 
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understanding of biodiversity-yield relationships (Seppelt et al., 2020), and would be a major step forward 

in making ecological models attractive and useful for policy makers and practitioners.

4.2. Lessons for socio-economic modelling

There is a robust tradition of using economic farm models in agricultural policy assessments. A particularly  

influential  model  in  this  tradition is  AgriPoliS  (Happe et  al.,  2006),  but  there  are  several  other  highly  

elaborated economic models, such as SWISSland (Möhring et al., 2010) and CRAFTY (Murray-Rust, Brown, 

et al., 2014).

The biggest gap we see is the low representation of economic and environmental risks. Most models that 

do include risk events mainly cover the effects of climate change (e.g. Coronese et al., 2023; Huber et al.,  

2017; Troost et al., 2012). However, risks and risk management are an important area of study with regards  

to  agricultural  SES,  for  two  reasons.  First,  the  combination  of  climate  change  and  environmental 

degradation entails a likely increase in the frequency and severity of shocks, both locally and globally, to 

which farmers have to respond (Maire et al., 2022). Secondly, the reduction of risk through greater yield 

stability is an important argument for more environmentally-friendly diversified farming systems, though 

one which remains poorly explored (Rosa-Schleich et al., 2019). Therefore, given the importance of risk 

management for social-ecological transformations in at least some agricultural contexts (e.g. Choquette-

Levy et al., 2021), this is an important area for future models to expand on.

An area that has seen a lot of work is the study of decision-making processes by land users, especially  

farmers. An increasing number of economics studies are going beyond the classical profit-maximising, fully-

rational agent (homo oeconomicus) to better understand the complexities of human decision-making (e.g. 

Drechsler, 2021; Schaub et al., 2023). This is also reflected in the agent-based modelling literature of the last  

years (e.g. Huber et al.,  2018; Wijermans et al.,  2023). Our review reveals widespread consideration of  

complex  decision-making  processes,  as  well  as  the  interconnections  among behavioural  and  economic 

aspects of agricultural SES. Different nuances and components of decision-making, including relationships 

and social networks, learning and farmers’ backgrounds, are taken into account by about half of the models  

in our review (cf. Schlüter et al., 2017). Comparing this to the findings of prior reviews, it seems that there 

has  been significant  recent  progress  in  the modelling  of  farmer decision-making (Filatova et  al.,  2013; 

Kremmydas et al., 2018).

Still,  we see two directions in which this can profitably be improved. The first is a more detailed study  

comparing  the  relative  importance  of  different  factors  of  decision-making  under  different  conditions 

(Thompson et al., 2023). Some such studies have already been carried out, for example using FARMIND 

(Huber et al., 2024) or ALMaSS (Malawska & Topping, 2016). As including more decision factors in a model 

also raises its susceptibility to error, further research into the dynamics of decision-making should help 

social-ecological  modellers  achieve a  suitable  level  of  complexity  (Wijermans et  al.,  2023).  The second 

direction is to look at whether and how environmental processes feed back into farmer’s decision-making, 

e.g. through adaptation to increasing droughts or in response to pest cycles (e.g. Eisele et al., 2021). This 

would help to better recognise and explore the intricate interconnections between social and ecological 

processes in agriculture in a way that is so far only done very rarely (cf. Norton, 2016; Vogt et al., 2015).
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The role of markets has been modelled to very different degrees. While land markets are well-represented 

in  the  existing socio-economic  models  (at  least  partly  due to  the  influence of  AgriPoliS  and MPMAS),  

markets for agricultural goods and products are rarely explicitly modelled. Land markets play an important  

role  in  mediating  structural  change  in  agriculture,  as  farms  grow or  shrink  in  size  or  cease  operation  

altogether.  ABMs play  to  their  strengths  here,  representing  the  individual  decisions  of  many  different 

farmers to study a large-scale phenomenon (e.g. F. E. Bert et al., 2011; Möhring et al., 2010). Endogenous 

markets for other goods and services are much rarer in our reviewed models. However, expanding models 

to also simulate markets for agricultural inputs and outputs, or linking farm models to relevant market  

models,  could  enable  larger-scale  studies  of  entire  food  systems  (e.g.  Brady  et  al.,  2017),  and  the 

exploration of sustainability pathways (e.g. Brown et al., 2019).

