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Abstract 24 

 Understanding seasonal shifts in the spatial distribution of Bristol Bay red king crab 25 

(BBRKC) is essential to developing adaptive management strategies that promote sustainable 26 

harvest. Although fishery harvests suggest a substantial shift in the distribution of male crab 27 

between late spring (when fishery-independent bottom trawl surveys occur) and autumn (during 28 

the directed fishery), the environmental drivers underlying this shift are not well characterized. 29 

In this study, we fit an advection-diffusion model of mature male BBRKC seasonal movements 30 

to pop-up satellite archival tag data to estimate the habitat preferences of migrating crab. We 31 

then used estimated habitat preference parameters and time-varying environmental data to 32 

project the distribution of the BBRKC stock from the late spring to the autumn during 2005-33 

2023, evaluating the similarities between these projected distributions and directed fishery 34 

catches through spatial overlap analysis. Our habitat preference model suggested that late spring 35 

to autumn mature male BBRKC movements were explained by a preference for cooler 36 

temperatures in central Bristol Bay in October, with preference for shallow habitats at low tidal 37 

current velocities and deeper habitats at higher velocities. We found that projections of seasonal 38 

BBRKC distributions estimated from the movement model skillfully predicted interannual 39 

variation in directed BBRKC fishery catches. Our results offer new insights into the 40 

environmental drivers of seasonal BBRKC movements and demonstrate the utility of movement-41 

integrated species distribution modeling for seasonal projections of animal distributions. 42 
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Introduction  47 

The Bristol Bay red king crab (BBRKC; Paralithodes camtschaticus) fishery was once one of the 48 

most productive crab fisheries in the world. The fishery peaked in 1980 when 58,943 tons of crab worth 49 

an estimated $115.3 million ex-vessel value were harvested, but had collapsed by 1982 when the fishery 50 

landed only 1,361 tons of crab (Zheng and Siddeek 2018, Palof 2024). After moderate recovery and then 51 

additional stock decline in the mid-1990s, managers implemented trawl closure areas in 1995 and 1996, 52 

including the Red King Crab Savings Area (RKCSA) and Nearshore Bristol Bay Trawl Closure Area 53 

(NBBTCA). These closure areas were designed to protect BBRKC by limiting negative interactions with 54 

trawl fisheries, and together closed ~79,000 km2 of BBRKC habitat to trawling (Kruse et al. 2010). 55 

However, evaluating the efficacy of these closure areas and ensuring their future utility amidst 56 

increasingly anomalous environmental conditions in the Bering Sea (Stabeno and Bell 2019, Litzow et al. 57 

2024) and climate-driven shifts in species distributions (Szuwalski et al. 2021, Howard et  al. 2024) 58 

requires improved knowledge of BBRKC habitat preferences, seasonal migrations and distributions. 59 

Developing this understanding has the potential to inform new management strategies (e.g., spatially 60 

dynamic closure areas) that optimize for the diverse economic and ecological sustainability objectives of 61 

stakeholders (Hazen et al. 2018) in Bristol Bay. 62 

Our current understanding of seasonal red king crab migrations and distributions stems from 63 

decades of tagging studies (Powell and Reynolds 1965, Takeshita et al. 1990, Stone et al. 1992), bottom 64 

trawl and pot surveys (Dew 2008,  Loher et al. 2024, Zacher et al. 2024), directed fishery harvest reports 65 

(Zacher et al. 2018, Ryznar et al., in review), and bycatch observations from groundfish fisheries (Ryznar 66 

and Litzow 2024) in Bristol Bay and elsewhere in Alaskan waters.  However, a lack of standardized 67 

sampling methods among seasons complicates inferring migratory patterns and behaviors from these 68 

sources. Additionally, when predictions of seasonal distribution are possible, for example, within bycatch 69 

distribution modeling frameworks, model training data are spatially restricted to regions where groundfish 70 

fisheries operate and do not include critical crab habitats in the RKCSA or NBBTCA that are closed to 71 



 

 

trawling (Laman et al. 2018, Ryznar and Litzow 2024). The quality of our understanding of BBRKC 72 

seasonal distributions is therefore weighted towards the late spring, when a spatially-comprehensive 73 

fisheries-independent bottom trawl survey occurs, and the autumn, when the directed BBRKC fishery 74 

operates in Bristol Bay. Extending our knowledge of BBRKC distribution outside the late spring and 75 

autumn periods to better characterize the efficacy of BBRKC trawl closure areas requires methods that 76 

can produce robust predictions of stock distribution by integrating across seasons and disparate sampling 77 

methodologies (e.g., telemetry data via satellite tags, bottom trawl and pot surveys, observations of 78 

BBRKC bycatch, and/or directed fishery harvest data). 79 

“Hybrid” species distribution models (SDMs) are one method to address this challenge (Thorson 80 

et al. 2021, Thorson and Kristensen 2024). The hybrid SDM framework functions by extending spatially-81 

resolved predictions of animal distribution, made using a correlational SDM (e.g., a generalized linear 82 

mixed model or machine learning model) fitted to observations of presence/absence or density in relation 83 

to environmental covariates (Dormann et al. 2012), over a time interval by coupling distributional 84 

predictions with movement probabilities over that time interval (Thorson et al. 2021). Movement 85 

probabilities are calculated using a model fitted to telemetry data estimating the contributions to observed 86 

animal movement by taxis, (i.e., the directional movement of individuals towards preferred habitats), and 87 

diffusion (i.e., the residual, non-directional movement not captured by taxis) (Thorson and Kristensen 88 

2024). Ultimately, the coupling of predicted distributions from a SDM with predicted movement 89 

probabilities from a movement model produces distributional projections consistent with the habitat 90 

preferences of tagged individuals, where habitat preference refers to the use of a particular habitat relative 91 

to its availability (Aarts et al. 2008). 92 

Two key environmental factors contributing to the habitat preferences of seasonally migratory red 93 

king crab include depth (Wallace et al. 1949, Powell and Reynolds 1965, Stone et al. 1992) and bottom 94 

temperatures (Loher and Armstong 2005, Chilton et al. 2010, Zacher et al. 2018). During the winter-95 

spring period, mature female BBRKC move into shallow, nearshore habitats where annual molting and 96 



 

 

mating occurs (Dew 2008, Chilton et al. 2010). A subset of the male population, typically the large, old-97 

shell individuals, concurrently migrates into shallow habitats to participate in mating (Dew 2008), 98 

whereas smaller, recently molted males remain in deeper habitats (Takeshita et al. 1990, Dew and 99 

McConnaughey 2005). Following the molt-mate phase, both male and female crab migrate back to deeper 100 

habitat (Dew 2008, Chilton et al. 2010), with post-spawning males and females tending to segregate 101 

spatially, and recently-mated old-shell males reconvening with the population of new-shell males 102 

(Takeshita et al. 1990). The female molt-mate cycle may be delayed in colder bottom temperature years, 103 

resulting in the shallow-to-deep, post-spawning migration of mature female crab occurring as late as July 104 

(Chilton et al. 2010). 105 

For legal male BBRKC (≥ 135 mm carapace length [CL]), migratory dynamics between the 106 

summer and autumn months are evidenced by data collected by the National Marine Fisheries Service 107 

eastern Bering Sea (NMFS EBS) bottom trawl survey that begins in Bristol Bay in late May-early June 108 

(Zacher et al. 2024), and spatially-resolved catch data provided by vessel captains and observers in the 109 

male-only directed fishery open between October 15 and January 15 annually (the majority of landings in 110 

the directed fishery occur within the first month; Zacher et al. 2018). Although observations from the 111 

directed fishery only occur within a portion of the range occupied by BBRKC, comparison of stock 112 

distribution between the two seasons reveals a general distributional shift from central Bristol Bay in the 113 

late spring to the south and/or west when crab are captured in the fishery (Zacher et al. 2018). In general, 114 

the spatial distribution of the stock during the directed fishery tends to be deeper than during the survey in 115 

late spring, and harvests in colder bottom temperature years tend to arrange in a band-like formation 116 

along the Alaska Peninsula, whereas in warmer years, harvests tend to extend further northwards into 117 

central Bristol Bay (Zacher et al. 2018). In recent years, satellite tags have been deployed on crab during 118 

the NMFS EBS survey to better understand the seasonal movements of mature/legal male crab (≥ 120 mm 119 

CL) (NPFMC 2022a-c, 2024a, Nault et al. 2024). 120 



 

 

The availability of observations of BBRKC density from a fisheries-independent bottom trawl 121 

survey that occurs annually during the late spring, coupled with observations of BBRKC movement over 122 

the late spring–autumn interval, presents a unique opportunity to evaluate the utility of a hybrid SDM 123 

applied to the BBRKC stock. In this work, we applied the hybrid SDM framework to 1) estimate mature 124 

male BBRKC habitat preferences based on relationships between environmental variables and BBRKC 125 

movements, and 2) integrate BBRKC late spring survey data, tagging data, and habitat preferences to 126 

project BBRKC density across the late spring–autumn period. We evaluated the predictive skill of our 127 

projections by comparing the spatial overlap of projected BBRKC distributions with the distribution of 128 

autumn BBRKC fishery catches for each year between 2005 and 2023. We expected that the spatial 129 

overlap between projected and fishery distributions would be greater than what would be expected if crab 130 

moved randomly over the late spring–autumn periods. Lastly, we considered how bottom temperatures in 131 

