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Abstract | Understanding how genetic variation translates into phenotypic outcomes is central to various sub-
fields of genetics. This task is complicated by a range of forces—including epistasis, environmental modulation of
mutation effects, and ecological influences—that complicate the process of mapping from genotype to phenotype.
In this study, we apply a unified decision tree approach, classification and regression trees (CART), to model
genotype-phenotype relationships across protein fitness landscapes across a diversity of organisms: (i) a fluo-
rescent protein isolated from Entacmaea quadricolor (bubble-tip anemone), (ii) antifolate resistance in Plasmod-
ium falciparum (malaria parasite) dihydrofolate reductase (DHFR) under drug concentration gradients, (iii) allelic
variants from the long-term evolution experiment (LTEE) in Escherichia coli, (iv) proteostasis-modulated drug re-
sistance phenotypes in three bacterial orthologues of DHFR, and (v) chemotypic diversification of sesquiterpene
synthases in Nicotiana tabacum (cultivated tobacco). Our results demonstrate that decision trees can effectively
capture higher-order interactions between mutations and environments, uncovering nonlinear dependencies and
contingencies that are often missed by traditional parametric models. By enabling clear visualization of interac-
tion hierarchies, CART serves as both a predictive tool and an explanatory framework for genotype-phenotype
mapping. This approach has use cases across the spectrum, from resolving the genomic architecture of biolog-
ical traits, to personalized medicine, and varied applications in bioengineering.

Summary

How do genes and environments interact to shape traits like drug resistance, protein function, or plant chem-
istry? This study introduces a simple but powerful tool—decision trees—to help answer that question. Decision
trees, also called classification and regression trees (CART), work by repeatedly splitting data into “if-then” rules
that are easy to visualize. We applied this approach to five diverse biological systems: fluorescent proteins in
sea anemones, malaria parasites under drug pressure, evolving bacteria, enzyme stability in different species,
and chemical diversity in tobacco plants. In each case, decision trees uncovered patterns that traditional models
often miss—such as when combinations of mutations only matter under certain environments, or when multi-
ple genetic changes must act together to produce an observable effect. Because the method is interpretable,
it doesn’t just predict outcomes, but explains them, showing which genetic and environmental factors matter
most, and under what conditions. This makes decision trees useful for both basic and applied scenarios in
medicine, agriculture, and biotechnology, where understanding complex genetic interactions is key to predicting
and controlling biological outcomes.

1 Introduction

The role of genetic variation and environmental context in shaping phenotypic traits is at the very center of many
sub-fields of genetics (1,2). These questions manifest at all levels of biological complexity: from the study of
gene expression (3) to protein function (4), the study of fitness landscapes (5), and genome-wide analyses of
genotype-phenotype maps in complex organisms (6). Specifically, questions about the appropriate methods
for disentangling the many forces that shape genotype-phenotype maps permeate all corners of population,



evolutionary, and quantitative genetics. Although additive models often serve as a first approximation for trait
variation across genotype-phenotype maps, many traits arise from non-linear interactions between genes or
mutations (epistasis) (GxG) (7,8) as well as gene-by-environment interactions (GxE), and gene-by-gene-by
environment interactions (GxGxE) (9-13) . These effects are central to phenomena such as cryptic variation
(14,15), missing or phantom heritability (76), and evolutionary contingency (17,18). Yet, standard models often
fail to capture these influences because they often assume linearity or require interaction terms to be explicitly
specified in advance (19,20) (see Table 1 for key definitions).

Traditional regression methods such as ordinary least squares (OLS) assume a fixed parametric relationship
between predictors and outcomes with coefficients estimated to minimize prediction error (21, Section 8.3.3).
While statistically convenient, these models capture non-additive or higher-order effects only when such terms
are explicitly specified. Variable-selection heuristics such as stepwise regression or the least absolute shrinkage
and selection operator (LASSO) can aid in large predictor spaces, but they typically approach interaction discov-
ery as a heuristic process and may fail to identify complex conditional structures (19). Nonparametric methods
(e.g., kernel regression, nearest neighbors) relax functional assumptions but frequently trade interpretability and
stability for flexibility, especially in high dimensions (22). Likewise, high-dimensional machine-learning mod-
els (neural networks) can achieve strong predictive performance in genotype-phenotype tasks but are often
black boxes, limiting biological insight and hypothesis generation (23—-29). Theoretical approaches that expand
epistatic effects as series over locus combinations provide useful formalisms (e.g., Balvert et al. (2024) (30))
but become computationally onerous as loci increase and typically assume static environments, overlooking the
conditional (environment-dependent) nature of many genetic effects (30—33). This tension between flexibility
and interpretability is central in modern quantitative genetics.

Classification and regression trees (CART) provide a pragmatic and interpretable approach for genotype-
phenotype mapping (34). By recursively partitioning genotypes, environments and organismal backgrounds into
regions of similar outcome, CART uncovers thresholds, nonlinearities and higher order interactions. Decision
trees (25,35—-38) and tree ensemble methods, such as random forests (39-50), have been widely used in ge-
netic studies, particularly for analyses of singlenucleotide polymorphisms (SNPs). Recent studies of protein
mutational landscapes have also shown that tree methods can recover meaningful epistatic patterns while re-
maining experimentally tractable (51,52). Furthermore, on rugged fitness landscapes, decision tree structures
often capture local interaction dynamics more effectively than pairwise approximations (53,54). However, these
implementations of decision trees have been limited in their ability in breaking down continuous traits, capturing
GxE complexity and analyzing sparse datasets (55,56).

Here, we implement a unified CART framework across a heterogeneous collection of genotype-phenotype
datasets, constituting 5 case studies (see Table 3): fluorescent protein libraries in Entamacea quadricolor
(bubble-tip anemone; Case 1) (57), drug-resistance evolution in Plasmodium falciparum (malaria parasite; Case
2) (12), differential proteostasis backgrounds in Escherichia coli (Case 3) (58), long-term evolution experiment of
E. coli under chemical stress (Case 4) (11,59), and terpene synthase chemotype variation in Nicotiana tabacum
(cultivated tobacco; Case 5) (60). These datasets vary in structure and complexity; by applying regression trees
consistently, we aim not only to predict but to reveal nonlinear, high-order, and/or context-dependent interactions
in an interpretable manner that facilitates mechanistic hypotheses and experimental validation.

2 Results

To examine structural—potentially non-linear and high-order—relationships between traits and their genetic and
environmental determinants, we applied the classification and regression trees (CART) algorithm to several em-
pirical datasets. These include mutational scans of fluorescent proteins (57), genotype-by-environment fitness
data in microbes (11,12,58,59), and enzyme activity profiles of plant sesquiterpene synthases (STS) (60). Each
serves as a case study that combines genotypic variation (typically binary mutation indicators) with environ-
mental covariates (e.g., drug gradients, media composition). Response variables span continuous measures
(fluorescence, fitness, metabolite abundance) and categorical traits (color class). A full summary is provided
in Section 4.1 and Table 3.

Our goal is not predictive optimization, but rather to illustrate how CART reveals interpretable, rule-based
structures that capture interactions and non-linear dependencies among genotype, environment, and phenotype.
Details of the method and implementation appear in Sections S4.2.3 and 4.2.



Table 1. Key terminology and definitions.

Term

Definition

Epistasis (GxG)

Genotype-by-environment or
gene by environment interactions
(GXE)

Environmental epistasis (also
referred to as GxGxE)

Reaction norm or norm of reac-

The “surprise at the phenotype when mutations are combined, given the con-
stituent mutations’ individual effects” (7), i.e., when the combined effect of two
(or more) mutations or gene variants on a phenotypic trait deviates from the ex-
pected sum or product of individual mutational effects (61).

When the phenotypic effect of one genotype across different environments varies
from the phenotypic effect of another genotype across different environments,
i.e., non-parallel reaction norms among individuals with different genotypes in
response to different environmental conditions. (62,63)

Non-additive interactions among alleles whose combined phenotypic effect de-
pends on environmental context; the magnitude or sign of epistasis changes
across environments (10).

A depiction used in ecology and quantitative genetics that depicts how a pheno-

tion type for a given genotype is shaped by aspects of the environment. Crossing re-
action norms between two genotypes are often diagnostic of GxE (64—-66).

A genotype-to-fitness map, analogized to a physical surface defined by fitness
“peaks” and “valleys.” They are often used a framework for understanding evolu-
tionary dynamics in biological systems. (67—69)

Tree-based model that recursively partitions predictor space to predict a categor-
ical outcome; splits are chosen to increase class purity (e.g., minimize Gini impu-
rity or entropy), and each terminal node predicts the majority class (34).
Tree-based model that recursively partitions predictor space to predict a continu-
ous outcome; splits are chosen to reduce within-node variance (minimize sum-of-
squared errors), and each terminal node predicts the mean response of observa-
tions in that leaf (34).

Fitness or adaptive landscape

Classification tree (CART)

Regression tree (CART)

2.1 Case 1: Classification tree analysis of the fluorescent protein fithess landscape in Entac-
maea quadricolor

The dataset from Poelwijk et al. (2019) (57) comprises all 2! = 8192 genotypes generated by introducing amino
acid substitutions at 13 variable loci that distinguish two parental Entacmaea quadricolor-derived fluorescent
proteins: mTagBFP2 (blue) and mKate2 (red) (Figure 1). Each genotype is encoded as a 13-bit binary string,
from C-terminal (locus 1: K231R) to N-terminal (locus 13: D20N), representing specific amino acid changes
on the mTagBFP2 backbone. These genotypes were expressed in E. coli and evaluated using two-color flow
cytometry, generating red and blue emission intensities. Following normalization and nonlinear transformation,
Poelwijk et al. (2019) derived a continuous scalar fluorescence phenotype. For our analysis, however, we use a
discretized classification scheme, assigning genotypes (see Figure 1) to one of three color classes—red, blue,
or black—based on emission dominance and intensity thresholds (as described in (57, Section S4.2.3)).

