

1 **The Invisible Majority: Disciplinary Bias and the Systematic Neglect of Real**
2 **Biodiversity**

3 Ryota Hayashi ¹, Shota Shibasaki ²

4 1) Research & Development Center, Nippon Koei Co., Ltd., 2304 Inarihara Tsukuba, Ibaraki, 300-

5 1259, Japan. bubobubo32@gmail.com <https://orcid.org/0000-0002-5330-0280>

6 2) Faculty of Culture and Information Science, Doshisha University, Tataramiyakodani 1-3, Build.

7 MK615, Kyotanabe, Kyoto, 610-0394, Japan <https://orcid.org/0000-0002-8196-0745>

8

9 **ABSTRACT**

10 Taxonomy underpins all biodiversity sciences, yet its essential role in measuring and managing life on Earth
11 remains underrecognized in conservation and policy frameworks. Analyzing 360 articles from 12 leading
12 ecology and taxonomy journals in 2024, we reveal that ecologists overwhelmingly focus on historically
13 familiar vertebrates, while taxonomists emphasize recently described invertebrates—the overlooked majority
14 of real biodiversity. These contrasting “Species Scapes” illustrate how disciplinary perspectives systematically
15 shape what counts as biodiversity, with direct consequences for conservation and policy frameworks that
16 depend on accurate taxonomic data. Integrating taxonomic expertise into biodiversity governance is essential
17 for comprehensive policy implementation.

18 **The structural threat to global biodiversity policy**
19 Global efforts to halt biodiversity loss—from the Kunming-Montreal Framework to corporate disclosure
20 under Taskforce on Nature-related Financial Disclosures (TNFD)—depend fundamentally on accurate
21 taxonomic knowledge. Yet the scientific infrastructure providing this knowledge faces systematic
22 undervaluation rooted in citation-based evaluation systems. Taxonomy, which builds biodiversity's
23 foundational knowledge, remains structurally undervalued by citation-based evaluation metrics [1,2]. Unlike
24 experimental research, taxonomic descriptions establish long-term knowledge infrastructure but generate
25 citations slowly, particularly within the short two-year citation window used to calculate IF [2], contributing to
26 a drastic decrease in the taxonomic profession [3].

27 Through an analysis of 360 open-access articles published in major peer-reviewed 12 journals in 2024
28 (Supplementary Information 1), we demonstrate that ecologists and taxonomists operate with fundamentally
29 divergent perceptions of biodiversity. These divergent perceptions translate directly into biases and gaps in the
30 data underlying conservation priorities and policy frameworks.

31
32 *"Out of the millions of Umwelten, whose abundance would result in confusion, we shall pick out only
33 those dedicated to the investigation of nature – the Umwelten of different scientists."*
34 — Jakob von Uexküll, *A Stroll Through the Worlds of Animals and Men*, in *Instinctive Behavior*, ed. C.
35 H. Schiller, 1957 [originally published 1934]

36
37

38 **Two divergent Species Scape for biodiversity recognition**

39 The concept of "Umwelt"—how organisms construct unique perceptual realities—applies to scientific
40 communities. Ecologists and taxonomists operate within fundamentally different perceptual worlds. To
41 visualize this gap, we adapted Wheeler's "Species Scape" concept [4]—which scales organism size to species
42 richness—to reflect scientists' attention, scaling organisms to mention frequency across 360 articles from 9
43 ecological and 3 taxonomic journals (Fig. 1).

44 In the ecological Species Scape, charismatic megafauna dominate: mammals (26.75%) and birds (20.31%)
45 take center stage, despite their relatively low global species richness [4]. By contrast, the taxonomic Species
46 Scape presents a radically different picture: insects (27.55%) and other arthropods (19.56%) dominate, while
47 mammals (3.79%) and birds (0.06%) are nearly absent. Organisms dominating ecological literature—often
48 "Instagrammable" megafauna—are largely absent from taxonomy journals, where arthropods account for
49 nearly half of all mentions.