Bristol Bay influenced the extent of spatial overlap and trends in stock distribution. 132 

Methods 133 

Overview of the hybrid modeling approach 134 

 We applied a two-stage hybrid modeling approach to project BBRKC density (numbers km-2) 135 

from late spring (June) to autumn (October). This two-stage approach to projecting density specifically 136 

involved the integration of predictions from two separate models, rather than generating predictions from 137 

a single, jointly estimated model (Thorson et al. 2021, Thorson and Kristensen 2024). We first fitted a 138 

spatial generalized linear mixed model, hereafter the species distribution model (SDM), to BBRKC 139 

densities from the NMFS EBS bottom trawl survey to predict June BBRKC density and distribution. 140 

Next, we fitted a model of crab seasonal movements, hereafter the diffusion-taxis model (Thorson et al. 141 

2021, Thorson and Kristensen 2024), to telemetry data (the known tag release and recovery locations) to 142 

predict BBRKC movements from June to October. The diffusion-taxis model estimated movement due to 143 



 

 

taxis, or the directed movement of individuals towards preferred habitats, and diffusion, or the non-144 

directed movement of individuals over the time interval (Thorson and Kristensen 2024). Contributions of 145 

“drift”, or the passive, directional movement of animals; for example, due to currents, may also be 146 

estimated but were not considered in our analyses. We assumed that the movements of these large-bodied 147 

benthic crustaceans would be primarily driven by taxis rather than by passive movement in response to 148 

current dynamics. 149 

We then multiplied June density predictions from the SDM with predicted movement 150 

probabilities from the diffusion-taxis model to project BBRKC density across the June–October interval. 151 

We used AIC (Akaike 1987) and leave-one-out cross validation (LOOCV) to identify the best-fitting 152 

model with highest prediction skill among a set of uniquely parameterized diffusion-taxis models. After 153 

model selection, we used a parametric bootstrap approach to evaluate the skill of annual BBRKC density 154 

projections made using the selected diffusion-taxis model relative to a diffusion-only model. Specifically, 155 

we compared the extent of spatial overlap between density projections made using the diffusion-taxis 156 

model or diffusion-only model with catch per unit effort (CPUE) from the directed BBRKC fishery. 157 

Survey data 158 

 We used data collected on the 2005-2019 and 2021-2023 NMFS EBS bottom trawl surveys to fit 159 

SDMs. We chose the 2005 start year for this analysis because 2005 was the first year for which spatially-160 

resolved commercial harvest data from the BBRKC directed fishery were available. The NMFS EBS 161 

bottom trawl survey follows a fixed station sampling design with survey stations spaced 20 nautical miles 162 

apart. Thirty-minute trawls were conducted using an 83-112 eastern otter trawl with 25.3 m headrope and 163 

34.1 m footrope (see full trawl specifications in Markowitz et al. 2023). The survey typically begins in 164 

late May at stations in eastern Bristol Bay, moving westward and out of Bristol Bay by late June. Station-165 

level mature male BBRKC density was estimated as the total number of mature males caught divided by 166 

area-swept effort (catch per unit effort; crab km-2). 167 



 

 

Tagging data 168 

Hardshell mature male red king crab (carapace length [CL] between 124 and 183 mm) were 169 

tagged during the EBS bottom trawl survey between May 29 and June 22 in 2021-2023 (Table 1). Crab 170 

brought up in good condition in trawl nets were candidates for tagging, and all individuals tagged had 171 

walking legs intact and very minor to no injuries evident. To the extent practical while on a survey vessel, 172 

the distribution of released tags was weighted by the density of BBRKC survey catches within a given 173 

survey year, such that more tags were released in areas with higher densities of BBRKC from survey 174 

catches. Crab were tagged with PSAT tags from Wildlife Computers (miniPAT and Mark Report PAT; 175 

Table 1) by securing the tag to a polyolefin tubing harness wrapped around the crab’s carapace (see Nault 176 

et al. 2024). The positively buoyant tags float approximately 7 cm above the tagged crabs. This 177 

attachment method does not allow tags to be retained through the molt, but male BBRKC do not 178 

generally molt during the deployment period (NPFMC 2024b). 179 

Data from 2020 were available for use in this study (Nault et al. 2024), but were not included in 180 

our models due to temporal and spatial differences in tag deployment methods between the 2020 and 181 

2021-2023 tagging studies. In 2020, the median tag deployment date of July 7th came over a month later 182 

than 2021-2023 tags (2021: June 6th, 2022: June 5th, 2023: June 2nd), and tags were deployed in clusters in 183 

2020 rather than as in 2021-2023 where tag deployment density was weighted by survey BBRKC catch 184 

density. We programmed tags to release from crab between October 11th and 13th (Table 1). Once at the 185 

surface, satellite tags drifted for 0.1 to 48 hours prior to an initial high-quality Argos location estimate. To 186 

correct for tag surface drift we estimated true pop-up locations and error ellipses using known tag drift 187 

vectors (Nault et al. 2024). Tags that surfaced before the programmed release date, most likely due to crab 188 

death, were not included in this analysis. Across the three-year tagging period, June deployment and 189 

October pop-up locations were obtained for 63 mature male BBRKC (Table 1). PSAT tags yielded 190 

positional information for crabs at tag deployment (June) and pop-up (October) locations. 191 



 

 

Commercial fishing data 192 

 We used spatially-resolved daily fishing logbook data collected by BBRKC commercial fishing 193 

boat captains to calculate CPUE and to evaluate the overlap between the spatial distribution of fishery 194 

CPUE and projected BBRKC distributions. Daily fishing logbook observations, which include catch size 195 

and location, have been kept by BBRKC fishery captains since the rationalization of the fleet in 2005. 196 

BBRKC are fished using large rectangular mesh pots (e.g., 7′ × 7′ × 4′) that are set in groups along 197 

straight lines referred to as “strings” with on average 23 pots per string. Each daily fishing log entry 198 

detailing catch size refers to the number of legal sized male crabs harvested along the entire string, and 199 

we calculated CPUE as the number of crabs harvested per string divided by the number of pots hauled 200 

following Zacher et al. 2018. Strings with ≥ 100 and < 5 pots were omitted from CPUE calculations, as 201 

very long strings were unlikely to be set in straight lines or well-described by the unique coordinate pair 202 

that we assigned to each string, and strings with very few pots were removed due to low sample size. 203 

Fishing boat captains record the coordinates of the start and end pot for each string, and in our analyses, 204 

we assigned string position as the average of these coordinates. 205 

Species distribution model 206 

 We fitted a spatial generalized linear mixed model to observations of BBRKC density with spatial 207 

and spatiotemporal random fields, Tweedie observation error and log link (Anderson et al. 2024). We 208 

included survey year as a categorical predictor estimated as a fixed effect. The model was given by  209 

𝔼𝔼�𝑟𝑟𝒔𝒔,𝑦𝑦� = 𝜇𝜇𝒔𝒔,𝑦𝑦      210 

𝜇𝜇𝒔𝒔,𝑦𝑦 = exp�𝛼𝛼𝑦𝑦 + 𝜔𝜔𝒔𝒔 + 𝜖𝜖𝒔𝒔,𝑦𝑦�    (1)  211 

𝛚𝛚 ∼ MVN(𝟎𝟎,𝚺𝚺𝜔𝜔)  212 
𝛜𝛜𝒚𝒚 ∼ MVN(𝟎𝟎,𝚺𝚺𝜖𝜖),  213 

where 𝑟𝑟𝒔𝒔,𝑦𝑦 is the observed density of mature male crab at survey station s in year y, 𝜇𝜇𝒔𝒔,𝑦𝑦 is the predicted 214 

density, 𝛼𝛼𝑦𝑦 is an estimated intercept for each year, 𝛚𝛚 is the main effect for space and represents a 215 



 

 

temporally-persistent deviation in log-density at location s, and 𝛜𝛜𝒚𝒚 is the interaction of space and year that 216 

is estimated independently for each year. Both spatial and spatiotemporal random fields were treated as 217 

Gaussian Markov random fields with the Stochastic Partial Differential Equation (SPDE) method 218 

(Lindgren et al. 2011), and spatial covariances for matrices  𝚺𝚺𝜔𝜔 and 𝚺𝚺𝜖𝜖 were calculated using a Matérn 219 

covariance function (Cressie and Huang 1999). We used a SPDE mesh with 470 vertices where the 220 

maximum distance between vertices within the study area was 25 km (Appendix S1: Fig. S1a).  221 

