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Abstract   16 

 17 

Human activities—intentionally or not—generate a variety of novel food sources that wild animals 18 

exploit. On land and in water, human food sources can profoundly alter intraspecific interactions 19 

with cascading effects on population dynamics and ecosystem functioning. Yet, despite their 20 

growing ecological relevance, the role of human food subsidies in shaping intraspecific interactions 21 

remains underexplored. We propose a novel framework that highlights how key characteristics of 22 

human food—such as high abundance, predictability, increased proximity to humans, and dietary 23 

composition—shape social interactions. Specifically, we discuss how individual-level changes in 24 

fitness, time allocation, movement, and social choices can shape group size and composition, the 25 

quantity and quality of social interactions, as well as the social structure, with implications for social 26 

transmission (of stress, information, or diseases), selection, and development. Collectively, these 27 

alterations highlight the broad social implications that intentional and unintentional human food 28 

subsidies can have for ecological and evolutionary processes in wildlife populations.   29 
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Introduction   35 

  36 

The Anthropocene is marked by rapid human-driven changes that are reshaping terrestrial and 37 

aquatic ecosystems (1–4) with profound implications for wildlife behaviour, including intraspecific 38 

interactions (5–8). Social interactions, in particular, are fundamental to animal life and form the 39 

basis of a population’s social structure, shaping population dynamics (9,10). The positioning of 40 

individuals within the social structure can influence survival (11,12) and reproductive success 41 

(13,14), both of which are critical determinants of fitness. At the group and population levels, social 42 

structure influences key processes such as the transmission of diseases (15,16) and information (15), 43 

dispersal (17,18), mating systems (19,20), and the direction and intensity of selection (21,22). Hence, 44 

understanding how human-induced environmental changes impact social structure is crucial to 45 

anticipate the consequences for future population functioning and viability.  46 

Animal social structure emerges from several factors, including the number of individuals within a 47 

given area (population size and density, (23,24)), the composition of phenotypes within the 48 

population (25,26), and, at the individual level, the extent and patterns of social interactions (i.e., 49 

who interacts with whom and how frequently, (9,27)). Increasing evidence shows that human 50 

activities—such as pollution, direct human presence, and climate change—impact these factors, 51 

with profound consequences for social interactions and the emerging population-level social 52 

structure (7,28–30). However, a so far often-overlooked human activity with considerable 53 

consequences for intraspecific interactions are human food subsidies.  54 

Human modifications to food availability date back to the time of nomadic hunter-gatherer societies, 55 

which unintentionally provided scavenging species with food remains such as carcasses (31–33). For 56 

example, synanthropic behaviour in small carnivores such as red and Arctic foxes (Vulpes vulpes and 57 

V. lagopus) emerged as early as 42,000 years ago (33). As such, food subsidies may be one of the 58 

earliest forms of human-induced environmental change, with lasting effects on animal behaviour 59 

and ecosystems that persist until today. In the present, human-generated food sources are 60 

ubiquitous and exploited by many animal species (Box 1; Figure 1). These subsidies include all food 61 

made available through human activities (see (34)), whether intentional—such as feeding stations, 62 

religious offerings, or wildlife feeding by tourists—or unintentional, arising from agriculture (e.g., 63 

crops, livestock), food waste (e.g., landfills, trash bins, restaurants), and hunting or fishery discards 64 

(Box 1).  65 

Importantly, human food sources differ markedly from natural food sources in various ways. Human 66 

food sources are often highly abundant, predictable in space and time, distinct in nutritional 67 



composition, and exposes animals to novel stimuli such as traffic, noise, and direct human presence 68 

in modified landscapes (34). These features can strongly influence individuals by altering fitness, 69 

movement decisions, time allocation across behaviours, and social choices (i.e., with whom and how 70 

to interact). Such individual-level changes can then cascade to shape key determinants of social 71 

structure, including population density, encounter rates, time budgets for social behaviour, and the 72 

necessity or intensity of social interactions. For example, human food subsidies can directly 73 

concentrate conspecifics through altered individual movement and time allocations or indirectly 74 

increase population size through changes in fitness (34), leading to more inter-individual encounters 75 

and denser social structures. Yet, despite recognition of the widespread ecological impacts of human 76 

food subsidies (34), the social implications of food subsidies on wildlife populations remain poorly 77 

known.  78 

Here, we outline the diverse pathways through which human food subsidies can affect wildlife 79 