50 This divergence is statistically significant (Supplementary Information 2), revealing systematic "taxonomic
51 chauvinism" [5]: structural disadvantages faced by researchers studying less charismatic taxa. Although more
52 than two million species have been formally described [6], the true extent of global biodiversity remains
53 unknown [7], and many undescribed species face elevated extinction risks [8].

54 Previous studies have shown this taxonomic bias extends to conservation science [9, 10], where vertebrates
55 receive disproportionate attention despite invertebrates facing comparable threats. Reliance on flagship and
56 umbrella species may oversimplify ecological systems and fail to safeguard broader biodiversity [11]. Our
57 analysis demonstrates this bias pervades ecological research beyond conservation. This spatial divergence in
58 taxonomic attention has a temporal dimension that reveals its historical roots. This is not merely an academic
59 issue: ecologists and taxonomists systematically focus on fundamentally different organisms, creating biases
60 in the data that inform conservation and policy.

61

62 **Temporal imbalance in focused species across disciplines**

63 This temporal dimension is striking. The distribution of records across eleven 25-year intervals (1753–2024)
64 reveals clear differences between ecological and taxonomic journals (Fig. 2). Ecological journals mentioned
65 species described predominantly in the 18th century, with steep declines in later periods. In contrast,
66 taxonomic journals showed substantial increases from the 20th century onward, with over 60% of mentioned
67 species described after 1900. One possible explanation for this disparity lies in the difficulty non-taxonomists
68 face in recognizing newly described species. Many of these organisms remained unnoticed even by
69 taxonomists until recently, making it even more challenging for non-taxonomists to incorporate them into their
70 research. This suggests that species recognition outside taxonomy has not substantially progressed since the
71 Linnaean era (Fig. S1). This disconnect perpetuates a systemic neglect of newly described or morphologically
72 inconspicuous species in broader ecological research. This finding reinforces the notion that ecologists and
73 taxonomists operate with fundamentally different frames of reference. Ecologists tend to focus on vertebrates
74 and conspicuous species in conservation and ecosystem service studies, while taxonomists shed light on
75 species underrepresented in ecological studies and provide the foundation of biodiversity.

76

77

78 **Policy Implications and the TNFD challenge**

79 Taxonomy's foundational role becomes particularly evident in emerging global frameworks such as TNFD,
80 where accurate species identification and occurrence records are prerequisites for evaluating nature-related
81 risks and dependencies. As TNFD drives corporations to identify and manage their biodiversity dependencies
82 and impacts, taxonomy—often dismissed as irrelevant in corporate settings—emerges as essential
83 infrastructure. Despite biodiversity remaining largely overlooked in mainstream ESG assessments, emerging
84 evidence suggests biodiversity-focused investment indices can deliver competitive financial returns [12]. The
85 absence of taxonomic expertise within companies is not a reflection of its lack of value, but of the failure to
86 recognize and measure that value. It is time for businesses to recruit and support taxonomists not only as
87 scientists, but as enablers of sustainable decision-making, data credibility, and long-term stewardship of
88 natural capital. For example, Li [13] argues that the education of financial professionals is key to addressing
89 the underfunding of biodiversity conservation, which also indicates that the legitimate value of taxonomic
90 findings is not being communicated. As calls for “biodiversity-informed policy” intensify, bridging this
91 perceptual divide becomes ever more urgent. Without a taxonomic foundation, biodiversity disclosure
92 frameworks risk measuring what is easy to count rather than what truly exists.

93

94

95 **From academic value to socio-economic impact: the role of natural history and description**

96 Despite being a cornerstone of biodiversity science, taxonomy continues to be undervalued. Taxonomic
97 descriptions, regional checklists, and biodiversity atlases provide essential infrastructure but receive fewer
98 citations than experimental studies. Broader reform movements—the San Francisco Declaration on Research
99 Assessment [14], the Leiden Manifesto [15]—call for moving beyond journal-based metrics, yet citation
100 counts continue dictating funding, hiring, and institutional rankings.