Applying the CART algorithm (details of which are provided in Section 4.2) to this dataset reveals a compact
decision tree that accurately predicts fluorescence class and isolates key loci responsible for color transitions
(see Figure 2). Among the 13 positions, loci 9 (F143), 4 (Y197), 11 (L63), 5 (A174), and 12 (V45) emerge
as critical decision nodes (see Figure 2b). The absence of mutations at both F143 and Y197 consistently
prevents the appearance of red fluorescence, confirming their role as essential gatekeepers. Crucially, the tree
indicates that at least three specific mutations are required to induce red fluorescence—most commonly including
residues 4, 9, and 11—demonstrating the importance of higher-order epistasis (see Figure 2c). Genotypes
lacking these coordinated changes predominantly exhibit blue or ambiguous (black) phenotypes. The hierarchical
structure of the tree reflects non-additive mutational interactions, distinguishing root-level determinants from
context-dependent modulators. These findings are consistent with patterns observed in the mutational interaction
network (see Figure S2), which highlights that single mutations rarely suffice to produce red fluorescence and
that higher-order interactions are critical. For a detailed interpretation of the CART decision tree structure,
probability distributions at internal nodes, and a comprehensive epistatic interaction analysis, we refer readers to
the Supporting Information (Section S4.2.3).
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Fig. 1. Data for Case 1: Genotype-fluorescence map of the Entacmaea quadricolor-derived fluorescent protein
dataset from Poelwijk et al. (2019) (57). The dataset includes all 2'* = 8192 genotypes produced by combinatorially
introducing amino acid substitutions at 13 variable positions distinguishing two fluorescent proteins derived from Entac-
maea quadricolor, mTagBFP2 (blue-emitting) and mKate2 (red-emitting). Each genotype is encoded as a 13-bit binary
string, with bits indicating the presence (1) or absence (0) of a substitution relative to the mTagBFP2 backbone, ordered
from the C-terminal (bit 1: K231R) to the N-terminal (bit 13: D20N). Genotypes were expressed in E. coli, and red and
blue fluorescence intensities were measured using two-color flow cytometry. These intensity values were normalized and
nonlinearly transformed to obtain a scalar brightness phenotype. For visualization, genotypes are indexed on the horizontal
axis by the decimal equivalent of their binary code, and their combined fluorescence brightness is shown on the vertical
axis. Genotypes are mapped to one of three color classes—blue, red, or black—based on relative red and blue emission
levels and total brightness: blue denotes high blue and low red emission; red denotes high red and low blue; and black
indicates low overall brightness.
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Fig. 2. Case 1 analysis: Resolving G x G interactions (epistasis) in Entacmaea quadricolor. Overview of the
genotype-to-color classification framework based on the dataset from Poelwijk et al. (2019) (57), comprising all 2!3 = 8192
genotypes generated via amino acid substitutions at 13 loci distinguishing the parental fluorescent proteins mTagBFP2 and
mKate2. Each genotype, encoded as a binary vector, is associated with dual-channel fluorescence intensities measured
via two-color flow cytometry and normalized to parental brightness levels. Genotypes are classified into three discrete color
categories (black, blue, or red) using polynomial-based thresholding of normalized emission intensities. (a) Decision tree
(CART) predicting color class from genotype. The proportions represent the phenotypic class probabilities (from left to
right: black, blue, red) and the percentages represent the proportion of observations (i.e. genotypes) passing through each
node. (b) Variable importance scores indicating locus-level contributions. (c) Box plots of trait values for red and black
genotypes within each mutational combination. Each x-axis group ({4, 9, 11} and {5, 9, 11}) contains two box plots: one for
red (colored red) and one for black (colored black) genotypes. Genotypes with mutations at {4, 9, 11} exhibit significantly
higher trait values (combined fluorescent brightness) compared to genotypes with mutations at {5, 9, 11}, validating the
stronger contribution of locus 4 to the red fluorescence phenotype.

2.2 Regression tree analysis of environmental modulation of mutation effects (Cases 2 and 3)

While the fluorescent protein dataset (57) enabled the analysis of higher-order epistatic interactions within a
fixed biochemical context (see Section 2.1), many biological systems exhibit phenotypic variability shaped by
interactions between genetic background and environmental conditions. The sesquiterpene synthase dataset
from O’Maille et al. (2008) (60) similarly demonstrates how combinatorial mutations in the enzyme’s active
site influence product specificity, reflected in the relative production of compounds such as 5-epi-aristolochene,
4-epi-eremophilene, and premnaspirodiene (see Section S4.2.3). Although this variation arises from internal



structural constraints rather than external stimuli, it illustrates how context—whether environmental or molecu-
lar—modulates mutational effects.

In this section, we examine systems where environmental conditions are explicitly varied, enabling the in-
vestigation of genotype-by-environment (GxE) interactions. We apply classification and regression trees (CART)
to two genotype-environment-phenotype datasets (see Section 4.1), each integrating mutational profiles with
environmental gradients. The first dataset (Case 2) examines antifolate drug resistance in the Plasmodium fal-
ciparum dihydrofolate reductase (DHFR) gene (12), focusing on mutations at four key loci and their interactions
with varying concentrations of pyrimethamine and cycloguanil. The second dataset (Case 3) originates from the
Long-Term Evolution Experiment (LTEE), which tracks adaptive mutations in Escherichia coli under minimal glu-
cose conditions and chemically perturbed environments (17). An additional analysis of genotype-by-environment
and genotype-by-species interactions under altered proteostasis conditions—derived from mutational variation
in the DHFR gene across three bacterial species and proteostatic backgrounds (58)—is presented in the Sup-
porting Information (see Section S4.2.3), with corresponding decision tree results also summarized in Table 2.

Notably, the environmental variable in the malaria DHFR (Case 2) dataset is measured continuously (drug
concentration), whereas the LTEE and proteostasis (Case 3 and 4, respectively) datasets treat environmen-
t/species as categorical factors. CART regression trees naturally accommodate both numeric and categorical
predictors, using threshold-based splits for continuous variables and level-based splits for categorical variables.

In Cases 2-4, continuous phenotypic traits serve as response variables, enabling the use of CART regres-
sion trees to dissect the hierarchical contribution of genetic and environmental factors. This integrative approach
allows us to identify critical loci and environmental conditions that drive quantitative trait variation and to un-
ravel the structure of genotype-by-environment interactions across diverse biological systems. A summary of
CART-derived decision tree structures, including environmental thresholds and interaction patterns, is provided
in Table 2.

2.2.1 Case 2: Epistasis and drug-environment interactions in the P. falciparum dihydrofolate reductase

The dataset (see Figure 3 for a visualization) from Ogbunugafor (2022) (12) investigates environmentally modu-
lated epistatic interactions in the dihydrofolate reductase (DHFR) gene of Plasmodium falciparum, a protozoan
parasite and the primary causative agent of malaria. DHFR is an essential enzyme in folate metabolism and DNA
synthesis, and is the molecular target of antifolate drugs such as pyrimethamine and cycloguanil. In the original
study, both drugs were profiled, but here, we focus on cycloguanil as a representative example of drug-mediated
environmental stress. The study considers all 2* = 16 genotypes generated by combinatorial substitution at four
key amino acid positions in DHFR:

(N511, C59R, S108N, 1164L) € {0, 1}*,

where each mutation is encoded as a binary variable (1 = derived, resistance-associated allele; 0 = ancestral,
wild-type residue).

Environmental Variable £E Each genotype was assayed under a gradient of 10 discrete cycloguanil concen-
trations, ranging from 0 to 10° M on a logarithmic scale:

E e{0, 1072, 107", 10° 10', ..., 10%) uM.

This drug concentration axis enables modeling how increasing chemical pressure modulates genotype-specific
fithess and uncovers epistatic interactions.

Dependent Trait ¢t Fitness was quantified as the parasite’s exponential growth rate r, then log-transformed to
stabilize variance and accommodate zero growth:

t=In(r+1).

This continuous phenotype is well suited for downstream analyses such as regression trees and landscape
visualization.

All 16 DHFR genotypes were assayed across 10 cycloguanil concentrations, yielding 16 x10 = 160 genotype-
environment fitness measurements. This dense, fully factorial design for a single drug provides sufficient statis-
tical power to dissect both individual mutational effects and higher-order genotype-by-environment interactions
under cycloguanil pressure.
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Fig. 3. Data for Case 2: Environmentally-dependent fitness landscapes and reaction norms of Plasmodium fal-
ciparum dihydrofolate reductase (DHFR) mutants associated with resistance to cycloguanil. The dataset from
Ogbunugafor (2022) (12) comprises all 2* = 16 drug-resistant dihydrofolate reductase (DHFR) genotypes in Plasmod-
ium falciparum—a protozoan parasite and a primary cause of malaria in humans—defined by binary substitutions at four
residues (N511, C59R, S108N, 1164L). Fitness t = In(r + 1), where r is exponential growth rate, was measured across 10
cycloguanil concentrations ranging from 0 to 10° uM on a logarithmic scale: 0, 1072, 107!, 10°, 10!, ..., 10° uM. (a) Geno-
type networks (4-dimensional hypercubes) for each drug concentration. Each node represents one of the 16 genotypes,
arranged horizontally by the number of mutations relative to the wild type (0—4 mutations), and vertically for visual clarity.
Edges connect genotypes differing by a single mutation. Node color encodes the log-transformed fitness (t) at that drug
level, using a uniform colormap across panels. (b) Reaction norms showing how fitness (t) varies across drug concentra-
tions for all genotypes. Each line represents a genotype’s fithess trajectory, illustrating genotype—environment interactions

and the nonlinear effects of increasing drug concentration.
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Fig. 4. Case 2 analysis: Genotype—phenotype mapping under cycloguanil reveals dominant environmental control
and conditional mutational effects. (a) A decision tree predicting log-transformed growth (In(r+1)) from four binary DHFR
loci—Locus 4 (N511), Locus 3 (C59R), Locus 2 (S108N), and Locus 1 (I164L)—and log;o-scaled cycloguanil concentration.
Each internal node shows the split criterion (e.g., Env > 2 corresponds to > 100uM), the mean fitness at that node, and
the percentage of observations routed there. The top split on concentration (mean fitness 0.64, 100% of data) partitions
high- and low-drug regimes; subsequent splits reveal that C59R effects dominate at low concentration, while S108N effects
emerge only at high concentration. Terminal nodes list mean fithess and proportion of genotypes in each final partition.
(b) Fitness trajectories across mutational distance (Hamming steps from wild type) for the highest- and lowest-performing
genotypes at two cycloguanil levels (0 and 1000 uM). At each step, four markers (ordered as Locus 4, 3, 2, 1 from left to
right) are filled when the locus is mutated and open otherwise, illustrating the shift from C59R-driven adaptation in drug-free
conditions to S108N-driven adaptation under high drug concentrations. (c¢) Variable importance scores from the decision
tree model, normalized so that cycloguanil concentration accounts for about 85% of the total importance, followed by S108N
(Locus 2) and C59R (Locus 3). This underscores the critical role of environmental drug pressure in modulating the fithess
contributions of specific DHFR mutations. Data was obtained from the cycloguanil dataset of Ogbunugafor (2022) (12).



Table 2. Summary of decision tree results across datasets: environmental influence and epistatic interactions.See Table 3
for full description for all case data set.

Dataset Environment Environmental Notable Muta- | Epistatic, GxE, or
at Root or | Threshold(s) Iden- | tion—Environment GxGxE Insights
Early Split? tified or Muta- | from Tree Structure

tion—Species In-

teractions
Case 2: Malarial | Yes ~ 10 uM drug con- | At low drug levels, | Growth rate is primar-
DHFR-antifolate (12) centration mutation at C59R | ily shaped by drug
(see Section 2.2.1) improves fitness; | concentration. Muta-
S108N becomes | tion at C59R is ben-
critical above 10 uM | eficial without drug,
for maintaining high | while S108N is es-
growth. sential at higher lev-
els. Growth declines
above 10* uM.

Case 3: Bacte- | Yes DM25+guanazole Across all three envi- | GxE interaction be-
rial LTEE-Chemical splits off low- | ronments, genotypes | tween environment
Stress (11) fitness  genotypes; | with a mutation in | and glmUS (locus 4).

(see Section 2.2.2) DM25+EGTA vyields | gimUS  (locus 4)

highest fitness when | yields higher fitness

paired with mutation | than genotypes with-

at gimUS out a mutation in

gimUS, but mag-

nitude of effects

are environment-

dependent.

Case 4: Bac- | No Not applicable In E. coli L28R | Species is the top-
terial DHFR- confers high resis- | level determinant of

Proteostasis (58)
(see Section S4.2.3)

tance regardless of
proteostasis context.
In L. grayi and C.
muridarum, L28R
effects are modulated
by proteostasis.

resistance. Within E.
coli, mutations dom-
inate; within other
species, proteostasis
plays a stronger role.

Reveals species-
specific mutation
effects and GxE,

GxGxE interactions.