populations by altering intraspecific interactions. We begin by examining how central features of 80 

human-generated food—its abundance, predictability, proximity to humans, and dietary 81 

composition—shape individual-level traits (e.g., survival, movement), and how these changes 82 

cascade into altered social interactions and population social structures. We then discuss how these 83 

changes in social dynamics can impact population-level processes such as the transmission of 84 

diseases or the direction and intensity of selection. While human food sources also impact 85 

intraspecific interactions in invertebrates, we here focus on vertebrates. By providing a conceptual 86 

framework (Figure 2), we aim to stimulate future research and deepen our understanding of the 87 

diverse impacts of human activities on wildlife populations.    88 

 89 

------------------------------------------------------------------------------------------------------------------------------------- 90 

Box 1. Intentional and unintentional human food subsidies. 91 

Humans provide a vast range of food sources to wildlife (Figure 1). For example, it is estimated that 92 

30–40% of all food is wasted globally (34), with landfills accumulating waste at rates outpacing 93 

urbanization (35). Landfills are often highly abundant and predictable in both space and time, thus 94 

constituting a highly profitable food source that is exploited by various species, including mammals, 95 

birds, amphibians, and reptiles (36). Similarly, waste bins and food leftovers at restaurants are an 96 

attractive food source to many terrestrial animals (37). Fishery and hunting discards, as well as 97 

middens, are another globally abundant human-derived food source. Approximately 8% of caught 98 

fish is discarded (34,38) and up to 105 tonnes of carcasses are left in the field by game hunters in the 99 

US each year (34). Additionally, agricultural land covers about 36% of the world’s land area 100 



(http://data.worldbank.org/), and provides crop and residues that can be used as a food source by 101 

wildlife (34,39).   102 

Humans also intentionally provide food to animals for various reasons. Feeding stations for birds and 103 

game, for example, are common practices. In the UK, 50% of households with garden access provide 104 

supplementary food for birds (40), and supplemental feeding of game during winter is often used for 105 

wildlife management and hunting purposes (41). Feeding of wild animals has also become a popular 106 

tourist activity. For instance, managed tourism programs frequently provide food to dolphins and 107 

sharks to facilitate close encounters (42,43). Finally, feeding animals plays a significant role in some 108 

religious practices. In the Indian culture, people commonly feed animals across all taxa, either 109 

routinely or during festive occasions, often at sites of religious significance such as temples (44).  110 

 111 

 112 

Figure 1: Examples of intentional and unintentional human food subsidies. A: Bear scavenging from 113 

waste. B: Seabirds following fishing trawlers to feed on discarded fish. C: Crows foraging in a crop 114 

field. D: Shark attracted with meat during cage-diving. E: Macaques consuming food offerings at a 115 

temple. F: Supplemental feeding of deer during winter. Photo credits [start top left, clockwise: 116 

Serhii/Adobe Stock, Simon Ebel/Adobe Stock, Paylessimages/Adobe Stock, Conchi Martinez/Adobe 117 

Stock, topten22photo/Adobe Stock, Michal/Adobe Stock].   118 

------------------------------------------------------------------------------------------------------------------------------------- 119 

 120 

 121 

Social implications of human food subsidies  122 

 123 

Survival and reproduction 124 

http://data.worldbank.org/


Fitness is fundamentally shaped by access to food resources, which sustain daily survival and provide 125 

the energy necessary for raising offspring. The high abundance and predictability of human food 126 

subsidies can significantly alter individual fitness (34). Supplemental food has been shown to 127 

positively affect survival during food shortages (45,46) and increase reproductive success (47–49). 128 

However, supplemental feeding can also have no or negative effects on survival and reproduction if 129 

the supplemental food is of poorer quality than natural food (50), if immunity is compromised (51), 130 

or if disease transmission is facilitated (52). Alterations in individual fitness have consequences for 131 

the current and future population size and density – a key component for many social dynamics 132 

(Figure 2). For example, higher population densities can increase group size (53–55) and social 133 

encounter rates (56) while also influencing various measures of social structure such as network 134 

centrality, fragmentation, the density of social connections, and the strength of social relationships 135 