101 To align scientific incentives with societal goals, we propose the Discovery and Description (DD) Index
102 (Appendix)—a novel evaluation framework designed to quantify the long-term contributions of taxonomic
103 and descriptive research. Unlike citation metrics, the DD Index captures societal utility over decades,
104 including adoption in policy frameworks like TNFD. Integrating it into biodiversity disclosure and funding
105 mechanisms could realign incentives and strengthen global biodiversity governance.

106 The invisible majority—representing most of Earth's described species and facing elevated extinction risks—
107 must become visible. Reforming evaluation systems to recognize taxonomy's foundational role is not optional;
108 it is prerequisite for effective biodiversity governance. Specifically, we urge global financial bodies and
109 conservation policymakers to adopt the DD Index as the standard metric for assessing and rewarding
110 foundational taxonomic contributions, ensuring that TNFD and the 2050 targets are built on the reality of
111 biodiversity, not the bias of Linnaean-era megafauna.

112

113 **Acknowledgements**

114 Dr. Chihiro Kinoshita drew the wonderful illustration in Figure 1.

115

116 **References**

117 1. Choi, J. J. et al. Role of low-impact-factor journals in conservation implementation. *Conserv. Biol.* **39**,
118 e14391 (2025). <https://doi.org/10.1111/cobi.14391>

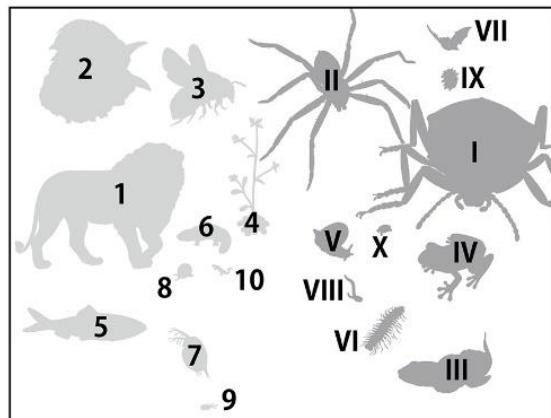
119 2. Krell, F. T. Why impact factors don't work for taxonomy. *Nature* **415**, 957 (2002).
120 <https://doi.org/10.1038/415957a>

121 3. Pearson, D. L., Hamilton, A. L. and Erwin, T. L. Recovery plan for the endangered taxonomy profession.
122 *BioScience* **61**, 58–63 (2011). <https://doi.org/10.1525/bio.2011.61.1.11>

123 4. Wheeler, Q. D. Insect diversity and cladistic constraints. *Ann. Entomol. Soc. Am.* **83**, 1031–1047 (1990).
124 <https://doi.org/10.1093/aesa/83.6.1031>

125 5. Bonnet, X., Shine, R. and Lourdais, O. Taxonomic chauvinism. *Trends Ecol. Evol.* **17**, 1–3 (2002).
126 [https://doi.org/10.1016/S0169-5347\(01\)02381-3](https://doi.org/10.1016/S0169-5347(01)02381-3)

127 6. Bánki, O., Roskov, Y., Döring, M., Ower, G., Hernández Robles, D. R., Plata Corredor, C. A., Stjernegaard
128 Jeppesen, T., Örn, A., Pape, T., Hobern, D., Garnett, S., Little, H., DeWalt, R. E., Ma, K., Miller, J., Orrell,
129 T., Aalbu, R., Abbott, J., Adlard, R., et al. (2025) Catalogue of Life (Version 2025-04-10). Catalogue of Life,
130 Amsterdam, Netherlands. <https://doi.org/10.48580/dgplc>