We fitted the SDM to survey data between 2005 and 2023 (excluding 2020 when no bottom trawl 222 

survey occurred due to COVID-19) using the R package sdmTMB (Anderson et al. 2024). We used this 223 

model to predict June BBRKC densities during these years across J grid cells (grid cell area = 625 km2); 224 

resulting in the yearly density vector 𝒄𝒄𝑦𝑦 with J elements. The prediction grid (Appendix S1: Fig. S1b, 225 

purple) was a subset of the Bristol Bay RKC management district (54.5-58.5°N, 168-158°W) that we 226 

extended to include a region in northwest Bristol Bay where satellite tags were deployed on RKC. This 227 

extension was immediately adjacent to the northern management boundary and extended to 59.1°N, 228 

166.2°W (see tags deployed outside Bristol Bay management district in Fig. 1). We limited the extent of 229 

the prediction grid in southwest Bristol Bay to avoid projecting BBRKC density far outside the region 230 

within which crab movement data were available. Between 99.6% and 100% of annual fishing CPUE 231 

observations fell within this prediction grid during the study period. 232 

Diffusion-taxis model 233 

 Next, we fitted a diffusion-taxis model to BBRKC tagging data to predict the probabilities of crab 234 

moving from one grid cell to any other grid cell within the prediction grid over the June-October time 235 

interval (Thorson et al. 2021, Thorson and Kristensen 2024). Positional information from PSAT tags was 236 

available for start (June) and end (October) positions of tagged crabs. We used a spatial grid comprised of 237 

𝐽𝐽 = 296 grid cells to define adjacency matrix 𝐀𝐀 with dimension 𝐽𝐽 × 𝐽𝐽 (Appendix S1: Fig. S1b, black). We 238 

used this grid that had fewer cells than the prediction grid (296 vs. 313) to reduce the computational 239 



 

 

complexity of likelihood optimization and aid in model convergence. The larger 313 cell grid was used 240 

for prediction as this grid more accurately captured the spatial boundaries of the Bristol Bay management 241 

district. Values of 𝐀𝐀 were 1 when cells shared sides and 0 otherwise (i.e., rook adjacency). Given tagging 242 

observations from multiple years, we calculated the year-specific instantaneous movement rate matrix 𝐌𝐌𝑦𝑦̇  243 

for crab moving between adjacent cells per unit time t as a combination of diffusion and taxis that were 244 

estimated from tagging data. 𝐌𝐌𝑦𝑦̇  had the same sparsity structure as 𝐀𝐀, such that crab could only move to 245 

adjacent cells in instantaneous time. In the diffusion-taxis model, 𝐌̇𝐌𝑦𝑦 is the sum of instantaneous 246 

diffusion 𝐃̇𝐃𝑦𝑦 and taxis 𝐙𝐙𝑦̇𝑦 rates: 247 

𝐌𝐌𝑦𝑦̇ = 𝐃𝐃𝑦̇𝑦 + 𝐙𝐙𝑦̇𝑦       (2) 248 

Here, diffusion 𝐃𝐃𝑦̇𝑦 is defined as random, isotropic (i.e., non-directional) movement and taxis 𝐙̇𝐙𝑦𝑦 249 

 as active directional movement in response to habitat preferences. Elements of 𝐃𝐃𝑦̇𝑦 and 𝐙𝐙𝑦̇𝑦 matrices are 250 

𝑑𝑑𝑦𝑦,𝑔𝑔1,𝑔𝑔2
̇  and 𝑧𝑧𝑦𝑦,𝑔𝑔1,𝑔𝑔2̇ , respectively, reflecting the movement rates of crab due to diffusion and taxis from 251 

𝑔𝑔1 to adjacent grid cell 𝑔𝑔2 per unit time. The diffusion rate 𝑑𝑑𝑦𝑦,𝑔𝑔1,𝑔𝑔2
̇  is given by 252 

𝑑𝑑𝑦𝑦,𝑔𝑔1,𝑔𝑔2
̇ = �

𝐷𝐷 1
Δ𝑠𝑠2
𝑎𝑎𝑔𝑔1,𝑔𝑔2

−∑ 𝑑𝑑𝑦𝑦,𝑔𝑔1,𝑔𝑔̇𝑔𝑔≠𝑔𝑔2

          if 𝑔𝑔1 ≠ 𝑔𝑔2
if 𝑔𝑔1 = 𝑔𝑔2

,    (3) 253 

where 𝐷𝐷 is the diffusion coefficient estimated from tagging data in units distance2/time, Δ𝑠𝑠2 is the grid cell 254 

area with sides of length Δ𝑠𝑠, and 𝑎𝑎𝑔𝑔1,𝑔𝑔2 is the corresponding element of the adjacency matrix. 255 

For taxis between cells 𝑔𝑔1 and 𝑔𝑔2, the taxis rate 𝑧𝑧𝑦𝑦,𝑔𝑔1,𝑔𝑔2̇  is 256 

𝑧𝑧𝑦𝑦,𝑔𝑔1,𝑔𝑔2̇ = �
(ℎ𝑦𝑦,𝑔𝑔1 − ℎ𝑦𝑦,𝑔𝑔2) 1

Δ𝑠𝑠
𝑎𝑎𝑔𝑔1,𝑔𝑔2

−∑ 𝑧𝑧𝑦𝑦,𝑔𝑔1,𝑔𝑔̇𝑔𝑔≠𝑔𝑔2

          if 𝑔𝑔1 ≠ 𝑔𝑔2
if 𝑔𝑔1 = 𝑔𝑔2

,   (4) 257 

where ℎ𝑦𝑦,𝑔𝑔 is habitat preference modeled as  258 

ℎ𝑦𝑦,𝑔𝑔 = 𝒙𝒙𝑦𝑦,𝑔𝑔𝜽𝜽 + 𝒘𝒘𝑦𝑦,𝑔𝑔𝝀𝝀,   (5) 259 

and where X indicates the four basis functions for representing a cubic thin plate spline of bottom 260 

temperature, 𝒙𝒙𝑦𝑦,𝑔𝑔 are their values for year y and location g, such that 𝜽𝜽 is a vector of estimated parameters 261 



 

 

representing the response to bottom temperature. Similarly, W indicates the nine basis functions derived 262 

from a cubic regression tensor spline of depth and current velocity, 𝒘𝒘𝑦𝑦,𝑔𝑔 are their specific values, and 263 

where 𝝀𝝀 is the vector of parameters representing the interaction of these two covariates. The provenance 264 

of environmental covariates included in the habitat preference model is described below. Given 265 

parameters 𝐷𝐷, 𝜽𝜽 and 𝝀𝝀 in the diffusion-taxis model, we calculated the instantaneous movement rate 𝐌𝐌𝑦𝑦̇ . 266 

We then calculated the integrated movement fraction over the typical 19 week tag deployment interval Δ𝑡𝑡 267 

as 𝐌𝐌𝑦𝑦= exp(Δ𝑡𝑡𝐌𝐌𝑦𝑦̇ ). Although there were differences in tag deployment date within years due to survey 268 

timing (Table 1), we assumed that tags were deployed on June 5th (median tag deployment date) and 269 

popped up on October 13th (median tag pop-up date), which yielded the 19-week interval. Given a release 270 

in year y and location g1, the probability 𝜋𝜋𝑦𝑦,𝑔𝑔 of ending up in cell g is therefore the vector obtained when 271 

extracting row g1 from matrix 𝐌𝐌𝑦𝑦. We then calculated the joint log-likelihood by summing log(𝜋𝜋𝑦𝑦,𝑔𝑔) 272 

across all years and tags. We estimated model parameters by finding the parameter values that maximized 273 

this log-likelihood of observing crab movement between tag deployment and pop-up locations over Δ𝑡𝑡. 274 

We evaluated bottom temperature (“temp”), depth, and maximum tidal current (“velocity”) for 275 

inclusion in the habitat preference model (Table 2), given that these covariates have been shown to be 276 

important for predicting BBRKC fishery harvest distributions (Ryznar and Litzow, in review). Due to 277 

limited tagging observations that precluded us from fitting habitat preference curves for each year, we 278 

assumed that movement parameters (D, 𝜽𝜽 and 𝝀𝝀) were constant across years. For our temperature 279 

covariate, we used the bottom temperature output from reanalysis-driven hindcast simulations of the 280 

northeast Pacific regional implementation of the Modular Ocean Model version 6 (MOM6–NEP10k) that 281 

has been shown to skillfully predict Bering Sea bottom temperatures (Drenkard et al. 2024, Seelanki et al. 282 

2025). We retrieved daily bottom temperature data from October 8 to 13 for each year in 2005–2019 and 283 

2021–2023, then averaged each year’s data to create annual bottom temperature spatial layers. We also 284 

included bottom depths sourced from the General Bathymetric Chart of the Oceans (GEBCO 2023) and 285 

maximum tidal current velocities across Bristol Bay over the 1 January 2009-4 January 2010 period 286 



 

 

(Egbert and Erofeeva 2002, Laman et al. 2018) as static covariates. This latter covariate has been used in 287 

the spatial modeling of essential fish habitat in the Eastern Bering Sea in recent years (Laman et al. 2022). 288 