(57,58,23).    136 

Moreover, by altering individual fitness, human food subsidies can modify both the phenotypic and 137 

demographic composition of populations. For example, human food can influence survival and 138 

reproduction in distinct ways. In winter, adult tit species (Paridae) generally have higher survival 139 

than yearlings, likely due to greater foraging experience and dominance (59). Increased adult 140 

survival through human-provided food would result in an older age structure, maintaining more 141 

experienced individuals within the population. In contrast, human food subsidies can also enhance 142 

reproductive success and juvenile survival, thereby offsetting natural mortality biases and shifting 143 

population age structure toward younger individuals (59). Younger animals often maintain more and 144 

broader social connections compared to older, more selective conspecifics (60). Therefore, the 145 

demographic consequences of human food subsidies—whether promoting adult survival or juvenile 146 

recruitment—can differentially shape social networks, potentially leading to either more stable, age-147 

structured systems or denser, highly interconnected social structures.  148 

In addition, individuals often differ in their use of human food sources, which can further impact the 149 

phenotypic composition of groups and populations. For example, sex- and age-biased foraging is 150 

increasingly reported. In primates, males are more frequently associating with humans and the food 151 

provided (e.g., chimpanzees Pan troglodytes (61), moor macaques Macaca maura (62), Cape 152 

Chacma Baboons Papio ursinus (63)); and younger individuals tend to use human food subsidies 153 

more often in bearded vultures Gypaetus barbatus (64), while older individuals do so in white storks 154 

Ciconia ciconia (65). Such non-random use of human food by particular phenotypes can shape the 155 

future composition of populations as well as current social dynamics. For example, individuals with 156 

similar responses to human subsidies may encounter and interact more frequently, leading to the 157 

formation of phenotypically structured groups. Social community membership in toothed whales 158 



(e.g., orcas Orcinus orca, sperm whales Physeter macrocephalus, bottlenose dolphins Tursiops spp.) 159 

is commonly linked to foraging responses (e.g., depredation, scavenging, cooperation, and begging) 160 

to a diverse range of fishing activities (e.g., long-lining, trawling, net-casting, recreational fishing; 161 

(66). Individuals that forage in association with humans are then more likely to associate with one 162 

another (67) and are part of the same social community (68,69), whereas the removal of the human 163 

food source (e.g., prawn trawler discards) reverses changes in (dolphin) community membership 164 

(70).  165 

 166 

Time allocation  167 

Successfully surviving and reproducing in human-modified landscapes requires individuals to 168 

efficiently allocate their time across daily activities. As such, individuals need to balance time spent 169 

forming and maintaining social relationships with other activities, such as foraging (71,72). The high 170 

abundance and predictability of human food subsidies can ease this trade-off by reducing the 171 

energetic and temporal costs of foraging (73), thereby allowing individuals to allocate more time to 172 

other behaviours—such as social interactions (Figure 2). For instance, food-supplemented vervet 173 

monkeys (Chlorocebus pygerythrus) showed increased time spent resting and socializing, as well as 174 

more frequent grooming of conspecifics, compared to periods before or after supplementation (74). 175 

Similarly, individual Trinidadian guppies (Poecilia reticulata) exposed to a highly predictable food 176 

source spent more time associating with conspecifics (75). Moreover, the presence of humans close 177 

to food subsidies can serve as ‘shields’ against competitors and predators (‘human shield effect’; 178 

(76)) allowing animals to allocate more time to other behaviours (77). Highly urbanized fox squirrels 179 

(Sciurus niger), for instance, exhibit reduced vigilance and diminished responses to predator 180 

vocalization compared to less urbanized squirrels (78), potentially freeing up time to increased 181 

engagement in other activities. Similarly, in Scandinavian brown bears (Ursus arctos), females with 182 

prolonged maternal care are found to utilize habitats in closer proximity to human settlements, 183 

while males occupy more distant areas. This suggests that the females' use of human-adjacent 184 

habitats during the mating season is a tactic to mitigate adverse interactions with males that could 185 

result in the premature weaning of offspring (79).  186 

Human food subsidies can also increase time constraints, particularly if humans are perceived as 187 

threats or when accessing human-derived food, and navigating human-modified environment 188 

requires more time. For instance, animals may need to travel long distances to reach provisioned 189 

sites or spend time monitoring human activity before approaching (63,80). In two macaque species 190 

(Macaca mulatta; M. radiata), individuals that frequently interact with humans spent significantly 191 



less time resting and groomed fewer group members (81,82); and food-provisioned female 192 

bottlenose dolphins spent less time socializing (83). Such patterns may occur because provisioned 193 

individuals must invest time in an atypical foraging strategy—waiting for the right opportunity to 194 

approach food near humans, or handling difficult-to-access resources such as opening rubbish bins. 195 