Building on the fully factorial cycloguanil assay described, our decision-tree analysis of Plasmodium falci-
parum DHFR provides a detailed view of how specific resistance mutations interact with cycloguanil concentra-
tion to shape parasite fitness (Figure 4). In particular, the first split in the tree occurs at approximately 100 uM
(logioE = 2), underscoring that cycloguanil concentration alone explains over 75% of the model’s predictive
power (Figure 4c). Downstream of this primary bifurcation, the presence of the C59R mutation (Locus 3) de-
fines the highest-fitness subpopulation under low-drug conditions, whereas in the high-drug branch the S108N
mutation (Locus 2) becomes the critical determinant of elevated growth (Figure 4a). These context-dependent
effects are echoed in the mutational-distance trajectories (Figure 4b): at 0 uM cycloguanil, the path of maximal
fitness accrues C59R substitutions, while at 1000 uM only genotypes bearing S108N maintain high growth rates.
Together, these findings illustrate pronounced genotype-by-environment interactions in the DHFR enzyme of the
primary malaria agent, P. falciparum, revealing that the adaptive benefit of resistance-associated alleles shifts
sharply with cycloguanil dosage. This allows for the clear interpretation of where mutational effects shift in re-
sponse to environmental conditions, and the detection of conditional epistasis (i.e., epistatic effects with respect
to the environment). The decision tree analysis also supports the concept of mutation-effect reaction norms



(Mu-RNs) discussed in the original dataset (12), where bifurcations on the decision tree define regimes where
mutation effects change sign or magnitude.

2.2.2 Case 3: Environmental modulation of epistasis in E. coli from the LTEE

We applied CART to the comprehensive genotype-environment dataset used in Khan et al. (2011) (59) and Flynn
et al. (2013) (71), which includes all 32 genotype combinations across five loci (rbs, topA, spoT, gimUS, pykF) in
E. coli, measured across three defined environments: standard minimal medium (DM25), DM25 supplemented
with EGTA, and DM25 supplemented with guanazole (see Figure 5 for a visualization). Fitness was quantified as
the relative growth rate of each evolved genotype compared to the ancestral strain in direct competition assays,
typically log-transformed to approximate normality.

Utilising the CART framework, the fitted regression tree identified environment as the most influential factor,
with the root node splitting on whether the condition was DM25+guanazole (Figure 6a). This environment con-
sistently led to lower log-transformed growth rates compared to the others. In DM25+guanazole, the presence
or absence of mutation at gimUS (locus 4) was critical: strains lacking the mutation exhibited the lowest fithess,
whereas strains with the mutation achieved relatively higher growth rates. In contrast, the branch corresponding
to DM25 and DM25+EGTA showed overall elevated fitness values, with gImUS mutation again associated with
higher fitness, particularly when the environment was DM25+EGTA. The beneficial effect of gimUS is dependent
on the environmental context, thus highlighting a GxE interaction between the environment and gimUS. The vari-
able importance scores (Figure 6b) confirmed that environment was the dominant predictor of fitness, followed
by gimUS (locus 4) and topA (locus 2).

3 Discussion

Our study demonstrates the versatility and interpretability of decision tree methodologies, which encompass both
classification and regression trees, in dissecting complex genotype-phenotype relationships across a spectrum
of biological systems. These systems range from protein engineering efforts aimed at tuning fluorescent prop-
erties, through enzyme evolution influencing metabolic product specificity, to microbial adaptation under varying
environmental and genetic backgrounds.

Our methods complement others used to study nonlinear interactions in genetic systems (e.g., Fourier Trans-
form (12,70), linear models (58)), but do so in a manner that provides ease-of-interpretation, along with a visual
representation that allows geneticists to identify factors that shape the genotype-phenotype map.

Uncovering environmental modulation of mutation effects and epistasis Disentangling the role of genetic
and environmental effects is as fundamental as it gets in evolutionary and population genetics. This is highly
relevant for questions ranging from the genetics of agricultural breeding, to personalized medicine, and modern
efforts to engineer genomes with desirable phenotypes.

Our regression tree analyses of genotype-phenotype maps reveals the influence of environmental factors and
genetic background on phenotypic expression and epistatic interactions. Unlike traditional parametric models
that often treat environment as a linear co-variate or require explicit interaction terms, regression trees naturally
incorporate environmental variables as partitioning factors, thereby detecting critical thresholds and nonlinear
responses within complex genotype-genotype and genotype-environment spaces.

For example, analysis of the FP611 protein (Case 1) demonstrates the ability of CART to resolve how epis-
tasis shapes fluorescence patterns. The analyses of both the Plasmodium falciparum DHFR dataset (Case 2)
and the long-term evolution experiment (LTEE) data (Case 3) highlight how environment is a principal factor
influencing fitness outcomes. In Case 2, the decision tree highlights pivotal thresholds in drug levels where the
fitness effect of key resistance mutations such as S108N and C59R shifts markedly; in Case 3, the decision tree
shows how effect of gimUS on the growth rates of E. coli is dependent on the environmental context. In both
cases, the CART analysis indicates strong genotype-by-environment (GxE) interactions, thus emphasizing the
dynamic nature of adaptive landscapes under varying environmental conditions (Figures 3 to 6).

Similarly, in the comprehensive dataset from Guerrero et al. (2019) (Case 4) (58), species-specific genetic
background emerges as the main determinant of antibiotic resistance phenotypes, with subsequent splits by pro-
teostasis environment and individual mutations refining fitness partitions. This hierarchy uncovers how species
and cellular context modulate the penetrance and effect size of resistance-conferring mutations, illustrating intri-
cate multilayered epistasis. The regression tree approach elucidates these conditional dependencies without the
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Fig. 5. Data for Case 3: Fitness landscapes and reaction norms across relevant environments in the LTEE (E.
coli) dataset from (59) and (717). (a) Data for Case 3: Genotype networks representing 32 constructed genotypes, each
corresponding to a unique combination of five mutations in E. coli. The ancestral genotype is labeled Anc, while other node
labels denote mutations at the following loci: r (rbs), t (topA), s (spoT), g (gImUS), and p (pykF). Each network corresponds
to one of three environments: DM25 (glucose-limited medium), DM25_EGTA (DM25 + EGTA), and DM25_gua (DM25
+ guanazole). Genotypes are horizontally arranged by their mutational distance from the ancestor (0 to 5 mutations),
and vertically offset for clarity. Node color and size represent the same quantity: the logq-transformed relative fitness of
each genotype compared to the ancestor. Directed edges denote single-mutation transitions; solid edges indicate fitness
gains, dotted edges indicate loss in fitness. (b) Reaction norms of the same genotypes across environments (from left to
right: DM25, DM25 + EGTA, DM25 + guanazole). The y-axis displays logio-transformed relative fitness, and the x-axis
corresponds to the three environments. Each line represents one genotype, with the top five (based on overall mean trait
performance) highlighted using distinct solid lines. The remaining genotypes are shown using varied dashed and dotted
styles to improve visual distinction.

need for pre-specified interaction terms, offering a transparent mapping of complex genetic and environmental
interdependencies (Figure S3).

More generally, these findings are in conversation with studies that examine the role of environment and
context in shaping adaptive evolution. For example, the notion of the fitness “seascape” has added even more
nuance, offering that the shape of fitness landscapes is crafted by particulars of the environment (71,72). Tools
such as CART allow us to understand the underlying questions about evolvability in fithess landscapes, which
capture an essential piece necessary for evolutionary prediction.

In addition to this, the insight offered by CART can be applied for several practical purposes, such as evo-
lutionary control (73,74) and personalized medicine. The regression tree helps identify the specific actors that
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Fig. 6. Case 3 analysis: CART analysis of the LTEE E. coli dataset. (a) Regression tree predicting log-transformed
growth rate based on genotype and environment. The root node splits on environment, with DM25+guanazole associ-
ated with reduced fitness. Within this environment, mutation at gImUS (locus 4) distinguishes low-fitness genotypes from
moderately fit genotypes. In contrast, the other two environments (DM25 and DM25+EGTA) are associated with higher
overall fitness, particularly when gimUS is mutated and the medium is DM25+EGTA. (b) Variable importance scores from
the fitted CART model, highlighting environment as the dominant predictor, followed by giImUS (locus 4) and topA (locus
2). The dataset was obtained from by Khan et al. (2011) (59) (DM25) and Flynn et al. (2013) (771) (DM25 + EGTA, DM25 +
guanazole).

shape genotype-phenotype maps and potentially utilize this information to engineer natural systems and to diag-
nose and treat disease.

Interpretability and mechanistic insight from classification and regression trees The classification tree
analysis of the fluorescent protein mutational landscape exemplifies how a relatively simple, rule-based model
can distill a high-dimensional combinatorial genotype space into a structured decision framework. This frame-
work not only identifies a minimal subset of key loci but also reveals the hierarchical and conditional nature of
their interactions, highlighting critical third-order epistatic effects that are difficult to capture with linear or additive
models. Importantly, the classification tree provides an intuitive visualization of how specific mutational com-
binations lead to distinct fluorescence phenotypes, enabling direct biological interpretation and guiding future
experimental design (Figure S2).

Similarly, the regression tree approach applied to the multivariate chemotype landscapes of sesquiterpene
synthase enzymes offers nuanced insight into how specific amino acid substitutions and their interactions drive
the production of diverse metabolic products. By separately modeling each enzymatic product as a quantitative
trait, the regression trees illuminate threshold effects and context-dependent mutation roles, underscoring the
complexity of biochemical epistasis shaping enzymatic specificity and promiscuity. This approach complements
traditional parametric analyses by uncovering nonlinearities and higher-order interactions without requiring prior
specification, thereby enhancing the interpretability of genotype-phenotype maps in enzyme evolution (Figures
S6 and S7).

Together, these examples underscore the power of decision trees to bridge the gap between data-driven
predictive modeling and mechanistic biological understanding. Their ability to represent complex, nonlinear
genetic architectures in an accessible hierarchical format makes them valuable tools for researchers aiming to
unravel the intricate patterns of genetic variation and function in diverse biological contexts.

Advantages of regression trees over classical parametric models Regression trees provide key benefits
over classical parametric models such as ordinary least squares (OLS) or generalized linear models (GLMs),
particularly for complex genotype—phenotype landscapes. Parametric models require explicit specification of
main effects and interactions, which can lead to misspecification when unknown or higher-order interactions
are present. Linear Mixed Models (LMMs) account for hierarchical structure, repeated measures, and genetic
relatedness via random effects or kinship matrices (75—77), but they retain limitations in exploratory genotype-
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phenotype mapping (78) because they assume linear functional forms and require that interactions and nonlin-
ear transforms be specified in advance, potentially missing abrupt regime changes or high-order epistasis. By
contrast, regression trees are non-parametric and data-driven, automatically capturing nonlinearities, threshold
effects, and interaction hierarchies without pre-specified terms.

Our supplementary LASSO analyses (Supplementary Section 4.2.3) serve as a linear reference model for
comparison, showing that LASSO recovers many of the same influential loci identified by trees when predictors
are ranked by absolute coefficient values. CART captures nonlinearities and threshold effects without feature
engineering, as in the DHFR dataset where a sharp split at the environmental variable (log,, E ~ 2) explains
the near-zero linear environmental term in LASSO. Trees reveal hierarchical and pathway-like dependencies,
clarifying how the same set of substitutions can act differently across mutational contexts, as demonstrated in
the FP611 fluorescence landscape. For complex chemotype distributions in terpene synthases, CART implicitly
models high-order interactions that LASSO must explicitly encode, yielding compact and interpretable deci-
sion rules rather than large multi-way coefficients. Trees accommodate mixed predictor types, tolerate modest
missingness and outliers, and reduce preprocessing demands, as illustrated in the LTEE analyses. Single-tree
outputs provide explicit, mechanistic rules that are readily interpretable by domain experts, offering intuitive visu-
alizations of how mutations and environmental factors interact to shape phenotype (79). Regression trees can
also reveal biologically meaningful thresholds, such as concentration cutoffs where resistance mutations shift in
effect, uncovering adaptive constraints and complex emergent patterns that classical models may overlook.