All spatial layers were averaged to the 625 km2 spatial resolution to match that of the prediction grid. We 289 

performed spline basis expansion using the mgcv R package (Wood 2006) and fitted the preference model 290 

using maximum likelihood estimation in R with RTMB (v4.4.1; R Core Team 2024, Kristensen 2024). 291 

We did not penalize basis parameters during model estimation like is done natively in the mgcv R 292 

package (Wood 2006). 293 

We used AIC to select the most parsimonious habitat preference model from a set of six 294 

candidate models (Table 2). The selection set included 1) the diffusion-only model with no habitat 295 

preference components specified, 2) a model treating the three habitat covariates as linear predictors of 296 

habitat preference and 3) a model treating the three habitat covariates as univariate smooth functions of 297 

habitat preference using thin-plate regression splines. Models 4–6 each used a cubic regression tensor 298 

spline to capture the interaction between two habitat covariates and a separate univariate smooth for the 299 

third, differing in the covariates included in the tensor interaction and univariate smooth terms. 300 

Seasonal projections 301 

 We combined predictions from the SDM and movement probabilities from the selected diffusion-302 

taxis model to make seasonal projections of BBRKC distributions into October when tags popped up. 303 

Given the year-specific vector of predicted late spring crab densities 𝒄𝒄𝑦𝑦 from the SDM and estimated 304 

movement fraction matrix 𝐌𝐌𝑦𝑦 from the diffusion-taxis model, the vector of projected October crab 305 

densities 𝒄𝒄𝑦𝑦,𝑡𝑡+Δ𝑡𝑡  was 306 

𝒄𝒄𝑦𝑦,𝑡𝑡+Δ𝑡𝑡
𝑇𝑇 = 𝒄𝒄𝑦𝑦,𝑡𝑡

𝑇𝑇 𝐌𝐌𝑦𝑦.    (6)  307 

We used this approach to project October crab densities for each year between 2005 and 2023 where 308 

summer survey data were available. 309 



 

 

Overlap between projected BBRKC densities and directed fishery harvests 310 

 To evaluate the predictive skill of the modeled distributions relative to fishery dependent data, we 311 

compared projected BBRKC densities to observed catch patterns from the fishery, recognizing that 312 

fishery CPUE reflects both biological (e.g., crab density) and fishery-driven processes (e.g., the spatial 313 

distribution of effort may either be associated with areas where captains have had success in previous 314 

seasons or be constrained by costs to access). We calculated the extent of overlap between projected 315 

October BBRKC density and CPUE from the directed BBRKC fishery (October 15 season opening) for 316 

each year between 2005 and 2023 (excluding 2020-2022 when either no bottom trawl survey or fishery 317 

occurred) using Bhattacharyya’s coefficient (Bhattacharyya 1943). Bhattacharyya’s coefficient can be 318 

interpreted as the degree of similarity between two populations in their use of space (Carroll et al. 2019). 319 

Bhattacharyya’s coefficient for year y (𝐵𝐵𝑦𝑦) is calculated as 320 

𝐵𝐵𝑦𝑦 = ∑ �𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝑦𝑦,𝑔𝑔 × 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑦𝑦,𝑔𝑔
𝐽𝐽
𝑔𝑔=1 ,    (7) 321 

where 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝑦𝑦,𝑔𝑔 and 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑦𝑦,𝑔𝑔 are year-specific proportions of total projected BBRKC densities and average 322 

BBRKC fishery CPUE within a given grid cell g. This method provides an intuitive approach to 323 

estimating the extent of spatial overlap because 𝐵𝐵𝑦𝑦 ranges from 0 in the case of no overlap to 1 when 324 

relative population densities are identical; that is, 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝑦𝑦,𝑔𝑔 = 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑦𝑦,𝑔𝑔for all g (Fieberg and Kochanny 325 

2005). 326 

Evaluating movement model and movement-informed projection skill 327 

 We used leave-one-out cross-validation (LOOCV) to evaluate movement model prediction skill 328 

for years when tags were available (2021-2023). The LOOCV analysis involved fitting the six movement 329 

models (Table 2) 63 times (the total number of tags) with a different tagging observation dropped from 330 

the training data during each training iteration. We then predicted the pop-up location of the tag that was 331 

excluded from the training set and calculated the distance between the predicted and observed pop-up 332 



 

 

location, yielding 63 distance residuals that we used to calculate root mean squared error (RMSE) as our 333 

measure of prediction skill. Predicted tag pop-up locations were the positions given by the weighted 334 

average of longitudes and latitudes of grid cell centroids where weights were grid cell movement 335 

fractions. We used RMSE calculated from this LOOCV analysis to quantify the prediction skill of 336 

movement models, and used this metric in addition to AIC to select the best-fitting model for use in 337 

projection analyses.  338 

We used a parametric bootstrap analysis to evaluate the predictive skill of movement-informed 339 

density projections in years when bottom trawl survey and fishery CPUE data were available (2005-2019, 340 

2023). For each year, we took N = 1000 draws from a 1) multivariate normal distribution with mean and 341 

covariance specified by the estimated parameters and covariances in the fitted diffusion-taxis model, and 342 

2) a normal distribution with mean and variance specified by the estimated diffusion parameter mean and 343 

variance in the diffusion-only model. This diffusion-only model represented movement due to random, 344 

non-directional movement alone, and therefore served as a null model for comparison with outcomes 345 

from the diffusion-taxis model. The diffusion-taxis model from which parameter samples were drawn 346 

used the AIC/RMSE-selected habitat preference model (Eq. 5) that included interannually varying 347 

hindcasts of bottom temperature from MOM6 during the October 8–13 period as a covariate. 348 

Additionally, for all years where SDM predictions were available, we simulated draws from the precision 349 

matrix of the fitted SDM and used the simulated parameters to predict the distribution of BBRKC during 350 

June (N = 1000 per year).  351 

For all years where SDM predictions were available and the BBRKC fishery was open (2005-352 

2019; 2023), we combined the simulated June BBRKC distribution with the simulated parameters from 353 

the diffusion-taxis and diffusion-only models to project BBRKC density into October of that year (Eq. 6). 354 

This produced two sets of simulated projections, one reflecting projections made using the diffusion-taxis 355 

model, and the other reflecting projections made using the diffusion-only model. We calculated 356 

Bhattacharyya’s coefficient (B) for each projection to quantify the spatial overlap between projected 357 



 

 

October BBRKC densities and fishery catches that we assumed to be known without error. Additionally, 358 

we calculated the annual centroids for projected October BBRKC density using the diffusion-taxis and 359 

diffusion-only models for comparison with the centroid of BBRKC fishery catches, where centroids were 360 

the coordinates specified by the projected density- or CPUE-weighted average longitude and latitude. We 361 

then calculated the distance between fishery CPUE centroids and projected density centroids using the 362 

diffusion-taxis and diffusion-only models. 363 

We calculated bootstrap-based means and 95% confidence intervals for 1) the paired difference 364 

between spatial overlap (B) calculated from diffusion-taxis model- and diffusion-only model-informed 365 

projections (2005-2019; 2023), and 2) the distance between fishery and projected density centroids 366 

derived from the diffusion-taxis model and diffusion-only model (2005-2019; 2023). We also calculated 367 

bootstrap P values for testing the hypotheses that 1) the paired difference between spatial overlap (B) 368 

calculated from diffusion-taxis model- and diffusion-only model-informed projections was greater than 0, 369 

and 2) the distance between fishery and projected density centroids was smaller when projections were 370 

made using the diffusion-taxis model compared to the diffusion-only model (𝛼𝛼 = 0.05). 371 

Effects of bottom temperature on spatial overlap and BBRKC distribution 372 

We also tested the hypothesis that the difference in spatial overlap using either diffusion-taxis 373 

model- or diffusion-only–based projections (BDTM–Bdiff. only) was a function of bottom temperature by 374 

modeling BDTM–Bdiff. only as a smooth function of bottom temperature with a thin plate spline with three 375 

basis dimensions. We evaluated the relationships between the longitude and latitude components of 376 

diffusion-taxis model-based projection centroids and those derived from directed fishery CPUE using 377 

linear regression. Lastly, we visualized the position of fishery CPUE and diffusion-taxis model 378 

projections of BBRKC density centroids relative to bottom temperature conditions in Bristol Bay. To do 379 

this, we averaged MOM6 bottom temperature outputs over the prediction grid for October 8-13 annually 380 

for all years between 2005 and 2023. 381 



 

 

Results 382 

BBRKC movement patterns 383 

 Over the June-October study period, the average distance between tag release and pop-up location 384 

was 100 +/- 50 km (mean +/- sd), and tagged BBRKC moved on average 0.8 +/- 0.4 km day-1. The largest 385 

distance between tag release and pop-up was 225 km, and the smallest was 6 km. In units of degrees 386 

clockwise from North, the average direction of movement across all tags was 220 +/- 40°, indicating that 387 

crab typically traveled southwest from tag release locations (270° would be due west and 180° due south; 388 

