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23 Abstract 

24 Biodiversity is declining in many parts of the world. Biological diversity measurement and 

25 monitoring are fundamental to the assessment of the causes and consequences of 

26 environmental changes, identification of key areas for the protection of biodiversity or 

27 ecosystem services, determining the effectiveness of actions, and the creation of decision- 

28 support tools critical to maintaining a sustainable planet. Biodiversity measurement is 

29 rapidly changing due to advances in citizen science, image recognition, acoustic monitoring, 

30 environmental DNA, genomics, remote sensing and artificial intelligence. In this perspective, 

31 we outline the exciting opportunities these developments offer but also consider the 

32 challenges. Our key recommendations are to (1) Capitalize on the ability of novel technology 

33 to integrate data sources (2) agree to standard methods for data collection (3) ensure new 

34 technologies are calibrated with existing data; (4) fill data gaps by using emerging 

35 technologies and increasing capacity, especially in the tropics; (5) create living safeguarded 

36 databases of trusted information to reduce the risk of poisoning by AI hallucinated, or false, 

37 information; (6) ensure data generation is valued; (7) ensure respectful incorporation of 

38 Indigenous Knowledge; (8) ensure measurements enable the quantification of effectiveness 

39 of actions and (9) increase the resilience of global datasets to technical and societal change. 

40 Radical new collaborations are needed between computer scientists, engineers, molecular 

41 biologists, data scientists, field ecologists, citizen scientists, Indigenous peoples, policy 

42 makers, and local communities to create the rigorous, resilient, accessible biodiversity 

43 information systems required to underpin policies and practices that ensure the 

44 maintenance and restoration of ecological systems. 

 
45 
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49 Biodiversity – a major determinant of ecosystem productivity, stability and resilience – 

50 delivers a wide range of benefits to society (1-3). 

51 Yet, as shown by the summary of key numbers in Figure 1, biodiversity is in rapid and 

52 widespread decline in the face of anthropogenic pressures, driving a range of serious 

53 problems for society (4). 

54 Accurate and reliable biodiversity measurement is fundamental to the conservation, 

55 restoration, and stewardship of nature and maintaining benefits from ecosystems. These 

56 measurements underpin the delivery of policies and practices that provide necessary 

57 change to ensure nature’s resilience. Specifically, measurement is foundational to our 

58 knowledge of global patterns, including measuring the changes in populations, communities 

59 and ecosystems, the nature and magnitude of threats, the effectiveness of potential 

60 solutions, and the progress toward conservation targets. 

61 Biodiversity measurement is undergoing rapid change, especially through citizen science, 

62 image recognition, acoustic monitoring, eDNA, genomics, remote sensing, and artificial 

63 intelligence (AI). These changes bring opportunities through increasing the scale and 

64 resolution of biodiversity measurement. However, they also bring challenges including 

65 ethical concerns surrounding the risks of biodiversity monitoring technology undermining 

66 privacy (5), and unequal access to fast moving technology exacerbating 

67 existing inequalities and power imbalances (6, 7). 

68 There are currently greater demands for biodiversity data than ever before. Businesses 

69 increasingly need to measure and manage their impact and dependencies on biodiversity, 

70 driven by legislation (for example the EU’s Corporate Social Responsibility Directive and 

71 Deforestation Regulation) and voluntary compliance with the Taskforce on Nature-related 

72 Financial Disclosures, the Science Based Targets Network, or similar initiatives, driven by 

73 pressure from consumers (8). There is also an explosion of interest in 

74 measuring the effectiveness of conservation policies and practices to inform truly evidence- 

75 based decision-making ( 9 ) , including recognition of the need to design 

76 evaluation into conservation actions ( 1 0 ,  1 1 ) . For 

77 governments, a major demand is monitoring progress towards their own national 

78 legislation, such as England’s Environment Act, which includes targets to halt and reverse 

79 biodiversity loss, or commitments to international agreements, such as Kunming-Montreal 

80 Global Biodiversity Framework (12). 

81 This combination of dramatic advances in technology for measuring biodiversity, alongside 

82 unprecedented societal demand, creates an extraordinary opportunity to transform 

83 evidence-based biodiversity policy and practice. In this perspective, we first introduce the 

84 scope of emerging technologies and the flood of new data being generated. We then 

85 suggest nine recommendations for ensuring biodiversity measurement can fulfil its potential 

86 in helping to address the global biodiversity crisis. 