Limitations Although our study examines genotype-phenotype maps of various sorts, most of the data sets
are in the form of empirical fitness landscapes (see Table 1 for definitions), relatively small in size. Case 1,
however, provides a larger genotype-phenotype map (over 8000 genotypes). But we must acknowledge that
real-world data sets can be much larger. The CART method is flexible with regard to the size of the data set, and
future efforts can apply the method to larger-scale genotype-phenotype maps.

Although CART provides a flexible and interpretable framework for analyzing genotype-phenotype maps,
several limitations warrant attention. A single CART can produce spurious splits when the predictor space is
large relative to sample size, when predictors are rare or highly categorical, or when predictors are strongly
correlated (34,80,81). To mitigate these risks researchers can use cross validated pruning, constrain tree depth
and minimum node size, apply conditional inference trees with permutation based split tests, assess rule stability
by subsampling or stability selection, employ ensemble methods with permutation based variable importance,
and control multiple testing or seek external replication for reported rules (19,82). Additionally, overfitting remains
a central concern in high dimensional, low sample contexts (22,34). To mitigate this, ensemble techniques
such as random forests (40) or gradient boosting (83) can improve generalization while hybrid approaches that
combine trees with kernels or splines (84—86) can better capture smooth effects.

Finally, current applications often rely on structured datasets, which may not capture the complexity of natural
systems. Extending tree-based methods to dynamic, ecological, or population-genomic data and integrating
multi-omics modalities offers a promising direction for mapping genotype-phenotype relationships.

Conclusion In this study, we show that classification and regression trees (CART), applied in a unified frame-
work across diverse genotype-phenotype datasets, provide interpretable, context-sensitive models that capture
key loci and nonlinearity, higher-order epistasis, and environment-dependent effects with minimal parametric
assumptions. It can be readily integrated into hybrid or ensemble pipelines and supports experimental design
and hypothesis generation (e.g., for selecting informative mutation sets). More generally, combining tree-based
discovery with causal inference and targeted experimentation offers a practical route from descriptive models to
explanatory insights, with applications spanning protein engineering, evolutionary biology, and precision inter-
ventions.

4 Methods

The primary objective of this study is to explore the structural relationships (potentially including non-linear and
higher-order) between phenotypic trait values and a set of predictor variables that include both genotypic variation
at specific loci and relevant environmental attributes. In this article, we propose the use of a supervised learning
algorithm, namely classification and regression trees (CART) (21,34), as a simple, interpretable, and structurally
informative tool for identifying genotype-environment-trait relationships.
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Let the dataset be denoted by {(X;, t,-)},’.‘i’l, where t; is the trait value for the /" observation, and X; =
XD, X@, ., XNy, represents a vector of predictor variables that may include both continuous environmental
covariates and binary indicators of mutations at specific loci. The goal of supervised learning in this context is
to estimate a mapping f such that # = (X), where # denotes the predicted trait value based on the predictor

variables X (see Figure 7).

Input:
Predictor variables: X (a vector of genotypes and environmental variables)
Response variable: t (trait value)

Y

CART algorithm
(classification and regression trees)

Fig. 7. Overview of the CART-Based trait estimation framework. Schematic representation illustrating how both the
predictor variables X = (X, X@, ... X(N)—where each X¥ may represent genotypic information at specific loci or envi-
ronmental attributes—and the response variable t (trait value) are used as inputs to the CART algorithm. The algorithm
yields an estimated function £, which is represented as a decision tree. Here, ¢; and ¢, denote the threshold values for the
splitting criteria, while v;, v», and v3 correspond to the predicted values at the terminal nodes.

While the CART algorithm is commonly applied in predictive modeling tasks, it is equally well-suited for
exploratory analysis due to its ability to reveal complex structural patterns within the data (34). In this study,
we utilize CART primarily as an exploratory tool to uncover interpretable decision tree structures that illuminate
the relationships between genotypic and environmental predictors and phenotypic trait values. The resulting
tree structures capture interactions and non-linear effects through recursive binary partitioning, providing an
intuitive and visual representation of the relationships between predictors and the response (87,88). We apply
the CART algorithm to several empirical datasets obtained from the literature, using the full set of features
and observations without partitioning for model validation. Since our emphasis is on interpretability rather than
predictive optimization, we focus on analyzing the learned structures for biological relevance and consistency
with existing domain knowledge.

In this section, we first introduce the empirical datasets used in this study. We then review the theoreti-
cal foundations and methodological implementation of the CART algorithm, followed by a demonstration of its
application using publicly available tools in R.

4.1 Empirical Data Sources

To investigate the structural relationships between phenotypic trait values and a set of predictor variables that
include both genotypic variation at specific loci and relevant environmental attributes, we compiled a diverse
collection of empirical datasets from the literature. Each dataset encompasses measurements across different
biological systems and contains trait values alongside genetic (all cases) and environmental (cases 2,3,4) pre-
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dictors. This subsection provides a concise summary of the datasets in relation to our analytical objectives. For
complete methodological details and domain-specific context, readers are referred to the original sources.

A summary of the key features of each dataset is provided in Table 3. The table includes information on
the predictor variables (e.g., specific mutations or environmental treatments), the corresponding response vari-
able (typically a phenotypic trait or fitness measurement), the statistical type of the response (categorical or
continuous), a brief contextual description, and the original data source.

The predictor variables across datasets vary in nature and scale, encompassing binary indicators of amino
acid substitutions, drug concentration gradients, and environmental stress conditions such as protein folding en-
vironments or media composition. These features allow for the exploration of diverse forms of gene-environment
interactions. The ftrait values, used as the response variable in our analyses, are derived from experimental
measurements such as growth rates, drug resistance (e.g., ICsp), or relative product abundance in biosynthetic
pathways. Several datasets include log-transformed or normalized versions of these traits to facilitate interpre-
tation. Where appropriate, trait values are treated either as continuous variables (e.g., log-growth or production
percentage) or categorical variables (e.g., phenotypic classes like red, blue, or black colony colors), depending
on the structure of the original study and the modeling goal. This flexibility allows us to apply both classifica-
tion and regression trees to highlight different aspects of the genotype-environment-trait relationship. Together,
these datasets provide a diverse and representative foundation for evaluating the capacity of CART to uncover
complex, potentially nonlinear and higher-order structural relationships in biological systems.
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Table 3. Summary of empirical datasets used in the analysis

Dataset Predictor Variables \ Response Variable \ Trait Type Description \ Source
Case 1: Bubble-tip | Binary indicators of amino acid | fluorescence intensity | Continuous  or | Exhaustive mutational library cover- | Poelwijk et al.
anemone. FP611 | substitutions at 13 loci (from | or color class (red, | Categorical ing all 213 = 8192 genotypes be- | (2019) (57)
protein mTagBFP2 to mKate2) blue, black) in Nico- tween two fluorescent proteins differ-
(CART results in tiana tabacum ing at 13 positions. Trait values in-
Section 2.1) clude quantitative brightness and vi-

sual color class, enabling both re-

gression and classification tasks.
Case 2: Malaria | Binary indicators for mutations | Log-transformed growth | Continuous Fitness measured as growth rate | Ogbunugafor
parasite. at four loci in the dihydrofo- | rate r, In(r + 1) under drug treatments; transfor- | (2022) (12)
DHFR—Antifolate late reducase in P falciparum; mation accounts for zero growth
(CART results in | drug concentration gradients of rates. Dataset captures genotype-
Section 2.2.1) pyrimethamine and cycloguanil by-environment interactions involving

drug concentration gradients.
Case 3: Bacteria, | Binary indicators of amino acid | Fitness: log,,(growth rate) | Continuous Evaluates epistatic interactions and | Flynn et al.
long-term evolu- | substitutions at five loci arising environmental effects on fitness land- | (2013) (117)
tion experiment. | from the long-term evolution ex- scapes; fitness data log-transformed
LTEE—chemical periment (LTEE); environmen- as per Weinreich et al. (2018)
stress tal conditions: DM25, DM25 +
(CART results in | EGTA, DM25 + guanazole
Section 2.2.2) in
E.coli
Case 4: Bacteria, | Three biallelic sites/loci in dihy- | Fitness measured | Continuous Fitness data include antibiotic re- | Guerrero
proteostasis  envi- | drofolate reductase acrossthree | as  In(ICs9 + 1) or sistance (IC50) and DHFR pro- | et al.
ronments. DHFR- | bacterial species, (E. coli, L. | In(DHFR abundance) tein abundance, with log transforma- | (2019) (58)
Proteostasis grayi, C. muridarum); three tion applied to IC50 to handle ze-
(CART results in | proteostatic environments: WT, ros. Study investigates genotype-

Section S4.2.3)

GroEL/ES overexpression, and
lon protease absence

by-environment interactions under di-
verse proteostasis conditions.

Case & Culti-
vated tobacco.
STS-Chemotype
Mapping

(CART results in
Section S4.2.3)

Binary indicators of amino acid
substitutions at 6 loci (I1372V,
S402T, L406Y, T438l, L439l,
I516V); subset of genotypes
with fixed A274T, V291A, S406N
retained; data from N. tabacum

Relative abundance (per-
centage) of sesquiterpene
products:  premnaspiro-
diene (PSD), 4-epi-
eremophilene (4-EE), and
5-epi-aristolochene (5-EA)

Continuous (pro-
portion)

Analyzes structural—functional map-
ping in terpene synthases using a
genotype—phenotype—chemotype
framework across a reduced fitness
landscape

O'Maille et al.
(2008) (60)




4.2 Classification and regression trees (CART)

The classification and regression trees (CART) algorithm, developed by Breiman et al. (1984), is a non-
parametric method used for both classification and regression tasks. It constructs binary decision trees by
recursively partitioning the feature space to maximize the homogeneity of the target variable within each parti-
tion (21,34). As the name suggests, the CART algorithm (usage demonstrated in Section 4.2.3 with the rpart
package in R) is applied to classification tasks when the response variable is categorical and to regression tasks
when the response variable is continuous.

Furthermore, CART is capable of handling mixed data types—both categorical and continuous—among the
predictor variables. It is particularly well-suited for problems involving non-linear relationships and high-order
interactions among predictors (88). One of CART’s key advantages over many traditional statistical methods
lies in its non-parametric nature (87,88), meaning that it does not require assumptions about the underlying
distributions of the predictor or response variables. A major strength of the CART algorithm in the context
of understanding the structural relationship between genotypes, environmental variables, and trait values is its
interpretability (88,89). The resulting decision tree is intuitive and easy to visualize, offering valuable insights into
how various predictors influence the response. Additionally, CART is robust to missing data and does not require
extensive data preprocessing, which enhances its practical applicability. Most importantly, the algorithm naturally
captures interaction effects and non-linear relationships through its hierarchical splitting mechanism (34,87,88,
90).

Depending on the context and the trait under investigation, trait values may be either categorical or contin-
uous (91,92). Based on the data type of the response variable, i.e., whether it is categorical or continuous, the
CART algorithm selects an appropriate model: a classification tree for categorical outcomes, or a regression
tree for continuous outcomes. In what follows, we briefly review the general methodology for constructing both
classification and regression trees. For a more detailed mathematical formulation and theoretical analysis, the
reader is referred to (34, Chapter 7) for classification trees and (34, Chapter 8) for regression trees.

4.2.1 Classification trees

In the classification setting where the response variable (in this case, the trait value) is categorical, the CART
algorithm constructs a binary decision tree by recursively partitioning the data to increase the homogeneity
of class labels within the resulting nodes. Each observation is assumed to be an independent realization of
the random vector (X, t) and is represented by the pair (X;, t;), where X; = (XD, X@, .., X‘M) denotes the
vector of predictor variables and t; the corresponding response variable with K classes. The algorithm proceeds
via binary recursive partitioning, successively splitting a node into two child nodes based on a single predictor
variable, chosen to minimize a measure of impurity such as the Gini index or entropy. Variables may be reused
across different levels of the tree or omitted entirely, depending on their relevance. This process continues
until a stopping condition (user define threshold) is met, resulting in a hierarchical structure that encodes the
classification rules inferred from the data (88).