Fig. 1). Of the 31 tags that were released in the Nearshore Bristol Bay Trawl Closure Area (NBBTCA) or 389 

the Red King Crab Savings Area (RKCSA), 100% of tags popped-up in those areas, and 61% (19/31) of 390 

tags released in those areas popped-up specifically in the RKCSA. The average direction of movement 391 

and distance traveled for tags released in closure areas was 240 +/- 40° (roughly southwest on average) 392 

and 100 +/- 60 km, respectively. Of the 17 tags released to the east of 164°W but not within a closure area 393 

(the western boundary of the RKCSA is 164°W), 88% of tags popped up within a closure area (15/17), 394 

such that 96% of tags released east of 164°W popped up in a closure area. There were 15 tags released 395 

west of 164°W and none of those tags popped-up in a closure area. The average direction of movement 396 

and distance traveled for individuals tagged west of 164°W was 220 +/- 40° (roughly south-southwest on 397 

average) and 90 +/- 40 km, respectively. Neither the average direction of tag movement nor the distance 398 

traveled significantly differed between tags released west and east of 164°W. 399 

 However, tags released east of 164°W popped up in habitats that were significantly deeper than 400 

those tags released west of 164°W (t.test, t = 7.4, df = 19.1, P < 0.001); tags released east of 164°W (the 401 

vast majority of which moved into closure areas) popped up in habitats with an average depth of 74 +/- 6 402 

m, and tags released west of  164°W popped up in habitats with an average depth of 56 m +/- 8 m. Tags 403 

released east of 164°W also popped up in habitats exposed to greater maximum tidal currents compared 404 

to those released west of 164°W (t = 15.8, df = 24.9, P < 0.001). The mean maximum tidal current 405 



 

 

velocity in pop-up locations of tags released east of 164°W was 56 +/- 4 cm s-1, compared to 39 +/ 3 cm s-406 

1 for tags released west of 164°W. 407 

Movement models 408 

 The most parsimonious diffusion-taxis model estimated habitat preferences as a function of the 409 

2D nonlinear interaction between depth and maximum tidal current velocity, and a nonlinear function of 410 

bottom temperature. This model also had the best predictive skill determined using RMSE (Table 2, Fig. 411 

2). LOOCV showed that the selected diffusion-taxis model improved the prediction of held-out tag pop-412 

up locations by 47%, bringing the RMS distance between observed and predicted pop-up locations down 413 

from 101.8 km using the diffusion-only model to 53.8 km using the diffusion-taxis model. 414 

 Visualizing marginal habitat preference smooths from the best-fit diffusion-taxis model revealed 415 

that, when depth and tidal current velocity were held at their average values, habitat preference was 416 

roughly flat until bottom temperatures (averaged to the 625 km2 spatial scale) exceeded ~4.5°C (Fig. 2a). 417 

The slope of the habitat preference smooth became more steeply negative for temperatures > ~6°C, 418 

suggesting a lower preference for warmer bottom temperature habitats. Predicted habitat preferences 419 

relative to the nonlinear interaction between depth and maximum tidal current (with bottom temperature 420 

held at the average value) showed that BBRKC preferred habitat with either low maximum tidal currents 421 

and shallower depths, or high tidal currents and deeper depths (Fig. 2b). When tidal current velocity 422 

exceeded 48 cm s-1 (the median velocity), the range of depths where preference was greater than the 90th 423 

preference percentile was 69 m–104 m. Alternatively, when tidal currents were below the median, the 424 

range of depths where preference was greater than the 90th preference percentile was 33 m–45 m. As 425 

discussed above in BBRKC movement patterns, BBRKC preferentially moving into deeper habitat with 426 

greater exposure to tidal currents occurred largely within trawl closure areas in central and eastern Bristol 427 

Bay, whereas BBRKC preferentially moving into shallower habitat with less exposure to tidal currents 428 

occurred largely within northwestern Bristol Bay outside of trawl closure areas. Habitat preference 429 



 

 

predictions over Bristol Bay showed that the areas with the highest preference extended in a band-like 430 

formation from the region within and around the RKCSA to the northwest into habitat falling outside the 431 

Bristol Bay management district (Fig. 3).  432 

Projected BBRKC distributions and fishery overlap 433 

 Our analysis of spatial overlap between projected October BBRKC density and the directed 434 

BBRKC fishery (Figs. 4, 5; all distribution and overlap visualizations are provided in Appendix S1: Figs. 435 

2-5) showed that diffusion-taxis model-based projections were consistently more similar to the fishery 436 

CPUE spatial distribution than those from the diffusion-only model. This was evidenced by a 437 

significantly higher degree of spatial overlap between diffusion-taxis model-based projections of density 438 

and fishing CPUE than overlap between the projections from the diffusion-only model and fishery CPUE 439 

for all years except 2007-2010 (Fig 5a). We found that centroids from diffusion-taxis model-based 440 

projections were significantly closer to directed fishery centroids in only 9 of 16 years, although centroids 441 

from diffusion-only model projections were never significantly closer to fishery centroids than those from 442 

the diffusion-taxis model. 443 

The difference between overlap calculated from diffusion-taxis- and diffusion-only based 444 

projections (BDTM–Bdiff. only) was well explained by October bottom temperatures in Bristol Bay: in years 445 

with cooler bottom temperature conditions, BDTM–Bdiff. only was near zero but the difference increased as  446 

bottom temperatures increased (Fig. 6, dev. expl. = 58.4%, edf = 1.9). Further analysis of the diffusion-447 

taxis model-based projections showed a significant positive linear relationship between the longitude of 448 

the projected density centroid and the longitude of the centroid of fishery CPUE (Fig 7a, b, P = 0.001, R2 449 

= 0.55); however, a similar relationship was not found for latitude (Fig 7c, d). The time series of the 450 

longitudinal components of projected BBRKC density centroids (Fig. 7a) indicated that the autumn 451 

centroid of the stock shifted eastward between 2005 and 2010, remained near the eastern edge of the 452 

RKCSA between 2010 and 2014, and moved westward between 2015 and 2019. The longitudinal 453 



 

 

component of the fishery CPUE showed a similar pattern, with a notable exception in 2017 when the 454 

centroid of the fishery was further east than the projection centroid. In 2020, the directed fishery CPUE 455 

centroid shifted eastward (no 2020 survey), and was similarly positioned in 2023 when the fishery re-456 

opened after two closed seasons. Projections estimated the position of the stock centroid to fall to the 457 

northwest of the RKCSA in 2021 but predicted the centroid occurring within the RKCSA and further east 458 

during 2022-2023 (Fig. 7a, c; Fig. 8a; no fishery during 2021/22 or 2022/23 seasons). In years when 459 

October bottom temperatures were warmer, the position of the fishery centroid occurred farther west than 460 

in cooler years, and the diffusion-taxis model projected that the centroid of the stock would be positioned 461 

farther to the northwest relative to the position of the centroid during cooler years (Fig. 8a,b). 462 

Discussion 463 

We integrated the first in situ estimates of habitat preferences for mature male BBRKC during 464 

late-spring to autumn migrations into a model of crab movement and used that model to make skillful 465 

forecasts of BBRKC distributions from June to October. Our findings revealed that migrating crab 466 

preferred regions of Bristol Bay where October bottom temperatures were, on average, ≲ 4.5°C, and also 467 

regions that were shallower, with lower tidal current exposure, or deeper, with higher tidal current 468 

exposure. Predictions from the habitat preference model identified the regions with highest habitat 469 

preference in October largely falling within the Red King Crab Savings Area (RKCSA), in addition to a 470 

band of high preference habitat extending northwestward out of central Bristol Bay. Subsequent 471 

movement-informed projections of BBRKC distribution over the June-October interval consistently 472 

captured spatial variability in BBRKC fishery CPUE during the 2005-2023 period, in addition to 473 

identifying regions where crab were expected to be, but where no fishing activity occurred. The westward 474 

response of both the projected stock distribution and BBRKC fishery to warm bottom temperatures 475 

suggests that future warming in Bristol Bay may lead to BBRKC distributional changes that lessen the 476 

utility of the static RKCSA as an effective closure area. 477 



 

 

Habitat preferences 478 

Our findings showed that BBRKC habitat preferences were non-linearly related to October 479 

bottom temperatures and also related to the non-linear interaction of depths and maximum tidal current 480 

velocities across Bristol Bay. The habitat preference response of BBRKC to bottom temperatures 481 

displayed threshold-like behavior, with predicted habitat preference beginning to decline within the 4.5-482 

6°C range. This result suggests that crab were unlikely to move into warmer bottom-temperature regions 483 

over the June-October interval that corresponded to shallow-water, nearshore habitats such as the 484 

Nearshore Bristol Bay Trawl Closure Area (NBBTCA). The use of spatiotemporally averaged 485 

temperatures from an oceanographic model as a covariate precludes the precise characterization of a 486 

bottom temperature threshold avoided by BBRKC. However, the downward turn in the habitat preference 487 

function that occurred in the 4.5-6°C range was consistent with laboratory experiments that evaluated 488 

Barents Sea RKC thermal preferences and found that mature males routinely preferred water temperatures 489 