87  

A flood of new data from emerging technologies 
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98 There has been a remarkable explosion in the amount of biodiversity data available (Table 

99 1), reflecting the proliferation of new technologies for observation and a culture shift 

100 towards data sharing. The scale of the flood of data is illustrated by the Global Biodiversity 

101 Information Facility (GBIF), which manages a vast source of species occurrence data and is 

102 adding records at a rate exceeding 420 million a year. GBIF is now integrating data from 

103 museums and herbaria, eDNA, citizen science like eBird, and data from Environmental 

104 Impact Assessments. These disparate data types are brought together within a central 

105 database and then made available via to anyone who wants to use it. Over 10,000 scientific 

106 papers have made use of GBIF mediated data, and it is being used widely by governments 

107 for various purposes. 

108 Robotic and autonomous systems are likely to change many of the technologies described in 

109 this section as they deliver sampling, for example through robots or drones (13). 

110 Environmental DNA (eDNA), the DNA released into the environment by organisms, can be 

111 detected from sampling soil, water or air, enabling the cost-effective identification of 

112 species present. It has been widely used in targeted species detection studies with PCR and 

113 qPCR assays, and in community (i.e., multi-species) studies using metabarcoding (14). 
Researchers can compare communities through sampling of preserved samples, such 

114 as in permafrost, lake sediments, peat, or air samples (15) to examine changes 

115 over long periods of time. For example, Kjær et al. (2022) examined a two-million-year-old 

116 deposit in Greenland identifying 102 genera from the eDNA, including determining the 

117 habitat, identifying many plants missed from macrofossil and pollen recording, and showing 

118 the presence of mastodons, reindeer, rodents and geese, all ancestral to their present-day 

119 and late Pleistocene relatives (16). eDNA is efficient for monitoring current 
ecosystems, 

120 especially from water or soil samples, or for monitoring species at scale (17). 

121 The utility of the approach for a given taxonomic group in a geographic area depends on the 

122 availability of appropriate reference DNA libraries, and this is rapidly increasing. 

123 As well as the ability to identify species based on fragments of eDNA, rapid advances in 

124 sequencing technology has enabled the generation of high-quality complete genomes, 

125 (including reference genomes), which allow species identification, the understanding of 

126 species' genetic diversity and the distribution of variants in space and time (18)  as well as 
the species’ history. This information can be used to identify genotypes that 

127 are  more  resilient  for  conservation/assisted  migrations  and  populations  that  are 

128 experiencing stress. 

129 Image and acoustic signal recognition, the ability for AI to identify species based on their 

130 appearance or the sounds they make, are progressing fast towards large-scale automated 

131 data collection, for example, from distributed networks of acoustic sensors or camera traps. 

132 Automated identification of auditory recordings is rapidly improving both for species on 

133 land and in the oceans (19). For example, in 2021 Kahl et al. reported that 

139 BirdNET, using deep artificial neural networks, could identify almost a thousand bird species 

140 and replicate seasonal detection patterns obtained by human observers (20). By 2025, 
the 
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141 number of species BirdNET could identify had trebled (https://birdnet.cornell.edu/). Similar 

142 methods applied to frogs from the Philippines show both high recognition accuracy and the 

143 capacity to detect species previously undescribed by scientists (21). 

144 Improved methods development, the rapid accumulation of recordings that can be used for 

145 model training, and the nascent creation of benchmarked data sets for taxa ranging from 

146 insects (22) to whales (23), suggests that the use 

147 and sophistication of these methods will grow rapidly. 

148 Citizen science is another area of rapid growth, including in delivering new technologies. 

149 Centralized databases greatly enhance the utility of such data. In 2021, 19 years after its 

150 launch, eBird (24) – where people from around the world can submit bird 

151 observations – recorded its billionth observation. In 2025, this number surpassed two 

152 billion, collected by 1.1 million people. These enormous quantities of data have enabled 

153 mapping of species range limits, indices of abundance for almost 3000 species, and trend 

154 estimates at spatial resolutions of 27 x 27 km for several hundred species (25). 