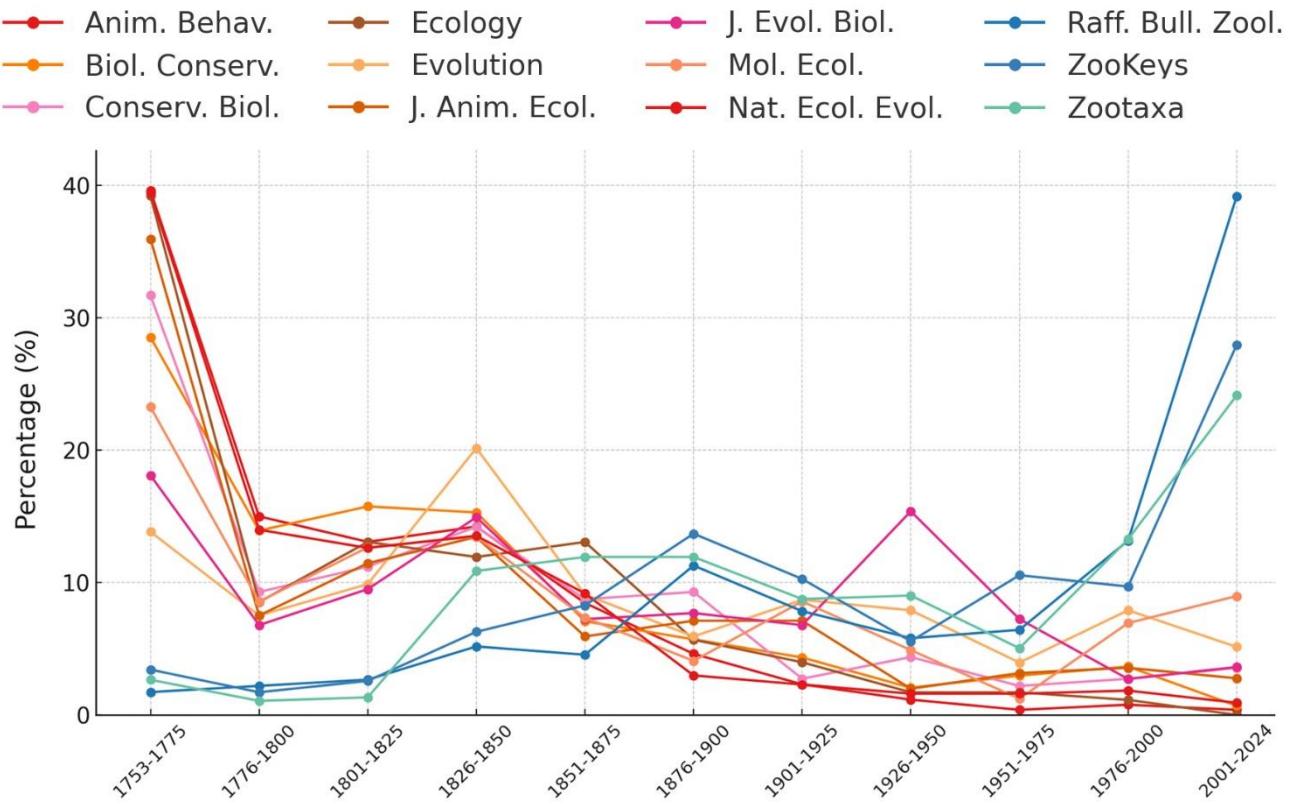

131 7. Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. and Worm, B. How many species are there on Earth and
132 in the ocean? *PLoS Biol.* **9**, e1001127 (2011). <https://doi.org/10.1371/journal.pbio.1001127>

133 8. Liu, J., Slik, F., Zheng, S. and Lindenmayer, D. B. Undescribed species have higher extinction risk than
134 known species. *Conserv. Lett.* **15**, e12876 (2022). <https://doi.org/10.1111/conl.12876>

135 9. Donaldson, M. R. et al. Taxonomic bias and international biodiversity conservation research. *Facets* **1**, 105–
136 113 (2016). <https://doi.org/10.1139/facets-2016-0011>

137 10. Guénard, B. et al. Limited and biased global conservation funding means most threatened species remain
138 unsupported. *Proc. Natl. Acad. Sci. U.S.A.* **122**, e2412479122 (2025).