4.3. Implications for SES modelling

With our paper we want to highlight the importance of large social-ecological models, by which we mean  

models that include a broad range of categories and work with different types of empirical input data. As 

stated in  the Introduction,  this  does not  mean that  every  model  needs to  be large in  this  sense.  The 

question of adequate model complexity has been discussed extensively before (e.g. O’Sullivan et al., 2016; 

Sun et al., 2016; Topping et al., 2015; Troost et al., 2023). There are many research questions to which 

smaller models (i.e. that include fewer categories or are more conceptual in nature) are better suited than a 

large model would be. Still, there are several open areas of research that require such larger models.

First, we observe that the critical influence of feedback loops on system resilience and tipping points has 

been accepted by SES researchers but is still rarely implemented in agent-based modelling (Farahbakhsh et  

al.,  2022).  Rather  than  just  studying  uni-directional  effects  of  socio-economic  processes  on  ecological 

systems (or vice versa), we need models that can explore bi- or multidirectional interactions (e.g. Chen et 

al., 2023; Martinet & Roques, 2022). Other authors have called for a better integration of climate change, 

land use, and biodiversity models (Cabral et al., 2023; Harfoot et al., 2014; Urban et al., 2016); this needs to 

be applied to agriculture, too. We posit that this will entail paying more detailed attention to crop and 

livestock production, as this is the nexus point linking farm management and its related socio-economic 

processes to the environmental processes in the natural world (Figure 1).

Secondly, modellers can only provide useful policy advice if their models can provide a reasonably realistic 

representation of the system and the policy in question (Kremmydas et al., 2018; Sun et al., 2016). It is  

notable, though not surprising, that most of the reviewed models that evaluated specific policies (P2) also 

included much empirical input data (I1-I4). Social-ecological systems research has a valuable contribution to 

make to the study of agricultural systems (Allen et al., 2014; Norton, 2016), but SES models are still not well  

utilised in policy-making (Elsawah et al., 2020). One part of the problem is the lack of exchange between 

modellers  and  decision-makers  (Will  et  al.,  2021).  Another  challenge  is  the  (perceived  or  actual)  low 

reliability of ABM results, which requires rigorous validation of models intended to be used in policy (An et 

al., 2020; Filatova et al., 2013). Lastly, it is regrettable that although biodiversity conservation has long been  

a stated goal of agricultural policies such as the CAP, this is not yet reflected in the available models: in our  

review, only five out of 22 models that evaluated specific policies also simulated species (cf. Malawska et al., 

2014).
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We do recognise  that  building such large models  is  not  easy.  One big  difficulty  lies  in  the disciplinary 

differences between the different modelling traditions. Although this has long been recognised (Wätzold et 

al., 2006), it continues to be a challenge (Elsawah et al., 2020). One practical aspect of this is a frequent  

mismatch in the spatial and temporal scales of analysis (Lippe et al., 2019). For instance, it is notable that  

the vast majority of economic models in our review use annual time steps (Table 2), a temporal resolution 

that makes sense from an economics perspective but that is much too coarse for many ecological processes. 

A second aspect lies in the need to develop and use indicators that are relevant and meaningful to both  

disciplines  (Pe’er et al., 2020). Finally, on a deeper level, the societal value debates surrounding land use 

(“environmental  protection versus  economic  productivity”)  can spill  over  into  academic  discourses  and 

impede interdisciplinary collaboration.