Determining whether human food subsidies ultimately free up time or create time constraints—and 196 

how these outcomes influence social interactions—remains an important avenue for future 197 

research.  198 

Finally, many human food sources follow distinct patterns of availability with consequences for 199 

animals’ daily activity patterns. While some resources, such as landfills, might be constant, others 200 

are more fleeting and available only at specific times. Food provisioning associated with tourism is 201 

often limited to certain, recurrent times of day (e.g., lunchtime) or specific seasons (e.g., holidays). 202 

For example, in Shark Bay, Australia, bottlenose dolphins are fed with fish for a maximum of three 203 

times daily between 7:30 and 13:00 (43). Similarly, several bird species, including pigeons and gulls, 204 

have been observed gathering around noon at sites where people regularly eat lunch (84,85), 205 

sulphur-crested cockatoos (Cacatua galerita) visited balconies (to receive food) before and after 206 

working hours when residents were most likely to be home (86), and in southern stingrays (Dasyatis 207 

americana), individuals shifted from nocturnal to diurnal activity patterns in response to ecotourism 208 

feeding schedules (87). Human food subsidies can thus crucially alter the diel activity patterns of 209 

individuals, for example, by shifting the time of day that individuals engage in foraging activities, 210 

with consequences for social interactions. Particularly when human subsidies take the form of 211 

resource pulses—highly predictable but short-lived food sources—they can draw large numbers of 212 

individuals into the same area, increasing local population density, intensifying social encounters, 213 

and potentially heightening competition and aggression. For instance, supplemental feeding of 214 

chimpanzees in Gombe National Park significantly increased aggression, as profitable food was 215 

available only briefly during a short time (88).  216 

 217 

Movement 218 

Movement is an important driver of social interactions as it affects the number of conspecifics an 219 

individual may encounter (89). Increasing evidence shows that individuals across various taxa reduce 220 

their movements in response to human food subsidies (90–92). This may be due to the predictable 221 

and abundant nature of human-provided food, reducing the need to range widely in search of 222 

resources, which can concentrate many individuals in limited areas (e.g., landfills). In Yellowstone 223 

National Park, grizzly bears (Ursus arctos horribilis) fed almost exclusively from waste disposal sites; 224 

once these were not available anymore, bear densities declined rapidly and individuals massively 225 



enlarged their spatial range (93). Similarly, African stripe mouse (Rhabdomys pumilio) females 226 

reduced their home ranges by 43% when being supplemented with food (94). In addition, migrating 227 

species that utilize human food are increasingly reported to cease migrating altogether, forming 228 

stationary populations (95,96) or shorten their migration routes (97). Human food subsidies can thus 229 

impact both short- and long-distance movements with consequences for social interactions (Figure 230 

2). At local scales, food subsidies and the associated reduction in space use can increase local 231 

population densities, heightening the frequency of social encounters (98,99). Conversely, at broader 232 

spatial scales, human subsidies may reduce social interactions, as limited space use may constrain 233 

the range of intraspecific encounters, potentially fragmenting social communities and populations. 234 

Thus, the effects of altered animal movement on intraspecific interactions may vary depending on 235 

spatial scale and requires future research.  236 

 237 

Social choices  238 

Social behaviour is often highly plastic, and individuals can flexibly adjust group size or even shift 239 

between solitary living and group formation, depending on ecological conditions. For example, in 240 

many species, social foraging arises as an adaptive strategy, offering benefits such as increased 241 

efficiency in locating food in unpredictable environments (100,101). The high abundance and 242 

predictability of human food sources can reduce the benefits of, and thus the need for, social 243 

foraging. Consequently, individuals may opt to forage in smaller, cohesive subgroups of preferred 244 

associates or even solitarily. This shift can lead to more fragmented population social structures with 245 

smaller and more modular groups. For example, in chacma baboons (Papio ursinus), groups were 246 

more spread out and less cohesive while foraging in urban environment, likely caused by lower 247 

predation risk and a large number of available food sources (80). Similarly, in bottlenose dolphins, 248 

individuals that frequently begged food from humans were less socially connected, probably 249 

because human-provided prey can be acquired individually rather than in groups, isolating these 250 