155 Similarly, by June 2025, iNaturalist had amassed almost 250 million observations of over 

156 518,000 species, mostly with photographic documentation, contributed by more than 3.7 

157 million people (https://www.inaturalist.org/). 

158 Digitization of natural history collections, in museums and herbaria, have the potential to 

159 make accessible far more of the over 3 billion specimens worldwide linking historical 

160 collections with current observations (26). These records have a direct link 

161 to a physical voucher in a museum or herbarium and are collected by professional 

162 taxonomists/systematists; digitisation of specimen images will also provide well-annotated 

163 data sources for AI-based species recognition. 

164 There has also been considerable development of remote sensing technologies in recent 

165 years.  Remote sensing now allows detailed mapping of ecosystems, for example Global 

https://birdnet.cornell.edu/
https://www.inaturalist.org/
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166 Forest Watch ((27) and coastal systems (28)). Technology is continually 

167 improving, for example, with hyperspectral satellites and P-band radar there is an expanding 

168 frequency range and greater resolution and frequency of surveys and open access datasets, 

169 such as the European Space Agency’s Sentinel 2 that provides 10m resolution data every 5 

170 days. Alongside this enormous increase in data a promising avenue for improving the use of 

171 remotely sensed data comes from the development of geospatial foundation models, 

172 especially those that integrate data from multiple sources including optical, radar, LiDAR, 

173 and other sources, such as those within Google Earth Engine platform 

174 (https://earthengine.google.com). These systems have massive potential to monitor 

175 landcover and land-use changes, dynamics in tree species composition, map pressures, 

176 model species distribution and examine the consequences of conservation measures. These 

177 AI-enabled remote sensing could dramatically change biodiversity measurement. Earth 

178 observation data already helps policy frameworks be measurable. For example, 41% of the 

179 Global Biodiversity Framework headline indicators are spatially explicit and reliant on earth 

180 observation (https://unbiodiversitylab.org/en/monitoring-framework-of-the-kunming- 

181 montreal-global-biodiversity-framework-data-collection/). 

182 The  development  of  low-cost  wearable  sensors  means  animal  movement  can  be 

183 documented at scale, improving the quantification of dispersal, migration (29), 

184 behavior, physiology, health and interactions of individuals. These high-resolution, widely 

185 distributed data have the potential to greatly improve ecological predictions, for example 

186 the capacity of species distribution models to predict responses to climate change. 

189 

190 Recommendations for changing biodiversity measurement to help tackle the biodiversity 

191 crisis 

192 We make nine recommendations for making the most of the rapidly changing landscape for 

193 biodiversity measurement to ensure it can contribute to tackling the biodiversity crisis. 

 
194 

 
195 1) Capitalize on the ability of novel technology to integrate data sources 

196 Biodiversity information typically comprises data from a single different source, including 

197 auditory, environmental DNA, genomics, Indigenous Knowledge, museum specimens, 

198 remote sensing and visual). A major current development is combining of different sources 

199 of information to create holistic models that capture both broad-scale patterns from 

200 satellite imagery and fine-scale, ecologically relevant information from ground-based 

201 measurements  to  produce  a  more  comprehensive  and  accurate  picture  of  global 

202 biodiversity (30-32). These 

203 complementary data sources offer scalable methods for biodiversity monitoring, providing 

204 granular insights that single methods alone cannot capture. 

https://earthengine.google.com/
https://unbiodiversitylab.org/en/monitoring-framework-of-the-kunming-montreal-global-biodiversity-framework-data-collection/
https://unbiodiversitylab.org/en/monitoring-framework-of-the-kunming-montreal-global-biodiversity-framework-data-collection/
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205 Advancements in artificial intelligence, particularly generative AI that is hallucination-free, 

206 represent an opportunity to derive insights across these often disconnected data sources. 

207 Generative AI enhances our capacity to collect, process, and synthesise biodiversity data at 

208 scale by combining and analysing existing datasets efficiently. These tools can reveal 

209 undiscovered patterns that would be difficult to achieve through manual synthesis alone. 