The second big difficulty in building large models comes from the technical challenges of building large 

software. Here, it can be instructive to consider the examples of MPMAS and ALMaSS, as the two most 

comprehensive models in our review (Box 1 & 2). Both were designed from the beginning to take a broad 

systems approach to studying agriculture, even though their background and main focus was recognisably 

economics  and  ecology,  respectively.  In  implementing  their  conceptual  design,  they  chose  different 

technical approaches. ALMaSS is a very large, single code base, containing all features that have been added 

over the 20+ years of its use. This gives the advantage of all parts of the model integrating seamlessly with  

each other, at the cost of a very high technical complexity of the software. MPMAS on the other hand  

worked with model coupling from the beginning, implementing a small economic core model and linking 

this to a suite of already available biophysical models. This gives it flexibility to switch between different 

biophysical  models  for  different  research  questions  and  reduces  the  programming  work  for  the  core 

development team, but means that the main model has to work within the constraints and limitations of  

the coupled models.

While both approaches can work well, we encourage social-ecological modellers to work more with model 

coupling, as this is one of the quickest routes to creating truly social-ecological models (S. Janssen et al.,  

2011). Several studies already do so, coupling multiple existing models in order to study the interlinkages 

between processes from different domains (e.g. Brady et al., 2017; Gimona & Polhill, 2011; Synes et al.,  

2019). This technique has been used to great effect in other modelling disciplines, such as climate modelling 

(Edwards,  2011),  and is thus a promising avenue to pursue in future. However,  doing so will  require a 

greater  degree  of  code  sharing  among  modellers  (Barton  et  al.,  2022).  It  also  requires  a  thorough 

understanding of the modelling issues to consider (Belete et al., 2017), and a knowledge of appropriate  

software engineering practices (Vedder et al., 2024).

4.4. A new model concept

Based on these lessons for ecological,  socio-economic,  and SES modelling,  we develop a concept for a 

possible  new  social-ecological  model  of  agriculture.  This  is  guided  by  the  question:  “What  could  an 

integrated  social-ecological  model  look  like  that  can  be  used  to  investigate  the  interactions  between 

agriculture and biodiversity, and the impact of policy on agricultural SES?”
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In Figure 5, we present a schematic of the model concept, showing what we propose would be the main 

entities and data sources and their interactions.  Table 3 lists a selection of state variables, processes, and 

output variables that could be used in such a model, as well as suggestions for existing models that may 

form useful components for model coupling.

Our aim with this concept is to present a model design whose implementation would complement the 

existing range of models, which is broad enough to capture social-ecological dynamics, but compact enough 

to be scientifically and technically feasible. (We note that a very similar concept was already proposed by  

(Dent  et  al.,  1995),  but  despite  significant  progress  in  modelling  over  the  past  30  years  it  remains  a  

worthwhile research target.)

The proposed model would include three main entities: farmers, fields, and wildlife animals. Farmers are 

agents that each cultivate a collection of fields,  choosing crop rotations and management actions,  and 

responding to external inputs from markets and policies. Fields represent instances of a process-based crop 

model, which calculates plant growth and the resulting yield for a given location over time, as determined 

by  environmental  inputs  (e.g.  weather,  soil  type)  and  management  actions  (e.g.  tillage,  fertilisation, 

grazing).  Wildlife  animal  species  (such  as  birds,  butterflies,  or  wild  bees)  are  represented  either  by 

individual-based models or spatially-explicit population models. The species’ movement behaviour and life 

cycle is simulated on a land cover map, which is regularly updated with habitat information (e.g. plant 

Figure  5: A proposed structure for a social-ecological model to investigate the influence of agricultural policy and  

practice on farms and biodiversity.  The model  includes three  components,  or  entities (in  circles),  which mutually 

interact. External inputs (arrows with italicised text) are provided by policy regulations, market prices, weather, and 

landscape properties. Dashed arrows with text in parentheses denote possible extensions to the core model concept.  

See Table 3 for further details.
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height and cover) from the cropped fields. In addition to the indirect, habitat-mediated impact of farming 

on  biodiversity,  farmers’  management  actions  (e.g.  harvest  or  pesticide  application)  may  cause  direct 

mortality.