individuals from conspecifics that forage on natural prey (102). Rich and predictable human-derived 251 

food landscapes may however also reduce conflict among group members, thereby facilitating group 252 

cohesion (103).  253 

Moreover, human food sources often differ markedly from natural diets in nutrient composition, 254 

with implications for social behaviour, particularly aggression. Food rich in sugars and fats is typically 255 

perceived as a high-value resource, intensifying competition and increasing the likelihood of 256 

aggressive interactions (104). Such diets may further directly affect aggression through physiological 257 

mechanisms. Although links between diet composition and aggression are well established in 258 

humans (105), corresponding research in non-human animals remains limited. For example, dogs on 259 



high-protein diets were significantly more likely to show aggressive behaviours toward both their 260 

owners and other dogs (106), and high-fat diets increased aggression levels in captive male rats and 261 

mice (107). Finally, human food can be heavily contaminated with pollutants such as heavy metals 262 

(108), impacting the ability to socially interact (30). However, studies examining these patterns in 263 

wild animals—and the underlying physiological mechanisms—are notably scarce.    264 

 265 

 266 

Figure 2. Human food subsidies can impact animal social structure through a range of pathways 267 

and have implications for a range of ecological and evolutionary processes. Human food subsidies 268 

are characterized by an increased abundance, predictability, proximity to humans, and altered diet 269 

composition, which can affect individual behaviours (i) such as movement decisions with 270 

consequences for the size and composition of animal groups and aggregations (ii). This impacts the 271 

quantity and quality of social connections (iii), scaling up to features of social structure such as 272 

assortment and social fragmentation (iv). Changes in social connections can influence ecological and 273 

evolutionary processes such as social transmission of information, diseases, and stress (v). Note that 274 



there are feedback loops (dashed arrows) from processes to social structure, as well as at the group 275 

and individual level (10), which are not elaborated on in this review.  276 

 277 

Ecological and evolutionary consequences   278 

 279 

Numerous studies have documented the effects of human food subsidies on population processes 280 

such as disease prevalence, animal migration, and natural selection (34). However, the underlying 281 

mechanisms through which human food subsidies cause ecological and evolutionary change often 282 

remain unclear. We now turn the attention to the implications of human food subsidies through 283 

their impact on intraspecific interactions (Figure 2). We synthesise empirical evidence to argue that 284 

examining the link between human food subsidies and social behaviour can provide new insights 285 

into social transmission, the spatiotemporal distribution of animals, development, as well as 286 

selection and the evolution of cognitive traits. Developing a deeper understanding of the social 287 

implications of human food subsidies, along with their ecological and evolutionary consequences, 288 

will offer valuable information to predict the consequences of future environmental changes, such 289 

as the removal of subsidies (e.g., landfill closures) or increased food availability due to tourism.  290 

 291 

Social transmission 292 

 293 

Disease transmission  294 

Human food subsidies are frequently linked to increased disease transmission. This is largely because 295 

human subsidies increase exposure to pathogens and facilitate spread through increased social 296 

encounters (109). For instance, wild birds show a higher prevalence of infectious diseases among 297 

individuals foraging at supplemented forest sites compared to those at unsupplemented sites (110), 298 

and experimentally increased feeder density led to a higher pathogen transmission in captive house 299 

finches (Haemorhous mexicanus) (111). Human food subsidies can also increase disease transmission 300 

by directly altering the type of social interactions. For example, banded mongooses (Mungos mungo) 301 

exhibited higher levels of aggression when foraging from garbage compared to natural habitats, 302 

leading to more injuries and a higher likelihood of infection with a form of tuberculosis (112). 303 

Although many studies point to changes in intraspecific interactions as the mechanism driving 304 

increased disease prevalence at supplemented sites, few explore the detailed social connections 305 

between individuals.  306 

Mapping animal social networks often shows that greater clustering (well-connected sub-groups) 307 

and stronger connections facilitate disease spread, while high modularity (i.e., social fragmentation) 308 



hinders transmission (113,114). Studies examining disease transmission in the context of human 309 

subsidies typically focus on small spatial scales (e.g., one local population), but it would be valuable 310 

to gather detailed information on the use of human food sources, intraspecific interactions, and 311 

disease transmission at larger spatial scales (i.e., across local populations). This broader perspective 312 

is important because human food subsidies may increase social encounter rates locally while 313 

simultaneously reducing encounters at larger spatial scales. Such shifts in movement and contact 314 

patterns can fragment social communities, reduce interactions between populations, and potentially 315 

decrease the wider spread of pathogens. For instance, migration is often assumed to facilitate the 316 

geographical spread of pathogens, as animals are exposed to diverse parasites while moving 317 

annually between breeding and wintering grounds (115,116). However, species that utilise human 318 

food sources are increasingly reported to cease migrating altogether, forming stationary populations 319 