210 For instance, AI applications have been used to model species distributions more accurately, 

211 improve habitat classification, identify invasion pathways of alien species, and predict zones 

212 of human-wildlife conflict (6). They can also support the analysis of 

213 trade routes in illegal wildlife markets by uncovering hidden patterns in complex data. 

214 The bottleneck for depending on insights from generative AI is a robust validation pipeline 

215 based on accurate ground truth, especially in spatial regions with historical data gaps. A 

216 serious primary challenge therefore lies in funding and implementing integrated monitoring 

217 efforts over sufficiently large regions or developing cost-effective methodologies that can be 

218 reliably extrapolated over larger geographic areas. Overcoming these logistical and financial 

219 hurdles is paramount to developing comprehensive and scalable solutions for global 

220 biodiversity and ecosystem condition assessment. 

 
221 

 
222 2) Agree standard methods for data collection 

223 Inconsistency in methods for measuring biodiversity hinders all major uses of data: 

224 comparisons of global diversity, assessment of change, determining effectiveness of actions, 

225 and reporting on performance. For example, in a meta-analysis of phenological change, 

226 (33) found that methodological variation explained almost half as much 

227 variance as biological variables. More generally - for country, business, NGO and community 

228 use cases - there is a need for a holistic approach that provides a framework for multi- 

229 stakeholder global monitoring standards. Potentially coordinated by an international body, 

230 such a framework would develop, endorse and promote a tiered and modular monitoring 

231 workflow—from  data  acquisition  and  management  through  to  analysis,  indicator 

232 calculation, and reporting (34). The framework would include existing 

233 standards for fundamental interoperability (e.g., the Darwin Core (35)) 

234 and more advanced, specific standards for various biomes, taxa, and technologies (e.g., 

235 eDNA, remote sensing, and the use of AI). Crucially, there is a need for clear guidance, 

236 capacity-building programs, and incentives (including linking to funding and regulatory 

237 requirements)  to  ensure  widespread  adoption.  A  monitoring  standards  framework 

238 (following FAIR and CARE principles, (36)) would ensure that data workflows 

239 are  verifiable,  discoverable,  auditable,  reusable  and  ethically  managed,  particularly 

240 concerning Indigenous peoples and local communities' knowledge. 
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241 This can build on the standards and lessons from a range of existing communities who have 

242 standardised processes, such as The US National Ecological Observatory Network (37), the US 
Forest Service Inventory Analysis (FIA), the grassroots global Nutrient Network 

243 (38), Forest GEO (39), and TreeDivNet (40). In forest ecology, standardised methodologies have 
been developed for establishing 

244 forest plots and monitoring the trees they contain (e.g. (41)), which has 

245 generated a global network of sites yielding long-term data enabling global analyses, greatly 

246 strengthened by consistent data. 

247 There may be lessons from the biodiversity genomics community, including The Earth 

248 BioGenome Project (42), who established an International Science Committee 

249 that created a set of standards, whose adoption contributed to the rapid growth of 

250 annotated, reference-quality genomes (14). Critical lessons from these 

251 precedents are the importance of early integration, collaborative global governance, 

252 scalable protocols adopted across institutions, and a robust data-sharing ethos encouraging 

253 data reuse and synthesis. 

254 The goal of these efforts is to minimize the use of inconsistent methods where viable 

255 alternatives exist, while recognizing that standardization is not always appropriate — 

256 particularly in long-term monitoring where consistency is important. Methodological 

257 differences can also be justified by local conditions or evolving technologies. To address this, 

258 standards should offer guidance for comparing new and existing methods in an open and 

259 transparent way (discussed in greater detail in the following section). Their adoption 

260 depends on strong incentives, capacity building, and inclusive data governance. Ultimately, 

261 transforming data comparability, reliability, and utility is essential for evidence-based 

262 decisions and tracking progress toward the Global Biodiversity Framework’s 2030 targets. 

263 The need for increasing standardisation across the monitoring workflow and suggested 

264 options for implementing this is explored in much greater detail in a parallel paper 

265 (34). 

 
268 

 
269 3) Ensure new technologies are calibrated with existing data 

270 Despite the many exciting opportunities afforded by the new approaches outlined above, 

271 integrating data from multiple sources faces a range of challenges to ensure comparability. 