Classification tree construction and splitting criteria. Let us consider a decision tree f, and let d denote one
of its nodes. Mathematically, the tree f defines a mapping that assigns each input sample X; = (X", ..., X))
to a terminal node. Equivalently, the tree can be viewed as a function that produces a predicted class label
ki = t; = f(X;) for each observation i (see Figure 7). To quantify class impurity within a node d, let p(k | d)
denote the proportion of samples in node d that belong to class k. Two commonly used impurity measures are
the entropy and the Gini index. The entropy at node d is defined as

K
Eq=~ ) p(kld)log, plk | d),
k=1

with the convention that x log, x = 0 when x = 0. The Gini index is given by

K
Gdzl—Zp(k|d)2.

k=1

Both impurity measures attain a value of zero when node d contains samples from only a single class, and they
reach their maximum when all classes are equally represented. At each node d, the CART algorithm evaluates
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all possible binary splits based on thresholds applied to the predictor variables. The goal is to divide the current
(parent) node into two child nodes—denoted d; (left) and dgr (right)—in a way that maximizes the reduction in
impurity.

This reduction is defined as the difference between the impurity of the parent node and the weighted sum
of the impurities of the two resulting child nodes. When observations are treated as independent samples,
the weights correspond to the proportion of samples in each child node relative to the total number in the parent
node. A splitis implemented only if this reduction is positive. For instance, the reduction in impurity, as measured
by the Gini index, is computed as (similarly for entropy, by substituting G with E):

N(dp) G N(dr)

A6 =64~ Ny &~ Ny

where N(-) denotes the number of samples in a node.

The recursive partitioning procedure continues until no further admissible splits can be made. Each terminal
node is then assigned the class most frequently represented among its samples (i.e., the conditional mode).
However, fully grown trees often overfit the training data, leading to high prediction error, defined as

R(f) = P{f(X) # t},

where f denotes the tree-based classifier.

Pruning and model selection in classification trees. The primary goal in constructing a classification tree
is to derive a function f that minimizes the prediction error R(f). To prevent overfitting, pruning is applied to
produce a subtree f; with lower expected risk. Since the true distributions of t and X are generally unknown,
pruning relies on minimizing the empirical risk

n

~ 1
R(F) = — > X)) # Vi),
ni3
where 1(-) is the indicator function and n is the sample size. CART employs cost-complexity pruning to balance
empirical risk against model complexity by minimizing the penalized risk

Ro(f) = R(f) + alf],

where R(f) is the resubstitution error, |f| is the number of terminal nodes, and a > 0 controls the tradeoff between
fit and simplicity. Optimal subtrees are typically selected via cross-validation (34,88).

4.2.2 Regression trees

When the response variable t is continuous, the CART algorithm constructs a regression tree by recursively
partitioning the predictor space to minimize within-node variance (34). Each observation (Xj, t;), where X; =
(Xl.(l), XI.(Z), ,XI.(N)), is assumed to be an independent realization of a random vector. The goal is to derive a
function f: RV — R that approximates the conditional expectation E[t | X].

In our context, the predictor vector X may contain a mixture of continuous and categorical variables. The
CART algorithm accommodates such heterogeneity by applying variable-type-specific splitting rules, while main-
taining a unified recursive partitioning framework (93).

Regression tree construction splitting criterion. At each internal node d, CART evaluates candidate splits
for all predictor variables. The algorithm selects the split that maximizes the reduction in node impurity, measured
by the residual sum of squares (RSS). Specifically:

e For continuous predictors: CART considers binary splits of the form
X9 < s,
where s is a threshold chosen from the set of observed values of X%. Each such threshold induces a

partition into two child nodes, and the split that results in the greatest reduction in impurity is selected (34).
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e For categorical predictors: For a variable X% with W distinct categories, CART evaluates all non-trivial
binary partitions of the category set C = {ci, &, ..., cw} into subsets S and C \ S. Each split is of the form

XPDes vs. XV¢s,
and the best partition is selected based on impurity reduction (93).

Let N(d) denote the number of observations in node d, and let &4 = W 2x;ed ti denote the mean response
in that node. The impurity of node d is given by:

RSS(d) = Z (t — ).

X,'Ed
For a candidate split of node d into child nodes d; and dg, the reduction in impurity is defined as:
ARSS = RSS(d) — [RSS(d;) + RSS(dRr)].

The split that yields the maximum ARSS is selected and applied, provided that the reduction is positive.

This recursive partitioning process continues until a stopping criterion is met, such as a minimum node size
or a minimum reduction in RSS. Once the tree is fully grown, each terminal node is assigned the average of the
response values of the observations it contains. The resulting regression function is thus a piecewise constant
estimator:

fX)=1ty, forXed.

Pruning and model selection in regression trees. As in classification trees, regression trees are prone to
overfitting when fully grown. To mitigate this, CART employs cost-complexity pruning, which seeks a subtree f’
that optimally balances goodness of fit and model complexity. The penalized risk is defined as:

Ru(f) = > RSS(d) +alfl,
deTr

where 7+ denotes the set of terminal nodes in tree f, |f| is the number of terminal nodes, and @ > 0 is a
complexity parameter. The optimal subtree is selected via cross-validation by identifying the value of a that
minimizes the estimated prediction error (34).

4.2.3 Variable importance in CART

An important feature of CART models is the ability to quantify the relative importance of predictor variables in de-
termining the response. Variable importance provides insights into which variables contribute most to predicting
the response, aiding interpretability and feature selection. The variable importance score VI; for predictor X 0 is
computed by aggregating the impurity reduction attributable to splits involving X% across all nodes in the tree.
Formally, for each node d in the CART model f (whether classification or regression) where a split is performed
on the variable X9, let Al(d) denote the resulting reduction in impurity.

e For classification trees, /(d) is typically the Gini index or entropy.
o For regression trees, /(d) corresponds to the residual sum of squares (RSS).

The total importance for variable XY is then the sum of A/(d) over all nodes d split on X:

Vij = Z Al(d).
def
split on X
This raw importance score is often normalized by dividing by the sum of all variable importances, yielding relative
importance scores that sum to 1:
Vi

([ p———

TN Ve

Variables with higher VIJ.rel are considered more influential in predicting the response variable. This unified
framework applies seamlessly to both classification and regression trees, differing only in the choice of impurity
measure. For further details and applications of variable importance in CART, see (34,93).
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Supplementary Material

Practical Workflow for CART Modeling with rpart inR

The rpart package (94) in R offers a flexible and widely used implementation of the CART algorithm for both
classification and regression tasks. This section demonstrates how to import real data and fit either a classifica-
tion tree (for categorical response variables) or a regression tree (for continuous response variables), even when
predictor variables include a mix of categorical and continuous types.

Step 1: Installing and Loading Required Packages

R Code Example

# Install packages (run only once if not installed)
install.packages("rpart") # CART model
install.packages("readr") # For CSV files
install.packages("readxl") # For Excel files

# Load libraries
library(rpart)
library(readr)
library(readxl)

© 0O N oo O A~ W N =

Step 2: Importing Data

R Code Example

# Load from CSV
df <- read_csv("yourfile.csv")

# OR load from Excel
# df <- read_excel ("yourfile.xlsx")

,
.

Step 3: Inspect and Prepare the Data

R Code Example

# View structure of the dataset
str(df)

1

2

3

4 # Convert relevant predictors to factors if categorical
s df$soil_type <- as.factor(df$soil_type)

6 df$genotype <- as.factor(df$genotype)

7

8

9

# Convert trait to factor for classification, keep numeric for regression
# For classification example:
# df$trait <- as.factor(df$trait)

[S)

,
.

Step 4: Fitting a CART Model
(a) Regression Tree (Continuous Trait)



R Code Example

1 tree_reg <- rpart(trait ~ ., data = df, method = "anova")
2 rpart.plot(tree_reg, type = 3, extra = 101)

(b) Classification Tree (Categorical Trait)

R Code Example

1 tree_class <- rpart(trait ~ ., data = df, method = "class")
2 rpart.plot(tree_class, type = 3, extra = 104)

Notes:

e Usemethod = "anova" for regression trees (continuous response).
e Usemethod = "class" for classification trees (categorical response).
e The function rpart () automatically handles both categorical and numeric predictor variables.

e The resulting decision tree model can be effectively visualized using the plotting functions provided by the
rpart.plot package. See Figure S1 for an illustration of the internal and terminal node structure in the
resulting plot.

(a) Classification Tree (b) Regression Tree

Internal node d,
to: predicted class
Probabilities: {p(k|do)}_,

Internal node d,
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Observations: qo% CIol%
|
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:I'erminal node d, '[erminal node d; Terminal node d, e TR
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Fig. S1. Typical internal and terminal node structures in a classification tree (a) and a regression tree (b), following the
style of rpart.plot. Each node contains the predicted output: the class label #; and class probabilities {p(kld,-)}k":1 for
classification trees, or the predicted numeric value #; for regression trees. The percentage of observations q;% passing
through each node is also displayed. Internal nodes include a split criterion shown directly below the node box (e.g.,
XY = s or XY < s), and branches are labeled as yes (left) and no (right) to indicate the outcome of the split condition.

Detailed tree structure and epistatic analysis of the fluorescent protein land-
scape in Entacmaea quadricolor

For completeness, we provide detailed interpretation of the CART decision tree trained to classify all three
fluorescence phenotypes (red, blue, and black). Recall that each genotype is encoded as a 13-bit binary vector
representing specific amino acid substitutions on the mTagBFP2 backbone, with the following locus-to-residue

mapping:
Locus 1 — K231R, Locus 2 — N207K, Locus 3 — N206D, Locus 4 — Y197R,
Locus 5 —» A174L, Locus 6 — A172C, Locus7 — S168G, Locus 8 — N158A,
Locus 9 —» F143S, Locus 10 —» T127P, Locus 11 — L63M, Locus 12 — V45A,
Locus 13 — D20N.



In Figure 2(a), the leftmost subtree highlights how a mutation at locus 4 (Y197) increases the likelihood of
red fluorescence, but only in combination with mutations at loci 9 (F143) and 11 (L63). The probabilities at
internal nodes indicate partial class transitions, suggesting necessary but insufficient roles of single mutations.
The rightmost terminal node includes genotypes with no mutations at either locus 4 or 9, and is overwhelmingly
classified as blue (92%) with no red signal, indicating their retention of the original mTagBFP2 phenotype. An
exceptional case shows red fluorescence emerging without locus 4 mutation, but only when loci 9, 11, and 5
are simultaneously mutated—again underscoring the necessity of coordinated changes. We further analyze
these patterns using a mutational interaction network (see Figure S2), which confirms that no genotype with
fewer than three mutations exhibits red fluorescence. Among triple mutants, only specific combinations such
as {4, 9, 11} or {5, 9, 11} produce red phenotypes. Notably, the former combination consistently yields higher
brightness scores, reflecting stronger synergistic epistasis (see Figure 2(c)). The variable importance scores
(see Figure 2(b)) support these findings, ranking F143 (locus 9) highest, followed by Y197 (locus 4), L63 (locus
11), and A174 (locus 5). These residues thus represent key modulators of the color transition, acting within a
structured hierarchy of interactions.