(95,96), while others shorten their migration routes (97). By reducing long-distance movements—320 

coupled with findings of decreased movement in human-modified environments (117)—human food 321 

provisioning may thus limit disease spread on a broader scale. Therefore, how food subsidies 322 

influence disease outcomes may be a question of scale, with patterns observed locally not 323 

necessarily aligning with those at broader scales, warranting future research to determine whether 324 

these relationships hold. 325 

Furthermore, studies including experimental approaches on animals' responses to the addition and 326 

removal of human subsidies are crucial for managing disease spread more effectively. During disease 327 

outbreaks, wildlife authorities often recommend halting the feeding of wildlife to reduce 328 

transmission. However, animals frequently respond to the loss of a key resource by expanding their 329 

range (93,118). Therefore, while the removal of key resources may reduce social contact locally, the 330 

resulting increase in space use may lead to more social interactions across a broader area, 331 

potentially facilitating disease spread between otherwise isolated social groups or populations.  332 

 333 

Stress transmission 334 

There is growing awareness that not only pathogens but also physiological states can be transmitted 335 

among animals. Of particular importance is stress as it impacts how animals interface with their 336 

environment (e.g. responding to stimuli) and can shape social behaviours (119). Individuals that 337 

interact with conspecifics exposed to stress—whether from an acute or chronic source—can exhibit 338 

similar physiological responses (e.g., elevated circulating stress hormones) and behavioural changes 339 

(e.g., altered movement patterns) that correspond to transmission of stress (120). Stress 340 

transmission can greatly amplify the impact of human food subsidies by affecting not only direct 341 

recipients but also individuals beyond subsidy sites. In principle, food subsidies could reduce stress 342 



transmission by increasing food abundance and predictability, both of which have been shown to 343 

lower physiological stress (121), especially during challenging periods like reproduction (122,123). In 344 

practice, however, competition, intensified social interactions, and greater exposure to threats (e.g., 345 

predators, humans) at subsidy sites may elevate stress levels instead. Either way, stress transmission 346 

is likely to play an important ecological role for species accessing human food subsidies through the 347 

combined physiological effects of accessing supplemental food and impacts on social connections.   348 

 349 

Information transmission 350 

The structure of social networks also influences the spread of information and novel behaviours 351 

across populations (15,10). Social contacts are a key source of information for individuals, and thus 352 

who, how often, and how many individuals come into contact will impact how information spreads. 353 

Similar to disease transmission, human-induced changes in social networks can affect how 354 

information circulates within a population. If human subsidies increase social encounter rates among 355 

individuals, novel behaviours (e.g., on how to access a food resource (124)) may spread more rapidly 356 

through the population, while transmission can be reduced in more modular social structures (114).  357 

By providing abundant and predictable resources, human food subsidies can also directly diminish 358 

the value of social information. Foragers are believed to rely more on social information when 359 

resources are scarce and unpredictable, as this increases their chances of locating food. In contrast, 360 

individual foraging and individual learning become more advantageous in environments where 361 

resources are abundant and predictable, as this can help avoid competition (101,125). For instance, 362 

bat species that feed on unpredictable prey are more likely to forage near conspecifics and emit 363 

echolocation calls indicating prey capture, whereas this behaviour is less common among species 364 

that target predictable food sources (126). Human subsidies may thus simultaneously accelerate the 365 

spread of certain behaviours (e.g., through increased social connections) while reducing the overall 366 

reliance on social information, ultimately reshaping the cultural dynamics of animal populations. 367 

 368 

Socio-cognitive traits 369 

 370 

The evolution of cognition is hypothesised to be driven by the demands of group living (the social 371 

intelligence hypothesis) and ecological challenges, such as finding and accessing food (127).  372 