272 A major challenge with any change in observation methodology is that recorded differences 

273 in biodiversity could be due either to a genuine change or a methodological difference. This 

274 is especially the case for sensor and AI-generated biodiversity measures, highlighting 

275 dramatic changes in the observation process from traditional field surveys to autonomous 

276 and remote methods. While this presents a challenge for spatial comparisons (e.g. is a site 

277 especially rich or subject to a new method?), it poses a greater issue when evaluating 
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278 changes over time. There is a need to ensure data are interoperable enough for spatial and 

279 temporal comparisons. 

280 If the new and old schemes are not properly cross-calibrated, the change could confound 

281 long-term trends. Analytical frameworks to overcome this challenge of multiple data 

282 sources have developed rapidly (43), but their success relies on a clear and 

283 detailed documentation of observation metadata for each monitoring scheme, and ideally, 

284 the operation of both schemes at overlapping locations for some time to allow direct 

285 comparisons. For example, the parallel operation for a six-year period of both the Common 

286 Birds Census and the Breeding Bird Survey in the United Kingdom allowed the old and new 

287 datasets to be combined whilst enabling coverage to increase more than 15-fold (44, 45). 

288 Similar cross-comparisons will be particularly crucial when sequencing, or sensor-based 

289 approaches, provide a different biodiversity measure than existing schemes, for example, 

290 when monitoring switches from counting individual animals to counting vocalisations or 

291 other acoustic indices (46), or from traditional observational field surveys to 

292 eDNA (47). Archiving samples used for eDNA analyses and the raw data 

293 from  such  monitoring  schemes  can  help  facilitate  reanalysis  and  understand  the 

294 consequences of evolving hardware and software pipelines (48). 

 
296 

 
297 4) Fill data gaps by using emerging technologies and increasing capacity, 

298 especially in the tropics 

299 The geographic and taxonomic distribution of biodiversity data show profound and complex 

300 biases (e.g., (49, 50)) that hamper the production of ready-to- 

301 use information on spatial patterns and temporal trends. The paucity of data from the 

302 tropics, soils, mesopelagic zones and deep ocean - all rich in unique biodiversity and all 

303 facing threats from human actions - places such systems at a disadvantage when decisions 

304 are made that affect them (51). 

305 The wealth of data for a few charismatic taxa (most obviously birds, which dominate the 

306 largest global biodiversity database, GBIF (52)) facilitates conservation 

307 decisions tailored to those groups, but these choices may not be optimal for other groups 

308 with different distributions (e.g. Insects (53)). Invertebrates are particularly 

309 underrepresented in biodiversity conservation thinking. So are undescribed species (“dark 

310 biodiversity”), many of which are likely to be endemic insects. Soil biota and microorganisms 

311 are even less well understood. 

312 Beyond taxonomic groups, geographic gaps are evident, especially in the tropics where, as 

313 well as a shortage of trained people and equipment, there is also usually little eDNA 
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314 reference material or auditory training material. The need for increased capacity in the 

315 tropics is a clear priority. As a result of these gaps and biases, conservation goals, targets 

316 and policies are set based on information from species that are much more widely 

317 distributed and much more ecologically generalist than most of Earth’s species. 

318 
 

319 5) Create living databases of trusted information to reduce the risk of poisoning 

320 by AI hallucinated, or false, information 

321 There is long history of fraudulent specimens, including the creation of new species 

322 (Piltdown man (54)), importing birds and claiming found in Britain (The Hasting’s 

323 rarities; (55)), stealing bird specimens from collections and relabelling (Colonel 

324 Meinertzhagen (56)). Similarly, there is an increasing problem of fictitious research 

325 papers, including those created by paper mills. 