- 139 <https://doi.org/10.1073/pnas.2412479122>
- 140 11. Wang, F. et al. The hidden risk of using umbrella species as conservation surrogates: a spatio-temporal
141 approach. *Biol. Conserv.* **253**, 108913 (2021). <https://doi.org/10.1016/j.biocon.2020.108913>
- 142 12. Appio, F. P., Benlemlih, M., El Ouadghiri, I. and Peillex, J. International evidence on the financial
143 performance of biodiversity investing. *J. Environ. Manage.* **377**, 124640 (2025).
- 144 <https://doi.org/10.1016/j.jenvman.2025.124640>
- 145 13. Li, X. Close the biodiversity funding gap by teaching conservation to financial professionals. *Nature* **638**,
146 321 (2025). <https://doi.org/10.1038/d41586-025-00431-6>
- 147 14. DORA. San Francisco Declaration on Research Assessment (2012). <https://sfdora.org/read/>
- 148 15. Hicks, D., Wouters, P., Waltman, L., De Rijcke, S. and Rafols, I. Bibliometrics: the Leiden Manifesto for
149 research metrics. *Nature* **520**, 429–431 (2015). <https://doi.org/10.1038/520429a>
- 150


Percentages of mentioned taxa in each field

For Ecologists		For Taxonomists	
I. Mammalia	26.75	I. Insecta	27.55
II. Aves	20.31	II. N-I Arthropoda	19.56
III. Insecta	14.41	III. Pisces	14.30
IV. Plantae	13.03	IV. Amphibia	13.43
V. Pisces	8.00	V. Mollusca	8.52
VI. Reptilia	4.69	VI. Annelida	6.07
VII. N-I Arthropoda	4.27	VII. Mammalia	3.79
VIII. Mollusca	2.13	VIII. Platyhelminthes	3.56
IX. Monera	1.41	IX. Plantae	1.98
X. Amphibia	1.37	X. Reptilia	0.99

151

152 **Figure 1. Divergent Species Scape reflecting the distinct 'Umwelt' of ecologists and taxonomists.**

153 Based on 360 articles (2024) from ecological (left) and taxonomic (right) journals. Organism size reflects
154 mention frequency. Ecologists focus on charismatic vertebrates (mammals 26.75%, birds 20.31%);
155 taxonomists highlight invertebrates (insects 27.55%, arthropods 19.56%). This statistically significant
156 divergence ($\chi^2=1758.5$, $p<2.2e-16$) demonstrates how disciplinary perspectives systematically shape
157 biodiversity perception. Systematics follows Wheeler (1990); pie charts show taxonomic distribution across
158 18 major groups. Data in Tables S1-S4 and Fig. S3.

159

160 **Figure 2. Temporal distribution of species description dates across ecological and taxonomic journals.**

161 Temporal distribution of species description dates across 12 journals shows relative proportion across 11 time
 162 intervals (1753–2024). Ecological journals (warm colors) predominantly mention species described in the
 163 18th–19th centuries; taxonomic journals (cool colors) emphasize species described after 1950. This temporal
 164 divergence demonstrates that despite two centuries of taxonomic progress, ecological research remains
 165 anchored to Linnaean-era fauna.