Successfully meeting these challenges directly affects individual fitness, thereby influencing the 373 

evolution of cognitive traits. On the one hand, subsidies can reduce cognitive requirements if such 374 

food sources become predictable and abundant, prompting individuals to invest more in competitive 375 

ability. On the other hand, human food subsidies can introduce new challenges that require 376 



cognitive skills, such as interpreting human behavioural cues to locate food (128,129) or 377 

remembering the exact timing of food availability (84–86). In both cases—by easing foraging 378 

challenges or by introducing novel ones—human food subsidies set the stage for changes in social 379 

interactions and the cognitive demands of group living.  380 

By changing the time available for social interactions (see ‘Time allocation’), human food sources can 381 

reshape the social environment (and its associated challenges), ultimately altering the development 382 

of (socio-) cognitive skills. Previous research has identified various cognitive traits linked to group 383 

living, including social learning, individual recognition, and third-party relationships (130–132). In 384 

addition, increased local population densities can drive increased group sizes. Larger groups 385 

should—mathematically—exhibit better problem-solving abilities and more frequent behavioural 386 

innovations (133). However, being in a larger group can also increase innovation rates (133). One 387 

explanation for this phenomenon is the ‘pool of competence’ effect, which suggests that larger 388 

groups contain individuals with diverse skills, increasing the likelihood of problem-solving (134). 389 

Additionally, increased competition in larger groups may drive improved problem-solving and 390 

behavioural innovation, a concept known as the ‘skill pool effect’ (135). For example, in vervet 391 

monkeys, individuals facing higher feeding competition learned a new and more efficient foraging 392 

skill faster (136), and in three-spine sticklebacks (Gasterosteus aculeatus), high intraspecific 393 

competition led to greater diversity in food resources used (137). Finally, forming groups can allow 394 

individuals to more effectively distribute themselves across resources—i.e. express the ideal free 395 

distribution—than what individuals are capable of doing alone (138). Therefore, human food 396 

subsidies may enhance problem-solving performance and behavioural innovation through increases 397 

in group size. Gaining deeper insights into the behavioural innovations associated with human food 398 

provisioning and their ultimate impact on individual fitness will enhance our understanding of how 399 

human food subsidies shape specific cognitive abilities through changes in the social environment.  400 

 401 

Development 402 

 403 

Human food can affect not only the individuals directly receiving the subsidy but also their offspring, 404 

with downstream developmental effects on sociality. Having more food is then likely to have impacts 405 

on the growth and traits of the offspring. Red kite (Milvus milvus) chicks that received food 406 

supplementation (via their parents) developed distinctly different social and spatial preferences to 407 

those that did not (139). For example, the youngest (and least competitive) chick in the nest typically 408 

avoids conspecifics after hatching and during dispersal. However, in nests where parents received 409 

food supplements, the youngest chick instead became the most social after fledging (139). These 410 



effects are likely tied to physiological conditions experienced during development (140), which are 411 

very likely to be altered by food supplementation. Such effects could be direct (e.g. via the amount 412 

of food that young animals receive during development (141)) or indirect (e.g. via stress experienced 413 

by their parents, see also ‘Stress transmission’). The links between food supplementation, 414 

development, and future social behaviour are poorly understood and require urgent study.  415 

 416 

Selection 417 

 418 

While it is recognised that human activities, including food subsidies, influence selection pressures 419 

and drive evolutionary changes in natural populations (142,143), the contribution of changes in 420 

intraspecific interactions caused by food supplementation to population and evolutionary dynamics 421 

has remained largely overlooked. Simply, being part of a group has fitness consequences, such as the 422 

benefits of social foraging or the costs of increased competition. Human-provided food can modify 423 

these effects by influencing group size, elevating competition and disease prevalence, enabling rapid 424 

transmission of stress, and potentially reducing the fitness benefits of social foraging when food is 425 

abundant.  426 

Fitness and selection consequences also depend on the phenotypic traits of social associates. In 427 

animals that exhibit social behaviour, selection can be mediated by the interaction between an 428 

individual’s phenotype and those of its associates—a concept known as social selection (144). For 429 

instance, if a certain trait, such as body size, increases the chances for copulation, the individual’s 430 

reproductive success may be influenced by the average expression of this trait among its associates. 431 