326 AI algorithms are known to generate plausible but fictitious details, known as AI 

327 hallucination. A second issue with AI is its role in facilitating the creation of ever larger 

328 numbers of convincing, but fabricated, data. These could be through AI-generated images 

329 for image-based databases of field observations (or auditory equivalents) or through the 

330 creation of fabricated papers with invented data. The novel challenge is that with AI this 

331 fabrication can be achieved easily and at scale. The motives include career gain, being 

332 disruptive or pushing an agenda (for example, by making an ‘at risk’ species threatened by a 

333 project seem more common or purporting to show biodiversity gains, or no harms, in 

334 previous projects). This represents an existential crisis for AI data analysis and evidence 

335 Synthesis (57). 

336 Current processes seem poorly equipped to deal with this problem. Gold standard 

337 systematic reviews are resource-intensive, yet many already unwittingly cite retracted 

338 publications (58), with 89% remaining uncorrected a year after being notified 

339 of retractions (59), this problem will be exacerbated by an increasing 

340 volume of AI-fabricated material. 

341 Rather than depending on the individuals analysing information to judge validity a 

342 suggested better approach for the literature is an institutionally federated network of living- 

343 evidence (i.e. continuously updated) databases to ensure the scientific integrity of the 

344 results. Dynamic, specialized hallucination-free AI systems could continuously gather, 

345 screen and index literature relevant to defined themes and its measured outcomes, 

346 automatically tagging compromised studies for scholarly review. This could provide a robust, 
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347 transparent and dynamic source of scientific knowledge, enabling high-quality systematic 

348 reviews. Rapid reviews could be undertaken and updated in real time through processes 

349 such as dynamic meta-analysis (60). This approach could safeguard 

350 evidence synthesis against the rising tide of potentially poisoned literature (57). 

351 For biodiversity data a similar process of active vetting of databases is likely to be 

352 required. 

 
353 

 
354 6) Ensure data generation is valued 

355 The process of collecting biodiversity data is often difficult and time-consuming and must 

356 not be undervalued. While some new technologies may reduce reliance on field-based data 

357 collection, there remains a crucial role for locally-based expertise. Even satellite mounted 

358 sensors recording changes in habitat extent or condition require fine-scale ground-truthing 

359 drawing on local field effort. Systems to support citizen scientists require investment as 

360 coordination is crucial. 

361 While there are increasing calls for all biodiversity data to be public (61), 

362 making all data publicly accessible could lead to a producer-scrounger model, as without 

363 appropriate incentives it pays to use data rather than generate it. Despite widespread 

364 acceptance of the importance of open science (62), data underpinning scientific 

365 publications, many journal articles, including in ecology, still fail to make data available 

366 (63), however change is underway. The lessons learned from the 

367 experience of efforts to increase data sharing in ecology have been: (i) there needs to be 

368 governance for wholesale change, in this case through the journals and societies involved; 

369 (ii) credit for reuse of data should be given, through co-authorship and citable sources, such 

370 as digital object identifiers (DOI), alleviating concerns over data ownership and credit; (iii) 

371 the production of data can be regarded as a creditable output in itself, e.g. through 

372 recognition by grant bodies and in research assessment exercises; (iv) there needs to be 

373 sufficient resourcing, in this case through direct funding or contributions of learned societies 

374 to archiving costs (e.g., the British Ecological Society covers archiving costs of papers 

375 published in its 7 journals). 

376 Many of the classic early descriptions of tropical biodiversity attributed to European 

377 explorers, such as von Humboldt, Darwin, and Wallace, relied heavily on local and 

378 Indigenous assistants to find, collect, and classify the specimens (64). 

379 Emogor et al. describe a process for giving extended credit when it is inappropriate or 

380 against the journal’s policy to include contributors as authors (65). 

381 

382 7) Ensure respectful incorporation of Indigenous Knowledge 
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383 Indigenous Knowledge (IK) is a collective term representing the many place-based 

384 knowledges, innovations and practices accumulated across generations through interaction 

385 with the environment (66, 67). While each Indigenous 

386 community has a unique culture, so definitions and terminology may vary, these knowledge 

387 systems are inseparable from their culture’s spiritual and social fabric and incorporate moral 

388 values, such as kinship with nature, humility, and reciprocity (68-70).  

389 Indigenous communities have felt pressure by colonizers to assimilate, which has led to the 

390 loss of medical, ecological and cultural information (71) . Given the history of 

391 forced assimilation, it is important that indigenous knowledge is collated and shared by 

392 Indigenous peoples themselves and on their own terms (72). The Pisuna program 

393 in the Arctic is an example of a successful community-based monitoring program 

394 documenting their knowledge in a culturally appropriate manner (73). 