166

167

168 **Appendix: Discovery and Description (DD) Index**
169 The DD Index evaluates taxonomic contributions using an h-index logic: a researcher has DD Index of h if h
170 outputs each have Impact Score $\geq h$.
171
172 Impact Score components per output:
173 - Literature mentions: +1 each (peer-reviewed or not)
174 - Database inclusion (GBIF, WoRMS, etc.): +3
175 - Genetic data linkage (GenBank, BOLD): +3
176 - Conservation assessment (IUCN, national): +5
177 - Nomenclatural stability (valid ≥ 5 years): +10
178
179 This framework:
180 - Recognizes long-term infrastructure value
181 - Credits non-peer-reviewed but scientifically valuable outputs (regional checklists, museum bulletins,
182 society reports)
183 - Employs additive authorship weighting (first author 100%, corresponding +50%, co-authors +30% each)
184 - Scales to institutional assessment
185 - Integrates with biodiversity disclosure frameworks (TNFD)
186 Implementation via automated text mining, database API integration, and community-driven calibration
187 would align evaluation with taxonomy's societal relevance.
188
189
190 **Supplementary Information 1**
191 **Materials and Methods**
192 ***Data selection and journal sampling***
193 We reviewed a total of 360 open-access articles in twelve major peer-reviewed journals published in 2024
194 (Table S1). From the list of open access articles published in 2024 from each journal, 30 were selected using
195 random numbers (Table S2). Nine of the twelve journals are those in ecology, evolutionary biology, or
196 conservation biology (*Animal Behaviour*, *Biological Conservation*, *Conservation Biology*, *Ecology*, *Evolution*,
197 *Journal of Animal Ecology*, *Journal of Evolutionary Biology*, *Molecular Ecology*, and *Nature Ecology &*
198 *Evolution*), and the remaining three were taxonomy journals (*Raffles Bulletin of Zoology*, *ZooKeys*, and
199 *Zootaxa*). Purely theoretical papers and editorials that did not include any scientific names, as well as
200 taxonomic monographs (e.g. checklists or distributional atlases) were excluded from analysis.

201

202 ***Species identification and classification***

203 Scientific names of mentioned organisms in each article were systematically extracted and validated. The
204 authorities and years of the original descriptions of the organisms were listed and synonyms were excluded
205 following the taxonomy of databases (including GBIF, WoRMS, and original descriptive articles) where
206 available, and manually verified otherwise (Table S3). For searching original description of scientific names,
207 we used online databases (as listed above) when they were available. All organisms mentioned were identified
208 as taxa according to Wheeler [4]. Although Wheeler's systematics does not correspond to the current
209 systematics, we adopted the 1990 systematics for comparison with the Species Scape of that period.

210

211 ***Species Scape reconstruction***

212 Distribution of mentioned taxa (Wheeler's group) across 12 journals are shown as pie charts (Figs. S2, S3),
213 and we reconstructed the recent species scape in different disciplines (Fig. 1). Species Scape used the size of
214 an organism on a landscape to indicate the relative number of species in that group [4]. To make an updated
215 Species Scape for a split discipline, we constructed two parallel Species Scapes based on 360 published
216 articles we reviewed (Tables S2 and S3): left side derived from species mentioned in nine ecological journals,
217 and the right side from three taxonomic journals. We followed Wheeler's 18 major groups, and the symbolized
218 organisms used are listed in Table S4. Taxa ranked eleventh or lower were omitted and not shown in Fig. 1.