Together, these results demonstrate that third-order epistasis is required to generate red fluorescence in
this system. Our tree-based approach enables precise mapping from genotypic configurations to phenotypic
outcomes, offering a robust and interpretable model for understanding the combinatorial logic underlying spectral
tuning in fluorescent proteins.
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Fig. S2. Case 1, additional analyses: Mutations at specific loci in Entacmaea quadricolor(57) drive the transition
from blue to red fluorescence through third-order epistatic interactions. (a) Visualization of early mutational trajecto-
ries from the wild-type mTagBFP2 sequence to red fluorescence. The x-axis represents mutational depth (x = 0 to 3), and
the y-axis indicates the combined fluorescence trait value. Nodes represent genotypes and are colored by fluorescence
class (blue, black, or red); edges indicate single mutational steps and are colored according to the color class of the target
node. Only paths involving loci {4, 9, 11} and {5, 9, 11}—the first observed red mutants—are shown. Mutations at loci 4
(Y197) and 9 (F143) alone lead to lower trait values and transitions to the black class. The addition of a mutation at locus
11 (L63) results in a transition to the red class and a substantial increase in trait value, underscoring the role of third-order
epistasis. (b) Color class distributions for genotypes with mutations at loci {4, 9, 11} and {5, 9, 11}, shown as pie charts.
Only black and red classes are present, with a higher proportion of red fluorescence observed in the {4, 9, 11} group,
supporting its stronger phenotypic effect.

Tree-Based Analyses of Context-Dependent Fithess and Chemotype Variation

This section presents CART-based analyses of two additional datasets not covered in the main text. These
include:

e Case 4: Proteostasis-Dependent Fitness Effects in Bacterial DHFR Mutants — examining genotype-
by-environment and genotype-by-species interactions across three bacterial species and proteostatic con-
ditions.

e Case 5: Regression Tree Analysis of Multivariate Chemotype Landscapes in Terpene Synthase
Evolution — investigating how amino acid substitutions influence sesquiterpene product profiles in plant
terpene synthase enzymes.



These analyses extend our framework to biological systems where environmental, cellular, or biochemical
context plays a crucial role in shaping phenotypic outcomes.

Case 4: Proteostasis-Dependent Fitness Effects in Bacterial DHFR Mutants

Comparing simple linear regression and regression trees: In Guerrero et al. (2019) (58), generalized linear
models—specifically LASSO regression—were employed to estimate the effects of protein quality control, which
confers different proteostasis environments, the state of maintaining a balance of properly folded and functional
proteins in a cell. In this study, the “environments” are genotypes, corresponding to the presence of different
protein quality control actors in the genome: wild type, GroEL*, Alon). These were engineered into three
species-specific DHFR backgrounds (E. coli, L. grayi, C. muridarum, with 3 point mutations at three loci (P21L,
A26T, L28R) that confer different levels of growth in the presence of trimethoprim (an antbiotic) (/Csy) (see
Figure S3 for a visual representation of the data) and DHFR abundance. This approach was applied separately
within each Proteostasis-species combination, enabling rigorous estimation of main effects, pairwise interactions,
and higher-order epistatic effects. The authors further incorporated nonlinear correction terms to account for
saturation-like effects and ensure robust model fit. Nonetheless, this LASSO-based strategy still relies on pre-
specified interaction terms within each context and may therefore overlook emergent nonlinear threshold effects
or context-specific conditional interactions not explicitly included in the model.

Classification and regression trees (CART) offer a non-parametric alternative to linear modeling by recur-
sively partitioning the data based on variables such as species background, proteostasis environment, or indi-
vidual mutation states (e.g., presence or absence of P21L, A26T, or L28R). This method organizes the data into
phenotypically homogeneous subsets, guided by the strongest explanatory variables at each node. Unlike para-
metric approaches that require explicit model specification, CART can uncover threshold-dependent phenotypic
bifurcations, such as distinct /Csy response regimes observed when the species background is L. grayi and the
proteostasis environment is wild type, without presuming interaction structures in advance.

Although the primary goal of decision trees is to uncover the structural relationships between variables, re-
gression trees can also be used for estimating or predicting continuous response variables. To illustrate the
differences between ordinary least squares (OLS) regression and regression tree predictions, we used a com-
posite mutation code (defined as the base-10 representation of the binary presence/absence of P21L, A26T,
and L28R) as the predictor and log1g-transformed /Cso values as the response variable. Regression curves from
both models, along with the data distribution for each mutation code, are shown in Figure S4. Notably, OLS re-
gression is sensitive to outliers, whereas regression trees are more robust to such effects. Moreover, regression
trees naturally accommodate categorical predictors and often yield more interpretable partitions of the predictor
space than linear regression models. In contrast, linear regression may require variable transformation, careful
model specification, and still lacks guaranteed interpretability in complex biological systems.

Regression tree analysis of the complete Guerrero et al. (2019) dataset: We applied CART to the full
factorial design of Guerrero et al. (2019) (58), encompassing all combinations of proteostasis backgrounds,
species backgrounds, and the eight possible combinations of point mutations (P21L, A26T, L28R). Similar to the
IC5¢ analysis presented here, the same CART framework can be applied using DHFR protein abundance as the
response variable, though we focus in this study on IC5¢ as a primary phenotype relevant to antibiotic resistance.

In contrast to previous LASSO-based analyses that emphasize additive and interaction effects, the regres-
sion tree in Figure S5 reveals a distinct hierarchy: the species background is identified as the primary splitting
variable, followed by specific point mutations and the proteostasis context. This structure suggests that the
species-specific genetic background exerts the strongest influence on resistance phenotypes, with the mutation
identity and the proteostasis environment refining phenotypic differences within each species regime. Such non-
linear, context-dependent interactions are challenging to uncover using linear models unless all possible interac-
tion terms are explicitly encoded, whereas CART automatically detects and partitions along these higher-order
dependencies.

The structure of the regression tree, as shown in Figure S5, enables straightforward interpretation of phe-
notype partitions. For example, the left branch of the tree isolates data points from L. grayi and C. muridarum,
which are generally associated with lower IC5¢ values compared to E. coli. Within this branch, the next level
split is based on proteostasis context: wild-type proteostasis background tends to yield lower resistance levels,
while the GroEL+ and Alon contexts lead to relatively higher resistance. In both species and across contexts,
the presence of the L28R mutation further increases ICsp, consistent with its role as a large effect resistance
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Fig. S3. Data for Case 4: Fitness graphs and reaction norms across species and proteostasis environments. Visu-
alizing the genotype—phenotype relationships from Guerrero et al. (2019) (58) in two complementary ways. (a) Genotype
networks (hypercubes) for each combination of species (Escherichia coli, Legionella grayi, and Chlamydia muridarum) and
proteostasis environment (wild type (WT), GroEL overexpression (GroEL*), and lon deletion (Alon)). Each 8-node cube
represents all possible combinations of three DHFR point mutations (P21L, A26T, L28R); edges connect single—mutation
steps, and node color intensity encodes antibiotic resistance measured as logio-transformed /Csy. (b) Reaction norms
for each species, plotting the logig-transformed IG5, of every genotype across the three proteostasis contexts. Lines cor-

respond to individual genotypes (mutational backgrounds), illustrating genotype-by-environment interactions in antibiotic
resistance.

mutation. Conversely, the right-hand branch of the tree captures the E. coli background, which overall exhibits
higher ICsp values. Within E. coli, proteostasis context exerts minimal influence on resistance levels. Instead, the
L28R mutation again plays a dominant role in increasing resistance, followed by P21L. This breakdown highlights
how CART naturally identifies both species-specific and context-dependent pathways to elevated resistance and
can reveal biologically meaningful thresholds without requiring them to be specified in advance.
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Fig. S4. Case 4, additional analyses. Boxplots of log-transformed /Cs, values for each mutation code (0-7), defined
by the binary presence or absence of mutations P21L, A26T, and L28R. Overlaid are regression curves from a linear
model (dashed brown line) and a regression tree model (solid blue line). The regression tree model more flexibly captures
threshold effects and nonlinear relationships between mutation combinations and phenotypic resistance. The dataset was
originally described by Guerrero et al. (2019) (58).
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Fig. S5. Case 4 analysis: Decision tree structure and response distribution for DHFR phenotypes. (a) Regression
tree fitted to log-transformed ICsg as a function of genotype (P21L, A26T, L28R), species background, and proteostasis con-
text, using a maximum tree depth of 3. (b) Normalized variable importance scores from the fitted CART model, identifying
species as the top predictor, followed by the L28R locus and proteostasis context. (c) Boxplot breakdown of response val-
ues (ICsp) along the right-hand branch of the decision tree. Similar illustrations can be constructed for alternative branches.
This visualization supports the CART analysis by showing that among the three species, E. coli exhibits the highest ICsg
values, with a generally elevated distribution compared to L. grayi and C. muridarum. Within the E. coli subset, the pro-
teostasis context has minimal effect, whereas the presence of the L28R mutation is associated with the highest resistance,
followed by the P21L mutation. The dataset was originally described by Guerrero et al. (2019) (58).



Case 5: Regression tree analysis of multivariate chemotype landscapes in terpene synthase
evolution

The dataset (see Figure S6 for a visualization) analyzed originates from the comprehensive combinatorial mu-
tagenesis study of sesquiterpene synthase enzymes described by O’Maille et al. (2008) (60). It consists of
nine key amino acid substitutions within the enzyme active site region, but we focused on a subset of six amino
acid substitutions that conferred functional genotypes: 1372V (locus 1), S402T (locus 2), L406Y (locus 3), T438I
(locus 4), L439I (locus 5), and 1516V (locus 6). Each locus is encoded as a binary variable indicating the pres-
ence (mutated) or absence (wild-type) of the respective amino acid change. The response variables measure
the relative enzymatic product distribution across four main sesquiterpene compounds: 5-epi-aristolochene (5-
EA), 4-epi-eremophilene (4-EE), premnaspirodiene (PSD), and a combined category of minor products. These
quantitative phenotypes reflect the catalytic specificity and promiscuity resulting from the combinatorial mutation
landscape. Regression tree analysis is applied to elucidate how specific mutations and their interactions parti-
tion the genotype space into distinct phenotypic clusters, revealing threshold effects and epistatic relationships.
This non-parametric method facilitates interpretable insights into the mutational determinants of terpene biosyn-
thesis, complementing the original study’s characterization of enzyme evolutionary trajectories and functional
diversification.

5-EA

PSD

)
]
minorProducts

Fig. S6. Data for Case 5: Genotype-phenotype maps for sesquiterpene product specificity in O’Maille et al.
(2008) (60). Each panel shows the 6-locus genotype hypercube for one quantitative trait—(a) 5-epi-aristolochene (5-EA),
(b) 4-epi-eremophilene (4-EE), (¢) combined minor products, and (d) premnaspirodiene (PSD) —measured in recombinant
sesquiterpene synthases from Nicotiana tabacum and Hyoscyamus muticus. The 64 nodes correspond to all possible
genotypes defined by binary combinations of six active-site mutations (totaling 26 genotypes), and are labeled from 0 to
63 for reference. Nodes are arranged horizontally by Hamming distance from the wild-type (node 0) and vertically for vi-
sualization clarity. Edges represent single amino acid substitutions between genotypes (Hamming distance = 1), forming a
projection of the 6-dimensional hypercube. Node color reflects the normalized production level of the respective compound,
according to the panel-specific colorbar. This visualization highlights the nonlinear genotype—phenotype landscape and
epistatic effects shaping terpene biosynthesis and enzyme evolution. Note that we focused on a subset of 6 loci from the
initial 9-locus dataset from O’Maille et al. (2008) as several genotypes were non-functional in the full dataset.