395 The development of AI risks widening the gap between Indigenous peoples and scientists, 

396 although there are good examples of AI being used with Indigenous Knowledge to inform 

397 decision making (74). 

398 The value of indigenous and local knowledge is increasingly recognized in science policy 

399 arenas such as Intergovernmental Panel on Biodiversity and Ecosystem Services and the 

400 Convention of Biological Diversity (75). For example, the Global Biodiversity 

401 Framework’s “monitoring framework” provides pathways for indigenous knowledge to be 

402 incorporated synergistically. Indigenous voices are also increasingly being heard in these 

403 international agreements - for example through the International Indigenous Forum on 

404 Biodiversity (IIFB) under the CBD (https://iifb-indigenous.org/about-us/). Such initiatives are 

405 crucial both for moral reasons, and practical reasons given the role of Indigenous peoples as 

406 stewards of biodiversity (76). 

408 

409 8) Ensure measurements enable the quantification of effectiveness of actions 

410 Monitoring biodiversity outcomes without a focus on designs which allow insights into the 

411 impact of actions to address the biodiversity crisis has been referred to as ‘counting the 

412 books while the library burns’ (77). Such an approach can only describe 

413 declines, rather than help address the biodiversity crisis directly. There is therefore an 

414 explosion of interest in measuring the effectiveness of conservation policies and practices 

415 (11) to inform truly evidence-based policy making ( 9 ) .  

416 New technologies can help provide the biodiversity data at sufficiently high spatial 

417 and temporal resolution needed to estimate the counterfactual: what would have happened 

418 without the action (78). However, large amounts of data do not 

419 overcome the need for study designs that allow causation to be separated from correlation. 

https://iifb-indigenous.org/about-us/


14  

420 Embedding impact evaluation into conservation action at a much larger scale is therefore 

421 needed (10, 79). 

 
422 

 
423 

 
424 9) Increase the resilience of global datasets to technical and societal change. 

425 Challenges to maintaining information are not new, as illustrated by the destruction of the 

426 grand library of Baghdad in 1258. Recent events, including the fire in the National Museum 

427 of Brazil in 2018 destroying most of the 20 million items, the cyberattack attack on the 

428 British Library, and the closure of key herbaria (e.g., Duke) and museums that have been 

429 home to precious collections, illustrate the potential damage that could be done to 

430 biological collections and data. We note with particular concern actions taken by the US 

431 government to close US datasets, including more than 2,000 from data.gov (80). 

432 Another issue is data storage that uses proprietary software, since all software eventually 

433 becomes obsolete. Data should always also be stored in universal formats, such as comma 

434 separated data files with associated text metadata. 

435 Solutions include ensuring data backups in resilient forms, multiple funding sources such as 

436 public-private partnerships to reduce the reliance on single sources, dispersed systems with 

437 multiple versions, geopolitically diverse hosting to reduce the impact of political change, 

438 and, where appropriate, condemnation by society and global researchers. An important goal 

439 is to incorporate biodiversity data into a nationally or internationally mandated system with 

440 explicit backup and resilience mechanisms, as is provided for DNA sequence data by the 

441 International Nucleotide Sequence Database Collaboration (INSDC; linking GenBank, the 

442 European Nucleotide Archive and the DNA Database of Japan). 

443 A comprehensive deployment of sensors for biodiversity measurements could easily 

444 encompass tens of millions of devices being deployed in remote areas of the planet, which 

445 need to be networked together to collate the information. There are similar concerns with 

446 the resilience of the Internet itself as the long term mesh for this. The global network is 

447 expected to expand to a trillion nodes this decade, but faces a range of challenges from 

448 large quantities of fake, generative or poor data, sophisticated AI-driven malware, botnets 

449 commandeering huge numbers of machines to launch attacks, and even alteration of the 

450 physical world through the manipulation of Internet of Things (IoT) devices. Madhavapeddy 

451 et al. (in press) explore how the core Internet architecture might draw from ecological 

452 theory to find means of ensuring it remains a resilient, sustainable, and trustworthy 

453 network, which is vital given our growing dependency on digital measurements of global 

454 biodiversity (81). Ideas for a biologically inspired resilient Internet include ensuring 
greater 

455 diversity in the software stacks that comprise Internet nodes, active response to challenges 

456 (much like antibodies respond to infections) and providing shielding to hosts unable to 

https://en.m.wikipedia.org/wiki/National_Museum_of_Brazil
https://en.m.wikipedia.org/wiki/National_Museum_of_Brazil
http://data.gov/
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457 deploy countermeasures. All these approaches will help ensure the security and integrity of 

458 primary biodiversity measurements over longer periods of time. 