219

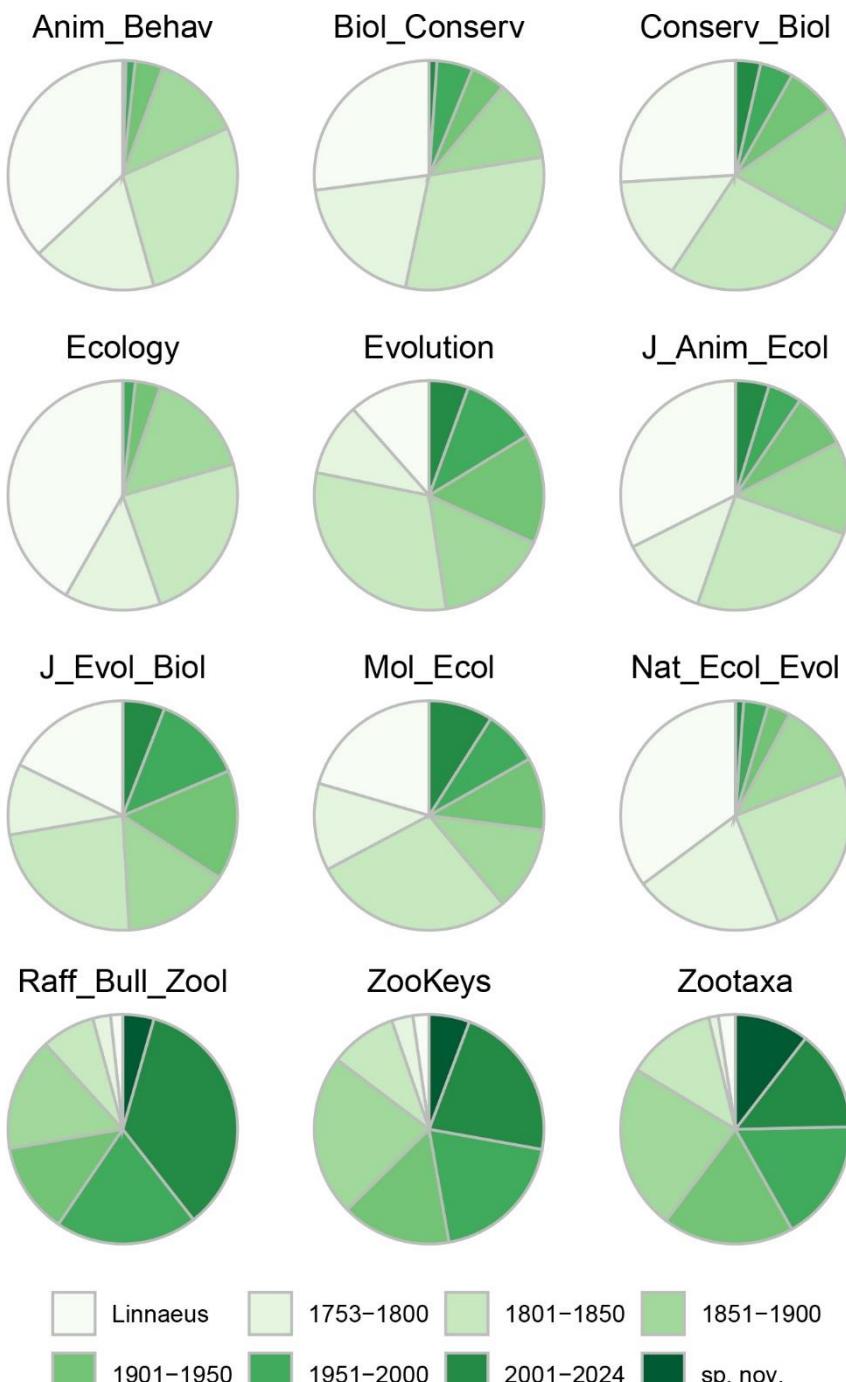
220

221 **Supplementary Information 2**

222 **Statistical Analysis of Species Scape Divergence**

223 The statistical significance of the divergence in taxonomic focus between the ecological journals (N=9) and
224 the taxonomic journals (N=3) was determined using a Chi-squared (χ^2) test of independence applied to the raw
225 mention counts across the 18 major taxonomic groups defined by Wheeler (1990).