< 4°C (Christiansen et al. 2015). While crab in this system have a strong preference for temperatures < 490 

4°C, individuals also inhabited warmer temperatures in the 6-14°C range to a lesser extent, suggesting 491 

that RKC may trade off suitable bottom temperature conditions for other preferable environmental factors 492 

like prey availability when selecting habitats (Aune et al. 2022). 493 

Tagged BBRKC displayed a clear preference for October habitats that were deeper than the 494 

habitat they occupied during June, with only 5 of 63 crabs moving to shallower habitat over the interval 495 

(caveated by our depth variable being averaged to the 625 km2 grid cell). Additionally, October crab 496 

habitats were nearly uniformly found within the 50-100 m depth range that defines the middle shelf 497 

domain of Bristol Bay (Stabeno et al. 2010). Despite consistent seasonal movements into deeper water 498 

and into the middle shelf domain specifically, depth preferences were spatially variable. In central and 499 

eastern Bristol Bay (east of 164°W), crab preferred October habitats that were deeper, whereas crab in 500 

western Bristol Bay (west of 164°W) preferred shallower habitats.  501 



 

 

A straightforward explanation for this spatial variability in preference may be related to a lack of 502 

available deeper habitat in the northwestern areas of the Bristol Bay management district, which is 503 

generally shallower than the preferred regions of central Bristol Bay, in addition to the presence of 504 

preferable bottom temperatures at shallower depths in this region. However, we found that depth 505 

preference was mediated by maximum tidal current velocities, a static prediction of water movement and 506 

the potential for interaction between currents and the benthos in the Bristol Bay management district 507 

(Laman et al. 2018). RKC mediate their movements based not only on preferable environmental 508 

conditions but also on food availability (Aune et al. 2022), and so the regions of high preference indicated 509 

by the interaction of depth and tidal current velocities may correspond to those regions where high-quality 510 

prey are available. Although observations of BBRKC prey distributions from the autumn are lacking, data 511 

from the NMFS EBS bottom trawl survey indicate that the middle shelf domain is dominated by benthic 512 

invertebrates that are primary contributors to BBRKC diets, including molluscs, echinoderms, and 513 

decapods (McLaughlin and Hebard 1959, Yeung and McConnaughey 2006). Future work characterizing 514 

the contributions of prey community dynamics to BBRKC habitat preferences, for instance by integrating 515 

spatiotemporally dynamic prey distribution maps (Reum et al. 2025) as covariates in habitat preference 516 

models, would shed further light on the spatially variable habitat preferences of BBRKC. 517 

BBRKC seasonal projections and management implications 518 

The hybrid SDM approach to seasonally projecting BBRKC distributions was effective in 519 

predicting the interannual spatial variability in fishery CPUE during the autumn, in addition to identifying 520 

regions of Bristol Bay where crab were likely to be abundant during the autumn, but where no fishing 521 

activity occurred. These higher density, no-fishing regions fell primarily along a band of high-preference 522 

habitat extending northwestward from central Bristol Bay. Our movement-informed projections did better 523 

at predicting the distribution of fishery CPUE than the projections made using diffusion-only models, 524 

indicating the importance of directional movement towards preferred habitat in shaping BBRKC seasonal 525 



 

 

distribution. However, spatial overlap between fishery CPUE and projections using diffusion-taxis and 526 

diffusion-only models was similar in the 2007-2010 period when the distribution of the stock during the 527 

late spring was concentrated along the Alaska Peninsula (Appendix S1: Fig. S3).  528 

Similar patterns in the distribution of BBRKC fishery catches along the Alaska Peninsula during 529 

these years have been associated with the presence of cooler bottom temperatures in the EBS (Zacher et 530 

al. 2018), and our diffusion-taxis model–based projections suggested that crab movement over the late 531 

spring–autumn interval away from the Alaska Peninsula was minimized due to the availability of 532 

preferable bottom temperature habitat near to late spring BBRKC habitat. Similar estimates of spatial 533 

overlap between the diffusion-taxis and diffusion-only model–based projections with fishery CPUE 534 

subsequently emerged due to the constraints placed on diffusive movement by the Alaska Peninsula: since 535 

the distribution of the stock during the late spring was concentrated in the nearshore, projected diffusive 536 

movement into central Bristol Bay was similar to projected movement based on diffusion and taxis, 537 

thereby resulting in similar levels of overlap between both projections and fishery CPUE. 538 

The efficacy of our hybrid SDM in capturing the influence of bottom temperature on stock 539 

distribution was made clear by the similar longitudinal patterns exhibited by both projected BBRKC 540 

density and fishery CPUE in response to bottom temperatures. During years with warm October bottom 541 

temperatures, we found that both the distribution centroids of projected BBRKC density and fishery 542 

CPUE shifted further westward, a result that corroborates the finding that fishery CPUE is distributed 543 

farther southeast along the Alaska peninsula during cold years (Zacher et al. 2018). However, where our 544 

projections deviated from expectations was in showing that warmer bottom temperatures drove BBRKC 545 

stock distribution farther to the northwest than what was suggested by the distribution centroids of fishing 546 

CPUE alone. This deviation from what was seen in the distribution of fishing CPUE could indicate that 547 

the fishery was not as well-aligned with the distribution of the stock during autumns with warm bottom 548 

temperatures. A northward shift in the BBRKC stock has been noted previously in the context of BBRKC 549 

bycatch in flatfish fisheries and in the distribution of the stock during the late spring bottom trawl survey 550 



 

 

(Ryznar and Litzow 2024), and the authors of that study conclude that this distribution shift suggests 551 

possible value in reconsidering the boundaries of the RKCSA. Our findings add to this discussion by 552 

presenting a novel perspective on BBRKC distribution shifts under warming based solely on fisheries-553 

independent data. Our results suggest that under progressively warmer bottom temperature conditions in 554 

Bristol Bay, BBRKC stock distribution will continue tracking habitat preferences that are not constrained 555 

spatially to the RKCSA. 556 

The spatial dynamism in habitat preferences that we have identified supports the consideration of 557 

dynamic spatial closures for BBRKC that may be more successful in optimizing across conflicting 558 

management goals than static closure areas (Hazen et al. 2018), and the delineation of these closure areas 559 

may benefit from the hybrid SDM approach we have advanced. However, the utility of the hybrid SDM 560 

approach in this context depends heavily on data availability, both of survey and tagging data, but also of 561 

environmental covariates; for example, bottom temperature layers that critically inform the dynamic 562 

aspects of the model. Indeed, the approach we have advanced could reasonably be applied in a true 563 

forecasting context, whereby future BBRKC distributions may be projected across seasons, when 564 

projections of dynamic environmental covariates become available. As it currently stands, the hybrid 565 

approach may be most useful in a scenario planning context. For example, autumn BBRKC distributions 566 

could be simulated under varying bottom temperature conditions to explore the impacts of bottom 567 

temperature on stock distribution. Future refinements to this method will benefit greatly from additional 568 

tagging data, and we advocate for the continued deployment of satellite tags not only on BBRKC but also 569 

on other crab species that are harvested in the EBS. Lastly, an important tradeoff in executing these 570 

projections during seasons when data are sparse is that projections cannot be easily validated; hence, why 571 

we compared our projections with CPUE observations from the directed BBRKC fishery. This 572 

consideration necessitates creative modeling solutions with careful execution, especially in the context of 573 

management decision-making. 574 



 

 

Effective fisheries management requires accurate understanding of seasonal species distributions, 575 

yet many marine populations remain poorly observed outside limited survey windows, complicating 576 

efforts to predict interactions with fishing fleets. This knowledge gap presents a persistent obstacle when 577 

managing the spatial overlap between fisheries and vulnerable stocks remains a critical objective. Our 578 

study demonstrates that a hybrid species distribution modeling framework, which integrates movement 579 

data with habitat preferences, can successfully project seasonal shifts in the distribution of mature male 580 

Bristol Bay red king crab even in the absence of continuous observational data. By capturing the dynamic 581 

spatial responses of BBRKC to environmental variability, this approach offers a scalable solution to 582 

informing spatially adaptive management in data-limited contexts — a key advance in addressing one of 583 

the central challenges of managing mobile marine species under climate change. 584 
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Figures 591 

Table 1: Summary information from 2021-2023 tagging studies of mature male BBRKC. 592 

Year N 
tags 

Avg. N days 
deployed 

Avg. 
carapace 

length 
(mm) 

SD carapace length 
(mm) 