 
459 

 
460 Final thoughts 

461 Biodiversity scientists are on the cusp of a transformative flood of new data, due to the 

462 combination of increasing demands for ecological information, more comprehensive and 

463 sophisticated analyses, and astonishing technological developments. Here we identify a set 

464 of recommendations which will make the most of these opportunities while addressing the 

465 challenges. Delivering on these will require novel collaborations between communities who 

466 have not traditionally collaborated closely. Computer scientists, engineers, molecular 

467 biologists, data scientists, field ecologists, citizen scientists, Indigenous peoples, policy 

468 makers, and local communities need to work together to create rigorous, resilient and 

469 accessible biodiversity information systems. The ultimate aim is to deliver real-time, 

470 localized but globally-scalable assessments of biodiversity dynamics to inform decision 

471 making by diverse stakeholders at the temporal and spatial scales that are needed. 
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Figure 1. Key Numbers in Biodiversity. A summary of key numbers measuring the current state of 
biodiversity globally. We report highlights from the global quantification of this inherently multi faceted 
and heterogenous concept and phenomena. The number of significant digits used tried to reflect the 
variation in expert opinion and references.  
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749 Table 1. Some types of biodiversity data and their coverage 
 

Type of data Examples of extent 

Atlases Cover a range of taxa including over 600 bird atlases across 93 countries, with over 380,000 participants. 

The Xerces Society bumble bee atlas covers 20 US states, and with >110,000 records from >4000 

participants. 

Auditory Xeno-canto is approaching 1 million wildlife sound recordings (mostly birds); Macaulay Library (Cornell) 

has 2.8 million bird recordings, and is growing at an annual rate of over 15%. 

Camera traps A number of camera trap platforms streamline data processing. The Wildlife Insights platform has over 

200 million images from almost 3000 projects and includes over 4000 species. 

Citizen science In June 2025 eBird passed 2 billion observations from over 14 million checklists and 1.1 million eBird 

participants. 

Citizen science with 

standard processes 

Many large monitoring schemes (North American Breeding Bird Survey, Pan-European Common Bird 

Monitoring Scheme, Southern African Bird Atlas Project, European Butterfly Monitoring Scheme, Snapshot 

USA, Snapshot Europe, etc) have a rigorous process. 

Flora Thousands of flora, covering local, national and broader regions, are published that list species, describe 

habitat and their status. 

DNA marker data The Barcode of Life database collates marker gene information from over 20 million specimens 

corresponding to approximately 1.3 million species. The database is growing rapidly with contributions 

from around the globe. 

Genomes Earth Biogenome Project plans to generate high-quality reference genomes for 10,000 unique species 

before the end of 2027, and 150,000 by 2031. As of June 2025, data for 3,956 species was publicly 

available. 

Herbaria Index Herbariorum lists 3,567 herbaria worldwide containing 396 million specimens. Many are digitising 

specimens, which are often then made available online 

Image recognition iNaturalist has 248 million observations supported by photographs taken by citizen scientists, who may be 

aided by AI identification, with 155 million being verified by the community. 

Indigenous and local 

knowledge 

PISUNA (Piniakkanik Sumiiffinni Nalunaarsuineq) has 1052 items of Inuit knowledge on animal abundance, 

distributions, condition and behaviour and ice conditions. 

Local and national 

data centres 

These occur in at least a hundred countries with data sources that often overlap the others included here. 

https://xeno-canto.org/
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Museums Museums globally contain about 3 billion specimens with digitisation, including with AI, underway at many 

institutions. 

Tracking data MOVEBANK has 8 billion locations of 1,546 taxa from 9,113 studies 

Remote sensing 1000+ datasets are provided in the Google Earth Engine Data Catalog. 

 

 