To  achieve  bidirectional  feedback,  the  farmer  submodel  could  respond  to  species  dynamics  using 

mechanisms such as result-based AES, or the animal submodel could calculate levels of ecosystem service 

delivery  (e.g.  pollination)  for  the  field  submodel.  However,  as  particularly  the  latter  is  scientifically 

challenging, this may be developed as a possible extension of the main model concept.

A model like this could be used for scenario analyses by analysing the response of the modelled system to  

different conditions. An obvious application is to vary the policy regulations that affect farmers’ behaviour, 

but scenarios can also include running the model over different landscapes, with different market prices, or  

with  different  weather  patterns  (e.g.  to  simulate  climate  change).  It  could  also  be  used  as  a  model  

framework for more theoretical studies, for instance to test landscape ecological hypotheses.

Overall,  we envision a model  that is  based on empirical  data to the extent possible,  i.e.  using remote 

sensing  maps,  real  crop  and  animal  species,  etc.  We  believe  that  such  a  model  is  best  suited  to  

understanding existing agricultural SES and providing specific policy advice. Still, it would also be possible to  

implement the model concept in a more conceptual way, using abstract landscapes and “virtual” species.  

Which option is preferable will depend on the study question as much as on the available development  

resources.

From an ecological perspective, we see as particularly important the ability to model both the direct and 

indirect effects of farm management on biodiversity, i.e. through disturbance as well as through landscapes 

that change over time. As noted above, the spatio-temporal dynamics of agricultural management have 

generally  received too little  attention in  the  ecological  literature  (Vasseur  et  al.,  2013),  and are  rarely 

represented in our reviewed ecological models. In this context, modelling crop growth is key, as it forms an 

important nexus point between human and natural domains (Figure 1). It is responsible not only for the 

economically important yield production that farmers work for, but also shapes the habitat of farmland 

species, providing (or not) forage, cover, breeding places, and connectivity (Fahrig et al., 2011).

Beyond considering the effects of farming on biodiversity, our model concept also lends itself to studying  

bidirectional  coupling,  by  allowing  the  integration  of  direct  and  indirect  effects  of  biodiversity  and 

ecosystem  services  on  farmers’  behaviour.  As  stated  above,  reliable  ecosystem  service  predictions  in 

farmland are currently difficult to achieve, but given the current research interest in this question, our 

concept provides a possible modelling approach in this direction (cf. Seppelt et al., 2020).

In general,  our  model  concept seeks to give each of  its  three main components equal  weighting.  This  

follows the principle that all important factors should be modelled at a similar level of detail and precision 

(Saltelli et al., 2020). It is also intended to simulate real landscapes and species, intentionally sacrificing  

some generality for increased realism and precision in the interest of providing relevant advice to decision-

makers (Levins, 1966). In view of the non-trivial complexity of our concept, integrating one or more existing 

models in an implementation of it (e.g. those suggested in Table 3) could greatly reduce development time 

and provide the benefit of building on previous scientific work.
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Table  3:  Details  of  entity  types  in  the  proposed  social-ecological  model  concept  (cf.  Figure  5).  State  variables 

characterise individual entities; processes are simulated for all affected entities; output refers to model-level results for  

further analysis.  Possible models are existing software that are potentially  usable to simulate this  entity within a 

coupled integrated model. All listed entries should be taken as examples that are neither exhaustive nor prescriptive,  

but reflect possible implementation choices for the model concept.

Entity State variables Processes Output Possible models

Farms Fields Crop selection Annual profit APORIA  (Murray-Rust, 

Robinson, et al., 2014)

Capital  (e.g.  financial,  la-

bour)

AES selection Economic choices FARMIND  (Huber  et  al., 

2022)

Production  (e.g.  crop 

types, livestock)

Remain/Quit REGMAS (Lobianco & Es-

posti, 2010)

Behavioural  factors  (e.g. 

values, relationships)

Fields Crop type Plant growth Yield AquaCrop (Steduto et al., 

2009)

Crop  properties  (e.g. 

height, biomass)

Mowing/Harvest Landscape structure BODIUM  (König et al., 

2023)

Soil properties Other  management 

(e.g.  fertilisation,  till-

age)