To further dissect genotype—phenotype mappings, we applied CART individually to each of the four response
variables, and the resulting trees are summarized in Figure S7. Each decision tree yields a hierarchical structure
of mutation effects, highlighting distinct mutational paths to increased product formation. For 4-EE, the most
informative loci were S402T (locus 2), L406Y (locus 3), and 1372V (locus 1), with the highest product levels
observed when locus 2 is wild-type and locus 1 is mutated. In the case of 5-EA, the top predictors were loci
2, 6, and 3, and the highest levels were associated with mutations at both loci 2 and 3. For minor products,
the most important loci were 1516V (locus 6), L406Y (locus 3), and L439I (locus 5); combinations where locus
5 is mutated and locus 6 remains wild-type led to the highest product levels. Lastly, for PSD, the decision tree



prioritized L406Y (locus 3), S402T (locus 2), and L439I (locus 5), with the combination of wild-type alleles at loci
2 and 5 yielding maximal expression.

The normalized variable importance scores reinforce these observations by quantifying the contribution of
each locus to the phenotype-specific trees (see Figure S7(b)). Collectively, these CART models expose the
heterogeneous and context-dependent roles of specific amino acid substitutions in shaping enzyme product
profiles. The ability of regression trees to handle high-order interactions and provide intuitive branching rules
makes them well-suited for uncovering complex biochemical epistasis in enzyme evolution.
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Fig. S7. Case 5 analysis: Regression tree structure and variable importance across four metabolic phenotypes.
(a) Regression trees fitted separately to predict each of the four response variables—4-EE, 5-EA, minor products, and
PSD—based on the presence or absence of mutations at six loci. Each tree shows hierarchical splits associated with
increased or decreased response values. (b) Normalized variable importance scores from the CART models. For each
response, the top three contributing loci are: locus 2, 3, and 1 for 4-EE; locus 2, 6, and 3 for 5-EA; locus 6, 3, and 5 for
minor products; and locus 3, 2, and 5 for PSD. The dataset was originally described by O’Maille et al. (2008) (60).

Supplementary analysis: comparison of CART and LASSO interpretability

To complement the CART-based analyses presented in the main text, we provide a parallel comparison using
penalized linear regression with the Least Absolute Shrinkage and Selection Operator (LASSO). Whereas CART
identifies predictive variables and their hierarchical interactions via tree structures, LASSO performs feature
selection by shrinking regression coefficients toward zero, retaining only a sparse subset of predictors.

This comparison permits an assessment of interpretability for models of the genotype-phenotype map from
two complementary perspectives: (i) tree-based paths that represent explicit conditional rules (CART), and (ii)
sparse linear models that quantify additive effects of selected predictors (LASSO). For each empirical dataset
summarized in Table 3, we fit a LASSO model to the continuous response variable (when available), using stan-
dardized predictors. We report the ten largest non-zero regression coefficients (ranked by absolute magnitude)
as a concise measure of variable importance for LASSO.

LASSO regression: method summary

To complement the tree-based analyses, we employ penalized linear regression using the least absolute shrink-
age and selection operator (LASSO) (95). In the general regression framework, the response variable is modeled
as

y=XB+¢,



where y € R" denotes the response vector (phenotype values in our case), X € R"™P is the design matrix
whose columns correspond to predictor variables (loci, environmental conditions, and higher-order multiplica-
tive interactions such as Locus;x Locus,, Locus;x Locus,;x Locuss, etc.), 8 € RP is the vector of regression
coefficients, and ¢ is the error term.

The LASSO estimator /3 is obtained by solving the optimization problem

A

B = argmin{lly = XBI5 + Bl }.

where ||y — Xﬁ||§ is the residual sum of squares, |8} = J’.’zl |6j| is the £;-norm penalty, and 1 > 0 is
a tuning parameter that controls the degree of regularization. By shrinking some coefficients exactly to zero,
LASSO simultaneously performs variable selection and regularization, yielding a sparse and interpretable model
of the genotype-phenotype map. Nonzero entries of 3 indicate predictors (or explicitly encoded interactions)
retained by the model. The magnitude I[SJ-I (or the standardized coefficient) serves as a proxy for effect size
and a relative measure of variable importance. Unlike CART, which can capture nonlinearities and interactions
implicitly through tree splits, LASSO is linear in the supplied features; thus, nonlinear and interaction terms must
be explicitly included as columns of X (95,96). In the Supplement, we compare (i) the top nonzero LASSO
coefficients (ranked by absolute magnitude) with (ii) the variables and split-paths identified by CART, to evaluate
agreement and differences in interpretability across methods.

Case 1: Sparse linear modeling of a fluorescent protein fithess landscape in Entacmaea quadri-
color (LASSO results)

In this section, we analyze the FP611 fluorescent-protein fitness landscape of Entacmaea quadricolor (57), using
a combined continuous scalar fluorescence phenotype as the response. The dataset represents an exhaustive
13 site mutational library bridging two fluorescent proteins, with predictors encoded as binary indicators of substi-
tutions at each site. In addition, all possible higher-order interactions among the 13 loci are explicitly included as
predictors, encompassing main effects, pairwise interactions, three-way interactions, and up to the 5-way com-
bination. LASSO regression was employed, and the regularization parameter was chosen via cross-validation.
We report the ten largest nonzero coefficients (ranked by absolute value), providing a compact representation of
the most influential substitutions and interactions. These results are compared with CART based interpretations
(Section 2.1) to assess areas of concordance and divergence between sparse linear and tree-based models of
the genotype-phenotype map.

Table 4. Case 1: Top ten nonzero LASSO coefficients for FP611 data. Coefficients are reported at the cross-validated
minimizer A.,;,,. Terms include main effects and interaction terms (up to 5-way).

Variable (term) Coefficient (5)
Locus 4:Locus 9:Locus 11:Locus 12 -0.7762
Locus 4:Locus_9 0.7453
Locus 10 0.6751
Locus 1 0.6407
Locus 5:Locus 12 -0.6405
Locus 8 0.6260
Locus 7 0.6085
Locus 3 0.6009
Locus 13 0.5963
Locus 2 0.5816

The model was fit using cross-validated LASSO (glmnet(96) package in R) with intercept excluded, predictors
standardized by default, and coefficients reported at A,i,. Standardization ensures that the magnitude of each
coefficient reflects the relative contribution of the corresponding predictor or interaction term to the phenotype.

LASSO results and comparison with CART Table 4 reports the top ten nonzero LASSO terms (ranked by
absolute coefficient). The largest-magnitude term is a negative four-way interaction, Locus 4, 9, 11, and 12
(coef = -0.776), indicating that the joint presence of these four substitutions is associated with a decrease in
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standardized fluorescence. A strong positive pairwise term, Locus 4:Locus 9 (coef = 0.745), and several
positive main effects (e.g. Locus 10, Locus 1) were also selected, indicating that both localized substitutions and
specific combinations contribute to variation in fluorescence.

These LASSO findings are broadly concordant with the CART results presented in the main text: CART iden-
tifies loci 9 (F143), 4 (Y197), 11 (L63), 5 (A174) and 12 (V45) as important decision variables (see Figure 2b). In
particular, the prominence of loci 4, 9, 11 and 12 in the LASSO top terms accords with the tree-based observa-
tion that coordinated changes at these positions are required to produce red fluorescence (see Section 2.1 and
Figure 2a).

Limitations and modeling choices Because LASSO is linear in the supplied features, interaction and non-
linear terms must be explicitly encoded in the design matrix. This substantially increases the dimensionality of
X and the associated computational burden. For tractability we limited candidate interactions to orders up to
five (i.e. main effects, pairwise, three, four and five way interactions). Despite this restriction, LASSO recovered
biologically meaningful higher-order terms that overlap with CART identified loci. However, CART provides a
complementary, structural representation (split paths and conditional rules) that more directly exposes hierarchi-
cal and context-dependent interactions. Unlike regularized linear models, trees implicitly capture nonlinearities
and interactions of arbitrary order without any explicit feature engineering, and they readily identify threshold ef-
fects and decision boundaries that are often biologically interpretable. The tree topology naturally distinguishes
global determinants from context-dependent modulators and yields concise, visual rules that domain experts
can inspect and validate. Additional practical advantages include native handling of mixed predictor types and
missing values, straightforward computation of variable importance measures, and direct support for visualiza-
tion (tree plots) that facilitate mechanistic interpretation of epistatic architectures. We note, however, that single
trees can be sensitive to sampling variation. To mitigate this we report pruned trees and cross-validated splits,
and where appropriate complement single-tree interpretation with ensemble summaries (e.g. random forest or
boosted tree variable importance) while preserving the single-tree depiction for interpretability.

Case 2: LASSO analysis of genotype—environment interactions in P. falciparum DHFR and cy-
cloguanil

This section reports LASSO results for the DHFR dataset of Plasmodium falciparum under cycloguanil exposure
(12). The decision tree in the main text, Section 2.2.1 and Figure 4, shows that drug concentration explains
most model variance, while the contributions of individual mutations change with drug level. To provide a com-
plementary sparse linear view, we fitted LASSO models to the response t = In(r + 1) using the same predictor
set, that is the four binary loci and the cycloguanil drug concentration. We also included all possible interaction
terms among loci and the environment. Models were fitted with glmnet (96) package with @ = 1 (for LASSO).
Tuning of A used cross validation. Predictors were standardized by the software prior to fitting and coefficients
are reported at Apiy.

Table 5. Top LASSO coefficients for the DHFR cycloguanil dataset, Case 2. Coefficients are reported at A,;,. Small values
are shown in scientific notation.

Variable (term) Coefficient(B)

Locus 3 0.404861
Locus 2 0.355494
Locus 4 0.229218
Locus 1 0.124208
Locus 3:Env -2.17 x 1077
Locus 2:Env -1.51x 1077
Env -1.47 x 1077
Locus4:Env -1.43x 1077

Interpretation of LASSO and comparison with CART Table 5 shows that LASSO selects the four DHFR
loci as positive main effects, with Locus 3 (C59R) and Locus 2 (S108N) the largest contributors in the sparse
linear model. This agrees with the CART analysis, where drug concentration is the dominant predictor and
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Locus 2 (S108N) and Locus 3 (C59R) have the largest mutational importance in their respective drug regimes,
Section 2.2.1 and Figure 4(c). Both methods therefore single out the same residues as key determinants of
fitness, while they emphasize different aspects of the genotype by environment relationship.

The environmental term and the locus by environment interaction terms have coefficients close to zero in the
fitted LASSO model. There are two main explanations. First, the environmental effect is largely threshold-like,
with a sharp split near log, E = 2 (here E represent the dru concentration), and a simple linear term will be
small if the true relationship is non-linear or piecewise. Second, after standardization and penalization, marginal
linear contributions of Env (environmental term) or first-order interactions may be small relative to the main
genetic effects, especially when the tree partitions the data into regimes where different mutations dominate.
Thus LASSO highlights loci with consistent additive influence across the sampled concentrations, while CART
exposes the explicit decision boundaries and the changes in mutational effects that occur across drug regimes.

Notes on modeling choices For this four-locus design the number of candidate interactions is manageable,
and LASSO produced a concise set of nonzero coefficients that align with the tree-derived biology. Still, LASSO
requires explicit encoding of interactions, which increases the dimension of the design matrix and the compu-
tational burden. For systems with strong non-linear or threshold effects, tree-based models often give a more
direct and interpretable depiction of conditional effects.

Case 3: LASSO analysis of environmental modulation of epistasis in E. coli (LTEE)

This subsection reports LASSO results for the LTEE data set in E. coli, which contains all 32 genotype combi-
nations across five loci and measurements in three environments, namely DM25, DM25 plus EGTA, and DM25
plus guanazole (11,59). The CART analysis in the main text shows that environment is the primary predictor and
that gImUS and topA are the most influential loci, see Fig. 5 and Fig. 6. To provide a sparse linear view we fitted
LASSO models to the log transformed fitness response using the same predictor set.