The resultant effects on phenotypic selection emerge at the population level when social selection 432 

gradients are experienced nonrandomly among individuals (i.e. positive or negative phenotypic 433 

assortment; (145,146)). Thus, when populations become phenotypically structured, local differences 434 

in the social environment that individuals experience can influence the strength and direction of 435 

selection (22). Because human food sources can cause positive phenotypic assortment, such as if 436 

individuals of similar phenotypes preferably associate, it is expected that food supplementation 437 

impacts selection.  438 

Individuals can also adjust their phenotype in response to the conspecifics they associate with (i.e. 439 

social plasticity (147,148)). For example, individuals might exhibit higher levels of aggression in the 440 

presence of more aggressive conspecifics compared to the presence of more passive ones (149). 441 

Consequently, indirect genetic effects (i.e., when one individual's genes affect another individual's 442 

phenotype (150)) can alter selection by either decreasing or increasing genetic variance, affecting 443 

evolutionary trajectories. Human food subsidies may play a role here if they attract individuals with 444 



particular traits—for example, more aggressive individuals—leading to changes in phenotypic 445 

variation in the population and selection strength. The effect of social plasticity on evolutionary 446 

outcomes further depends on the pattern of social interactions within a population. For example, 447 

the contribution of indirect genetic effects to phenotypic variance can be highest at intermediate 448 

social network densities and decreases at higher densities (22). This is because at high social network 449 

densities individuals tend to interact with most group members, homogenising the social 450 

environment across individuals (22). By increasing population densities, human subsidies may thus 451 

reduce the impact of indirect genetic effects.  452 

 453 

Community structure 454 

 455 

Although we primarily focus on intraspecific interactions, many of the social implications of human 456 

food subsidies extend to interspecific interactions, with potential consequences for community 457 

structure and ecosystem processes (34,151). For example, changes in population size and density 458 

resulting from food supplementation can alter interactions within and across trophic levels of 459 

supplemented and unsupplemented species (152,153). For example, human food subsidies attract 460 

pigeons into urban areas, where they constitute one of the primary food sources for raptors such as 461 

peregrine falcons (Falco peregrinus). During the COVID-19 pandemic and resulting lockdowns, 462 

however, falcons substantially shifted their diets, consuming far fewer pigeons—likely because 463 

pigeons abandoned city centres and foraged in the countryside in response to the absence of 464 

human-provided food (154).  465 

Human food subsidies also strongly shape interactions between humans and wildlife. While feeding 466 

wildlife can provide psychological and cultural benefits, contributing to human well-being (155,156), 467 

it is also a major driver of human–wildlife conflict. Food subsidies can lead to habituation and 468 

reduced wariness in wildlife, while crop and property damage often heighten aggression on both 469 

sides (157). Moreover, food-induced increases in wildlife population size can intensify human–470 

animal encounters, and associated shifts in phenotypic composition may further accelerate conflict. 471 

For instance, in brown bears, females and young individuals are more frequently observed near 472 

human settlements (158). If food subsidies enhance the survival of young bears, this may increase 473 

the number of young individuals living close to humans, thereby raising the potential for conflict. 474 

Such patterns could be further reinforced through cultural transmission if young bears learn from 475 

their mothers and other conspecifics to exploit human food subsidies. The complex interplay 476 

between food subsidies and wildlife social dynamics underscores the importance of future research 477 



to better understand these interactions and develop strategies that mitigate conflict while 478 

promoting coexistence.  479 

 480 

Conclusion 481 

 482 

Human food subsidies are more than ecological inputs; they are transformative forces reshaping the 483 

social dynamics of wildlife populations. By altering the abundance, predictability, proximity to 484 

humans, and nutritional composition of resources, subsidies influence fitness, how animals allocate 485 

time, where they move, and with whom they interact. These direct and indirect effects on 486 

intraspecific interactions can cascade from individuals to groups, restructuring social systems with 487 

profound ecological and evolutionary consequences – shaping social transmission, development, 488 

selection, and even broader community structure. Crucially, the outcomes are not uniform. They 489 

vary with the ecology of the species, the type of food source, and animals’ perceptions of humans. 490 

The same subsidy may suppress social opportunities in one context while amplifying them in 491 

another, with impacts ranging from heightened local disease risks to reduced connectivity across 492 

populations. Recognizing food subsidies as both ecological and social drivers offers a new 493 

perspective on anthropogenic change. The central challenge now is to move beyond documenting 494 

effects toward developing predictive principles: under what conditions do human food subsidies 495 

destabilize animal societies, and when might they instead foster novel cooperation, competition, or 496 

transmission pathways? Addressing these questions will be essential for understanding how human-497 

provided subsidies are shaping the future of animal societies in the Anthropocene. 498 

 499 
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