APSIM (Holzworth et al., 

2014)

Animals Habitat requirements Reproduction Population size Skylark  (Guillem  et  al., 

2015)

Location/home range Dispersal Movement patterns Meadow  brown  (Evans 

et al., 2019)

Mate Mortality Spatial distribution BEEHAVE  (Becher  et  al., 

2014)

Offspring Ecosystem service deliv-

ery

Biocontrol  (Martinet  & 

Roques, 2022)
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4.5. Limitations

We recognise that in this study we have only been able to review a portion of social-ecological models 

related to agriculture, specifically sampling agent-based models that are relevant to agroecosystems. We 

also acknowledge that our criteria definitions (Table 1) leave some room for interpretation, and leave out 

other  factors  that  can  also  be  relevant  to  agricultural  SES  (e.g.  technological  advance  or  governance 

structures). Despite these caveats, we believe our literature review does offer a representative overview of  

the current state of agricultural agent-based modelling, and illuminates recent trends and topics in the field. 

Still, we encourage our readers to look beyond our brief summaries and read the original publications to 

better understand how individual models work (Table 2).

On a more fundamental level, we want to address two scientific concerns related to the development of 

large, integrated models. First, we want to reiterate our previous statement that large models are not, by  

mere virtue of their increased complexity, better than small models. Every model serves a specific purpose,  

with different purposes imposing different requirements and constraints on the developers (Edmonds et al., 

2019). Thus, model quality must be judged by adequacy for purpose, and not by comprehensiveness (Troost 

et  al.,  2023).  Therefore,  while  we concur  with  other  authors  that  the  study  of  SES  will  require  some 

integrated models (and as we argue here, more than we currently have), we do not want to denigrate the 

scientific importance of “small” models.

Secondly, we are aware of the pitfalls and problems associated with large, integrated models. The larger the 

model, the more care must be taken with its design, parameterisation, and validation, in order to deal with 

the rapidly increasing levels of uncertainty (Voinov & Shugart, 2013). Where model coupling is used, this  

must be done with an awareness of the scientific and technical issues involved (Belete et al., 2017; Vedder  

et al., 2024). An open and transparent discussion of modelling choices and uncertainty is particularly vital  

where, as we advocate, model results are used to advise decision makers (Saltelli et al., 2020; Will et al.,  

2021).

Finally, we emphasise that agent-based models are just one methodology among many for studying social-

ecological systems. While they have particular strengths that fit in well with certain properties of SES (e.g.  

heterogenous, interacting agents), they also have weaknesses that must be accounted for (e.g. the difficulty 

of quantitative validation) (Schulze et al., 2017). Therefore, they can only ever be one approach among 

several  for  the  scientific  study  of  SES  and  the  providing  of  advice  to  decision  makers,  and  must  be  

complemented in the SES literature by studies using other empirical and theoretical methods.

5. Outlook

In this review, we have analysed how agent-based models represent social-ecological systems in agriculture.  

Looking at the current state of the field, we offer the following main recommendations for future work:

1. Develop more applied agroecological models that can be used to evaluate the impacts of policy on 

biodiversity and ecosystem services in specific contexts.
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2. Integrate  agricultural  management  practices  and  spatio-temporal  landscape  dynamics  into 

agroecological models.

3. Explore  risk  management  strategies  in  the  context  of  climate  change  and  environmental 

degradation in socio-economic farm models.

4. Use model coupling to study bidirectional interactions between the human and natural domains of  

agriculture,  such  as  the  possible  effects  of  biodiversity  and  ecosystem  services  on  agricultural 

production and farmers’ decision-making.

The model concept we propose in this paper provides a stimulus for how these recommendations could be 

implemented.

By their nature, social-ecological systems span across disciplinary boundaries. We encourage modellers to 

learn to navigate the different modelling traditions that have grown up around agriculture, and to form  

collaborations  that  can  help  do  so,  in  order  to  more  holistically  approach  the  social,  economic,  and 

environmental problems we face. We hope that this review helps to build some of the bridges needed to do  

so.
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