In this data set, the environmental variable is categorical. Standard linear regression requires numerical
predictors, so categorical variables must be represented by indicator variables (97). We therefore encoded each
environment level as dummy indicators and included these columns in the feature design matrix X. In addition,
we incorporated all possible interaction terms among the five loci and the environment. Thus, the design matrix
X contains both the main effects and all possible interactions of these variables as candidate predictors. This
specification allows the linear model to consider every multiplicative combination of loci and environment while
leaving variable selection to the penalized estimator. Predictors were standardized by the software prior to fitting.
To avoid perfect multicollinearity, the design matrix excluded a redundant reference column. Models were fitted
using cv.glmnet with LASSO (a = 1). The tuning parameter 2 was chosen by cross-validation, and coefficients
are reported at the cross-validated minimizer Apyy.

Table 6. Top LASSO coefficients for Case 3, LTEE. Coefficients are reported at Apn.

Variable (term) Coefficient (B3)
rbs(Locus 1):topA(Locus 2):spoA(Locus 3):gimUS(Locus 4):pykF(Locus 5):DM25_EGTA 0.042485045
glmUS(Locus 4) 0.030650447
topA(Locus 2) 0.018480689
spoA(Locus 3) 0.018331629
rbs(Locus 1):DM25_EGTA 0.017244808
spoA(Locus 3):DM25_GUA —0.013966596
pykF(Locus 5) 0.012830050
rbs(Locus 1) 0.010588701
rbs(Locus 1):gimUS (Locus 4):DM25_EGTA 0.008421076
glmUS(Locus 4):pykF (Locus 5):DM25_EGTA 0.007671273

Interpretation of LASSO results and comparison with CART The LASSO model identifies positive main
effects for gImUS and topA (see Table 6 ). It also selects interaction terms that involve the “DM25 plus EGTA”
environment. The top coefficient is a six way interaction that includes all five loci together with the “DM25 plus
EGTA” environment, showing a modest positive association with log fitness in that environment. The single locus
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results for gimUS and topA agree with the CART findings, where gimUS and topA are among the most important
predictors, see Figure 6. Both methods therefore single out the same residues as primary determinants of fitness,
although they present different views of how those residues operate across environments.

Some locus by environment interaction coefficients are small in magnitude. This may reflect the combined
effect of standardization and penalization in LASSO, or it may indicate that the environmental influence takes
a threshold form that is represented more directly by tree splits. Trees capture abrupt changes and partition
the data into regimes where mutation effects change, while LASSO quantifies additive and explicitly encoded
interaction effects across the entire sample. For this data set the two approaches are complementary, and each
highlights different aspects of genotype by environment relationships.

Notes on modeling choices Including all possible multiplicative interactions rapidly increases the number
of candidate predictors. For the five locus design the dimension remains manageable, but computation and
memory use grow with interaction order. LASSO produced a concise set of nonzero coefficients that overlap
with loci identified by CART. Trees provide a clear depiction of threshold effects and of how splits partition the
genotype by environment space, which aids interpretation of regime shifts in mutation effects.

Case 4: LASSO results reported in the original study and comparison with CART

We do not conduct a separate LASSO analysis for this case, as Guerrero et al. (2019) (58) provide a comprehen-
sive investigation of the same data set. The data consist of three biallelic DHFR sites, a categorical proteostasis
variable with three levels, and a categorical species variable with three levels. In practice, LASSO can be applied
to such data by encoding categorical variables as dummy indicators and by incorporating explicit interaction
terms in the design matrix, as demonstrated in our Case 3 analysis in the previous section.

Interpretation of LASSO results and comparison with CART Guerrero et al. (58) demonstrate through their
LASSO analysis that species-specific amino acid background is the dominant driver of the focal trait (/Csp). In
the full LASSO fits the C. muridarum and L. grayi backgrounds have the largest negative effects, with estimated
effect sizes near —1.44 and —-0.90 respectively. The single largest positive main effect is the L28R mutation,
with effect size about 1.22. These results indicate that species background and high-effect mutations together
shape the trait distribution in a predictable way, and that biochemical properties of the enzyme, such as catalytic
efficiency and thermostability, provide a mechanistic basis for these findings. Guerrero et al. (58) further show
that the total contribution of higher-order interactions exceeds that of main effects. lllustrative examples are a
negative interaction between species background and L28R with effect size near —0.69 and a positive interaction
between a species background and GroEL overexpression with effect size about 0.41. Some interactions admit
straightforward mechanistic explanations while others remain difficult to interpret and therefore suggest direc-
tions for future work. Our CART analysis of the same data set identifies species background as the principal
partitioning variable and shows how proteostasis environment and specific mutations refine phenotype differ-
ences within species regimes. Taken together, the LASSO results reported by Guerrero et al. and the CART
results reported here offer complementary perspectives on species background, proteostasis environment, and
mutation identity in shaping DHFR phenotypes (58).

Notes on modeling choices Guerrero et al. (58) fitted regularized linear models both within proteostasis-
species strata and in pooled analyses that included explicit interaction terms. Categorical variables were rep-
resented by dummy indicators and interaction terms were included in the design matrix so that the penalized
estimator could select relevant multiplicative combinations. The authors also incorporated nonlinear correction
terms to account for saturation-like effects and to improve model fit. Because this data set has only three loci,
the dimensionality of the design matrix remains modest even when higher-order interactions are included, but
computation and memory demands grow with interaction order in larger designs. CART complements these
linear fits by exposing threshold-like effects and by providing a visual, rule-based representation of how species
background, proteostasis environment, and mutations jointly determine phenotypes.

Case 5: LASSO analysis of multivariate chemotype landscapes in terpene synthase evolution

This subsection reports LASSO results for the terpene synthase dataset from O’Maille et al. (2008) (60), which
contains all 64 genotype combinations across six active-site loci and measurements of four sesquiterpene prod-
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ucts: 5-epi-aristolochene (5-EA), 4-epi-eremophilene (4-EE), premnaspirodiene (PSD), and a combined category
of minor products. The CART analysis in Section S4.2.3 shows that specific loci such as 1372V (locus 1), S402T
(locus 2), and L406Y (locus 3) are the most influential for each product, with hierarchical splits revealing threshold
effects and epistatic interactions, see Figure S7. To provide a sparse linear perspective on genotype—phenotype
relationships, we fitted LASSO models individually for each response variable using the same set of six loci as
predictors. The design matrix X contains both the main effects and all possible interactions of these loci as can-
didate predictors, allowing the linear model to consider every multiplicative combination when selecting relevant
terms.

Interpretation of LASSO and comparison with CART Table 7 shows that the LASSO models for the terpene
synthase dataset identify strong main effects as well as several higher-order interactions among the six active-
site loci. For 4-EE, the largest positive effects correspond to 1372V (locus 1), T438l (locus 4), and L406Y
(locus 3), while the strongest negative coefficients involve three-way interactions such as 1372V:L406Y:L439I.
For 5-EA, the dominant main effects are S402T (locus 2), 1516V (locus 6), and 1372V (locus 1), with several
four- and five-way interaction terms carrying negative coefficients that temper these additive contributions. The
model for minor products highlights L439I (locus 5), S402T (locus 2), and T438l (locus 4) as the largest positive
effects, again accompanied by multi locus interaction terms of opposite sign. Finally, the PSD response stands
out in that the largest coefficients correspond not to single loci but to four and five way interaction terms (e.g.
18372V:S402T:L406Y:L4391:1516V), alongside strong main effects for T438I (locus 4) and 1516V (locus 6). Taken
together, these sparse linear models reveal that both main genetic effects and high-order epistasis shape the
multivariate chemotype landscape.

The CART analysis in Section S4.2.3 and Figure S7 converges on a similar picture in terms of the most in-
fluential loci, but emphasizes context-dependent branching rules. For 4-EE, the tree highlights S402T (locus 2),
L406Y (locus 3), and 1372V (locus 1) as the most important predictors, in agreement with the strong LASSO co-
efficients for loci 1 and 3. For 5-EA, loci 2, 6, and 3 dominate both the regression tree and the linear model, while
for minor products, both methods highlight contributions from loci 5 and 6. For PSD, CART prioritizes L406Y
(locus 3), S402T (locus 2), and L439I (locus 5), partially overlapping with the LASSO findings that assign very
large weights to high-order interaction terms involving these same loci. In summary, the two approaches provide
complementary insights: LASSO quantifies additive and interaction contributions with sparse coefficients, ex-
posing the importance of high-order epistasis in shaping terpene product specificity, while CART reveals explicit
mutational pathways and threshold-like effects by partitioning the genotype space.

Notes on modeling choices With six loci the predictor space expands dramatically, making feature selection
essential. While LASSO reduced this space to a sparse set of influential terms, CART offered complementary ad-
vantages. Trees provide a direct visualization of threshold effects and clearly delineate how specific substitutions
or combinations redirect enzyme outcomes. This partitioning of genotype space highlights alternative evolution-
ary routes and makes explicit mutational effects. Such interpretability is especially valuable in the discovery of
the complex epistatic structure underlying terpene synthase specificity.
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Table 7. Non-zero LASSO coefficients for each response variable at the cross-validated minimizer Ayy.

Response Variable (term) Coefficient (5)
1372V (locus 1) 9.767
T438I (locus 4) 9.606
L406Y (locus 3) 8.929
1372V (locus 1):L406Y (locus 3):L439I (locus 5) -7.758
A-EE L439I (locus 5) 7.719
1372V (locus 1):L406Y (locus 3):T438l (locus 4) -6.021
S402T (locus 2):T438l (locus 4):L439I (locus 5) -5.139
T438l (locus 4):L439I (locus 5):1516V (locus 6) 3.256
1372V (locus 1):S402T (locus 2):T438l (locus 4) -2.088
S402T (locus 2):T438l (locus 4):1516V (locus 6) -1.995
S402T (locus 2) 21.533
1516V (locus 6) 19.478
1372V (locus 1) 17.334
L406Y (locus 3) 16.148
5-EA 1372V (locus 1):L406Y (locus 3):L439I (locus 5):1516V (locus 6) -13.852
1372V (locus 1):L406Y (locus 3):1516V (locus 6) -8.713
L439I (locus 5) 6.286
1372V (locus 1):S402T (locus 2):L406Y (locus 3):T438lI (locus 4):1516V (locus 6) -5.059
S402T (locus 2):T438l (locus 4):1516V (locus 6) -3.892
T438I (locus 4) 3.886
L439I (locus 5) 7177
S402T (locus 2) 4.895
T438I (locus 4) 3.913
1372V (locus 1):S402T (locus 2):L406Y (locus 3):L439I (locus 5):1516V (locus 6) -3.551
minorProducts L406Y (locus 3) 3.330
1372V (locus 1) 3.128
S402T (locus 2):T438lI (locus 4):L439I (locus 5):1516V (locus 6) -3.083
1372V (locus 1):L439I (locus 5):1516V (locus 6) -2.446
1516V (locus 6) 2.193
1372V (locus 1):S402T (locus 2):L406Y (locus 3):T438l (locus 4):L439I (locus 5) 2.007
1372V (locus 1):L406Y (locus 3):L439I (locus 5):1516V (locus 6) 44.709
1372V (locus 1):S402T (locus 2):L406Y (locus 3):T438lI (locus 4):1516V (locus 6) 32.099
T438I (locus 4) 29.269
1372V (locus 1):S402T (locus 2):L406Y (locus 3):L439l (locus 5):1516V (locus 6) -27.603
PSD T438I (locus 4):1516V (locus 6) -25.887
1516V (locus 6) 25.381
S402T (locus 2):T438lI (locus 4):1516V (locus 6) 19.947
S402T (locus 2):L406Y (locus 3) -17.943
S402T (locus 2):T438lI (locus 4) -17.559
L406Y (locus 3):1516V (locus 6) -16.827
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