Tag deployment 
date range 

Tag pop-up 
date range 

Tag type 

2021 13 128 147 10 Jun 2-Jun 12 Oct 12-Oct 13 All mrPAT 

2022 13 126 148 14 May 30-Jun 22 Oct 12-Oct 13 All mrPAT 

2023 37 131 146 14 May 29-Jun 18 Oct 13-Oct 15 31 mrPAT/6 
MiniPAT 
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Table 2: Formulas for spline basis expansion that were used to estimate habitat preference models and 594 

crab taxis, where te(...) refers to the tensor product interaction smooth, s(...) the thin plate regression 595 

spline, and k the marginal basis dimension (with k - 1 degrees of freedom). The variable velocity is the 596 

predicted maximum tidal current velocity over the course of a year, depth is bottom depth, and temp is the 597 

average bottom temperature in the week of tag pop-up. “N pars.” gives the number of estimated 598 

parameters in the movement model. Also included are movement model ΔAIC scores and root-mean 599 

squared error (RMSE) from the leave-one-out cross-validation analyses (in km). The best fitting model 600 

used in projection analyses is shown in bold.  601 

Habitat preference formula N pars. ΔAIC RMSE 

te(depth, velocity, k = c(3,3)) + s(temp, k = 4) 12 0.00 53.65 

te(velocity, temp, k = c(3,3)) + s(depth, k = 4) 12 7.89 56.34 

te(depth, temp, k = c(3,3)) + s(velocity, k = 4) 12 44.95 58.77 

s(velocity, k = 4) + s(temp, k = 4) + s(depth, k = 4) 10 48.19 60.83 

velocity + temp + depth 4 102.85 71.71 

diffusion only 1 219.18 101.79 
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 606 

Figure 1. Environmental variables in Bristol Bay relative to June deployment locations and October pop-607 

up locations of tagged BBRKC: (a) bathymetry with 50 m, 75 m, and 100 m depth contours, (b) MOM6 608 

bottom temperatures during the second week of June (left) and October (right), and (c) maximum tidal 609 

currents. In maps (a) and (c), the locations of NMFS Eastern Bering Sea 2023 bottom trawl survey 610 

stations are marked with “+”, and the start and end positions of crab tagged during 2021-2023 bottom 611 

trawl surveys are shown with black points and arrowheads, respectively. In map (b), the black points 612 



 

 

indicate tag position and line segments indicate the observed movement path between tag deployment 613 

(left) and release (right). The bottom right map shows geographic context for the study area. In all maps, 614 

the black polygon represents the Bristol Bay RKC management district, and the red polygon is the Red 615 

King Crab Savings Area, within which falls the Red King Crab s-area (smaller rectangle). 616 

 617 

 618 

Figure 2. Marginal habitat preference smooths for bottom temperature (a) and the non-linear interaction 619 

of depth and maximum tidal currents (b). Vertical ticks in (a) and points in (b) show the values of 620 

environmental covariates at locations of tag deployment (black) and pop-up (purple). The region of (a) 621 

where the preference smooth for bottom temperature does not extend and the gray regions of (b) reflect 622 

October temperatures (during 2021-2023) and combinations of depth and tidal current, respectively, that 623 

did not occur in the Bristol Bay prediction grid. 624 

 625 



 

 

 626 

Figure 3. Habitat preference deciles predicted by the diffusion-taxis model for October 2021-2023. Purple 627 

arrows are observed movement vectors. In all maps, the black polygon represents the Bristol Bay RKC 628 

management district, and the red polygon is the Red King Crab Savings Area, within which falls the Red 629 

King Crab Savings Sub-area (smaller rectangle). 630 



 

 

 631 



 

 

Figure 4. Projected October BBRKC density (left column), CPUE from the directed BBRKC fishery 632 

(middle), and Bhattacharyya’s coefficient calculated from projected BBRKC density and CPUE in 2017-633 

2023. Overlap could not be calculated for 2020-2022 due to the absence of an EBS bottom trawl survey in 634 

2020 and fishery closures in 2021/22 and 2022/23. In all maps, the black polygon represents the Bristol 635 

Bay RKC management district, and the red polygon is the Red King Crab Savings Area, within which 636 

falls the Red King Crab Savings Sub-area (smaller rectangle). 637 

 638 

Figure 5. Spatial overlap time series between projected October BBRKC density and fishery catches (a) 639 

made using the diffusion-taxis model (black) or the diffusion-only model (orange). Distances between 640 

projected BBRKC density centroids made using the diffusion-taxis model (black) or diffusion-only model 641 

(orange) and BBRKC fishery centroids. Asterisks show significant differences between diffusion-taxis 642 

model and diffusion-only model results (P < 0.05). 643 



 

 

 644 

Figure 6. The improvement in predicting spatial overlap when estimating habitat preferences (y-axis; 645 

measured as the difference in fishery overlap calculated using projections from the diffusion-taxis model 646 

(BDTM) and the diffusion-only model (Bdiff. only)) and mean October bottom temperature in the Bristol Bay 647 

management district. 648 

 649 



 

 

 650 

Figure 7. a) Longitudinal components of centroids for the directed BBRKC fishery (purple) and the 651 

diffusion-taxis model-based density projections (black, shown with 95% bootstrap confidence intervals), 652 

and b) the relationship between longitudes of fishery centroids and the annual mean longitude of 653 

projected density centroids from a bootstrap analysis. Similarly, the bottom row shows c) the time series 654 

of the latitudinal components of centroids and d) their linear relationship. In (a) and (c), gray dashed lines 655 

show the minimum and maximum longitude (a) and latitude (c) boundaries of the Red King Crab Savings 656 

Area. 657 



 

 

 658 

Figure 8. The annual centroids of projected BBRKC densities from the diffusion-taxis model (shown with 659 

95% bootstrap confidence intervals) (a) and centroids of CPUE from the directed BBRKC fishery (b) 660 

shown with annual averages of October bottom temperatures over the prediction grid. The Red King Crab 661 

Savings Area is shown in red, with the smaller polygon referring to the Red King Crab Savings Sub-Area.  662 

  663 



 

 

References 664 

Aarts, Geert, et al. "Estimating space‐use and habitat preference from wildlife telemetry data."  665 

Ecography 31.1 (2008): 140-160. 666 

Akaike, Hirotugu. "Factor analysis and AIC." Psychometrika 52 (1987): 317-332. 667 

Anderson, Sean C., et al. "sdmTMB: an R package for fast, flexible, and user-friendly  668 

generalized linear mixed effects models with spatial and spatiotemporal random fields." BioRxiv 669 

(2024): 2022-03. 670 

Aune, Magnus, et al. "Space and habitat utilization of the red king crab (Paralithodes  671 

camtschaticus) in a newly invaded fjord in northern Norway." Frontiers in Marine Science 9 672 

(2022): 762087. 673 

Bhattacharyya, Anil. "On a measure of divergence between two statistical populations defined  674 

by their probability distribution." Bulletin of the Calcutta Mathematical Society 35  675 

(1943): 99-110. 676 

Carroll, Gemma, et al. "A review of methods for quantifying spatial predator–prey overlap." 677 

Global Ecology and Biogeography 28.11 (2019): 1561-1577. 678 

Chilton, Elizabeth A., Robert J. Foy, and Claire E. Armistead. “Temperature effects on assessment  679 

of red king crab in Bristol Bay, Alaska.” (2010), 249-263. In G. H. Kruse, G. L. Eckert, R. J.  680 

Foy, R. N. Lipcius, B. Sainte-Marie, D. L. Stram, and D. Woodby (editors), Biology and 681 

Management of Exploited Crab Populations under Climate Change. Alaska Sea Grant Program 682 

Report AK-SG-10-01, University of Alaska, Fairbanks, AK. 683 

Christiansen, Jørgen S., et al. "Thermal behaviour and the prospect spread of an invasive benthic  684 

top predator onto the Euro‐Arctic shelves." Diversity and Distributions 21.9 (2015): 1004-1013. 685 

Cressie, Noel, and Hsin-Cheng Huang. "Classes of nonseparable, spatio-temporal stationary  686 

covariance functions." Journal of the American Statistical Association 94.448 (1999): 687 

1330-1339. 688 



 

 

Dew, C. Braxton. "Red king crab mating success, sex ratio, spatial distribution, and abundance  689 

estimates as artifacts of survey timing in Bristol Bay, Alaska." North American Journal of 690 

Fisheries Management 28.5 (2008): 1618-1637. 691 

Dew, C. Braxton, and Robert A. McConnaughey. "Did trawling on the brood stock contribute to  692 

the collapse of Alaska's king crab?" Ecological Applications 15.3 (2005): 919-941. 693 

Drenkard, Elizabeth J., et al. “A regional physical-biogeochemical ocean model for marine resource 694 

applications in the Northeast Pacific (MOM6-COBALT-NEP10k v1.0).” Geoscientific Model 695 

Development Discussions 2024 (2024): 1-67. 696 

Egbert, Gary D., and Svetlana Y. Erofeeva. "Efficient inverse modeling of barotropic ocean 697 

tides." Journal of Atmospheric and Oceanic technology 19.2 (2002): 183-204. 698 

Fieberg, John, and Christopher O. Kochanny. "Quantifying home‐range overlap: the importance of the 699 

utilization distribution." The Journal of Wildlife Management 69.4 (2005): 1346-1359. 700 