226 The analysis confirmed a highly significant difference in the distribution of attention between the two groups:

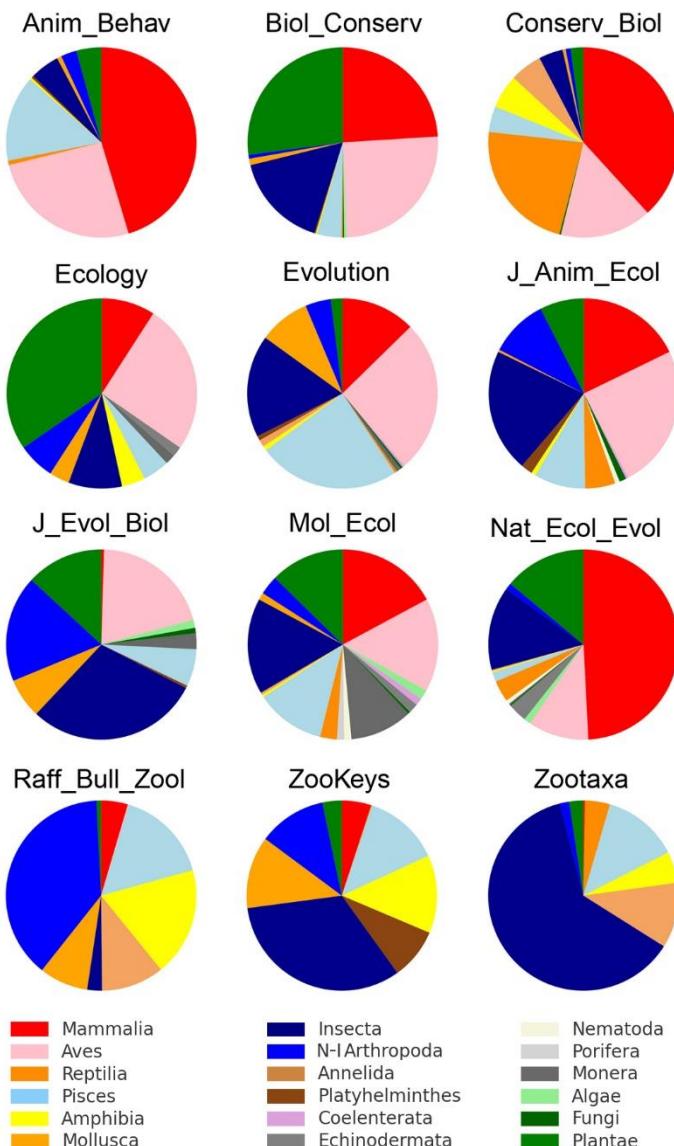

227 Chi-squared (χ^2) value: 1758.5

228 Degrees of Freedom (df): 17

229 P-value (p): < 2.2e-16 (The difference is highly significant)

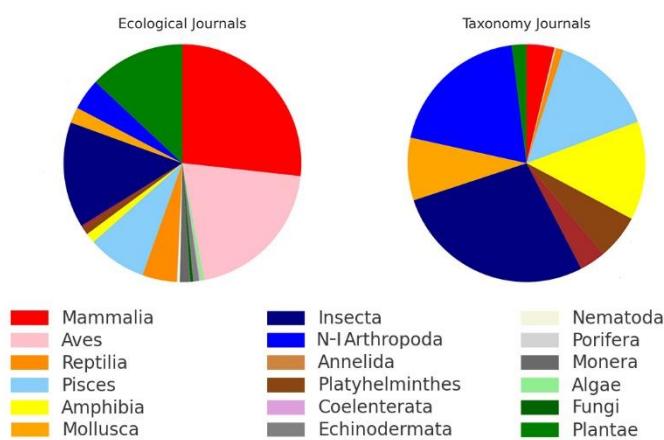
230 Cramér's V (Effect Size): 0.632 (Indicating a strong association between journal type and taxonomic focus)

231 These results confirm the observation from the Species Scape (Figure 1), demonstrating that the disciplinary
232 bias towards certain taxa is systematic, not random, and represents a strong effect.


233

234

Figure S1. Temporal distribution of described taxa across 12 journals in historical categories.


235

Each pie chart represents the proportion of described taxa across eight historical time categories: by Linnaeus (1753, 1758, and 1766), 1758–1800, 1801–1850, 1851–1900, 1901–1950, 1951–2000, 2001–2024, and as new species (sp. nov.). Linnaeus is positioned at the 12 o'clock mark in all charts, and slices progress counterclockwise. This panel further illustrates the stark contrast between ecological journals, which rely heavily on historically described taxa, and taxonomic journals, where newly described species dominate the recent decades. Both panels collectively demonstrate the significant temporal imbalance in species focus between ecological and taxonomic research.

242

243 **Fig. S2. Distribution of mentioned taxa across 12 journals.**

244

245 **Fig. S3. Distribution of mentioned taxa in ecological and taxonomic journals.**

246