Hazen, Elliott L., et al. "A dynamic ocean management tool to reduce bycatch and support sustainable  701 

fisheries." Science Advances 4.5 (2018): eaar3001. 702 

Howard, Rebecca A., et al. "Projecting marine fish distributions during early life stages under  703 

future climate scenarios." Fish and Fisheries 25.4 (2024): 733-749. 704 

Kristensen, Kasper. 2024b. RTMB: “R” Bindings for “TMB.” Available from https://CRAN.R708  705 

project.org/package=RTMB. 706 

Kruse, Gordon H., Jie Zheng, and Diana L. Stram. "Recovery of the Bristol Bay stock of red king crabs  707 

under a rebuilding plan." ICES Journal of Marine Science 67.9 (2010): 1866-1874. 708 

Laman, Edward A., et al. "Using species distribution models to describe essential fish habitat in Alaska."  709 

Canadian Journal of Fisheries and Aquatic Sciences 75.8 (2018): 1230-1255. 710 

Laman, E. A., J. L. Pirtle, J. Harris, M. C. Siple, C. N. Rooper, T. P. Hurst, and C. L. Conrath. Advancing  711 

Model-Based Essential Fish Habitat Descriptions for North Pacific Species in the Bering Sea.  712 



 

 

U.S. Dept. of Commerce, NOAA Technical Memorandum NMFS-AFSC-459, Alaska Fisheries 713 

Science Center, 2022. https://doi.org/10.25923/y5gc-nk42 714 

Lindgren, Finn, Håvard Rue, and Johan Lindström. "An explicit link between Gaussian fields  715 

and Gaussian Markov random fields: the stochastic partial differential equation  716 

approach." Journal of the Royal Statistical Society Series B: Statistical Methodology 73.4  717 

(2011): 423-498. 718 

Litzow, Michael A., et al. "Climate attribution time series track the evolution of human influence  719 

on North Pacific sea surface temperature." Environmental Research Letters 19.1 (2024):  720 

014014. 721 

Loher, Timothy, and David A. Armstrong. "Historical changes in the abundance and distribution of 722 

ovigerous red king crabs (Paralithodes camtschaticus) in Bristol Bay (Alaska), and 723 

potential relationship with bottom temperature." Fisheries Oceanography 14.4 (2005): 292-306. 724 

Loher, T., et al. "2023 Early Spring Cooperative Pot Sampling (CPS1) for Bristol Bay District red king  725 

crab (Paralithodes camtschaticus)." (2024). 726 

McLaughlin, Patsy A., and James F. Hebard. “Stomach contents of the Bering Sea king crab.” U.S. 727 

Department of Interior, Fish and Wildlife Service, Special Scientific Report – Fisheries 291 728 

(1959). 729 

Markowitz, Emily H., et al. Results of the 2022 Eastern and Northern Bering Sea Continental Shelf  730 

Bottom Trawl Survey of Groundfish and Invertebrate Fauna. Alaska Fisheries Science Center  731 

(U.S.), NOAA Technical Memorandum NMFS-AFSC 469, 2023. doi:10.25923/rt50-th19. 732 

Nault, Andrew J., et al. "Estimation of pop-up satellite archival tag initial surface position: 733 

applications for eastern Bering Sea crab research." Animal Biotelemetry 12.1 (2024): 7. 734 

NPFMC. Bristol Bay Red King Crab Information. Discussion paper D1 BBRKC Info Paper, Apr. 2022a. 735 

NPFMC. Bristol Bay Red King Crab Expanded Information. Discussion paper D2 BBRKC Expanded  736 

Discussion Paper, 21 Sep. 2022b. 737 

https://doi.org/10.25923/y5gc-nk42


 

 

NPFMC. Considering a Closure to the Red King Crab Savings Area for All Gear Types. Discussion paper  738 

C1 RKC Savings Area, 29 Nov. 2022c. 739 

NPFMC. Draft Environmental Assessment/Regulatory Impact Review  for Proposed Amendment to the  740 

Fishery Management Plan for Groundfish of the Bering Sea/Aleutian Islands Management Area: 741 

Groundfish Area Closures within the Bristol Bay Red King Crab Stock Assessment Area. 16 Jan. 742 

2024a. 743 

NPFMC. Fishery Management Plan for Bering Sea/Aleutian Islands King and Tanner  744 

Crabs. Oct. 2024b. https://www.npfmc.org/wp-content/PDFdocuments/fmp/Crab/CrabFMP.pdf 745 

Palof, Katie. "Bristol Bay Red King Crab Stock Assessment 2024." Bering Sea & Aleutian Islands Crab  746 

SAFE. Sep. 2024. 747 

Powell, G. C., and R. E. Reynolds. 1965. Movements of tagged king crabs, Paralithodes camtschatica  748 

(Tilesius), in the Kodiak Island-Lower Cook Inlet Region of Alaska, 1954-1963. Alaska  749 

Department  of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 55, 750 

Juneau. 751 

R Core Team (2024). R: A language and environment for statistical computing. R Foundation for 752 

Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 753 

Reum, Jonathan CP, et al. "Assessing benthos through predator stomach contents: spatiotemporal  754 

modeling of abundance and habitat use." Ecography (2025): e07723. 755 

Ryznar, Emily R., and Michael A. Litzow. "Predicting the distribution of red king crab bycatch in Bering  756 

Sea flatfish trawl fisheries." Fisheries Research 279 (2024): 107158. 757 

Ryznar, Emily R., and Michael A. Litzow. “Peering into the data-poor season: A fisheries-dependent  758 

distribution model to aid Bristol Bay red king crab management.” (2025). in review. 759 

Seelanki, Vivek, et al. "Evaluation of a coupled ocean and sea-ice model (MOM6-NEP10k) over the  760 

Bering Sea and its sensitivity to turbulence decay scales." EGUsphere 2025 (2025): 1-40. 761 

Stabeno, Phyllis, et al. "Factors influencing physical structure and lower trophic levels of the  762 

https://www.npfmc.org/wp-content/PDFdocuments/fmp/Crab/CrabFMP.pdf


 

 

eastern Bering Sea shelf in 2005: Sea ice, tides and winds." Progress in Oceanography 85.3-4 763 

(2010): 180-196. 764 

Stabeno, Phyllis J., and Shaun W. Bell. "Extreme conditions in the Bering Sea (2017–2018):  765 

Record‐breaking low sea‐ice extent." Geophysical Research Letters 46.15 (2019): 8952-8959. 766 

Stone, Robert P., Charles E. O’Clair, and Thomas C. Shirley. "Seasonal migration and distribution of  767 

female red king crabs in a southeast Alaskan estuary." Journal of Crustacean Biology 12.4 768 

(1992): 546-560. 769 

Szuwalski, Cody, et al. "Climate change and the future productivity and distribution of 770 

crab in the Bering Sea." ICES Journal of Marine Science 78.2 (2021): 502-515. 771 

Takeshita, K., H. Fujita, and S. Matsuura. "A note on population structure in the eastern Bering Sea adult  772 

red king crab, Paralithodes camtschatica." Proceedings of the International Symposium on King  773 

and Tanner Crabs. Fairbanks: Alaska Sea Grant College Program, University of Alaska  774 

Fairbanks, AK-SG-90-04. 1990. 775 

Thorson, James T., et al. "Estimating fine‐scale movement rates and habitat preferences using  776 

multiple data sources." Fish and Fisheries 22.6 (2021): 1359-1376. 777 

Thorson, James, and Kasper Kristensen. Spatio-temporal Models for Ecologists. CRC Press, 778 

2024. 779 

Wallace, M. Marvin, Camile J. Pertuit, and Arthur R. Hvatum. "Contribution to the biology of the king  780 

Crab (Paralithodes camtschatica Tilesius)." Fish and Wildlife Service, United States Department  781 

of the Interior, Fishery Leaflet 340, 1949. 782 

Wood, Simon N. "Generalized Additive Models: An Introduction with R. Chapman and  783 

Hall/CRC." Texts Stat. Sci. 67 (2006): 391. 784 

Yeung, Cynthia, and Robert A. McConnaughey. "Community structure of eastern Bering Sea  785 

epibenthic invertebrates from summer bottom-trawl surveys 1982 to 2002." Marine  786 

Ecology Progress Series 318 (2006): 47-63. 787 



 

 

Zacher, Leah Sloan, Gordon H. Kruse, and Sarah Mincks Hardy. "Autumn distribution of Bristol 788 

Bay red king crab using fishery logbooks." Plos one 13.7 (2018): e0201190. 789 

Zacher, L. S., et al. The 2024 Eastern Bering Sea Continental Shelf Trawl Survey: Results for  790 

Commercial Crab Species. Alaska Fisheries Science Center, Resource Assessment and  791 

Conservation Engineering Division, NOAA Technical Memorandum NMFS-AFSC 491, 2024. 792 

doi:10.25923/q0fw-z324. 793 

Zheng, Jie, and M. S. M. Siddeek. Bristol Bay Red King Crab Stock Assessment in Fall 2018. In  794 

Stock Assessment and Fishery Evaluation Report for the 2018 Bering Sea–Aleutian Islands Crab 795 

Fishery, North Pacific Fishery Management Council, 2018, pp. 1–140. 796 



 

 

Appendix 797 

 798 
Figure S1. The SPDE mesh used in the estimation of the spatiotemporal model of red king crab density 799 

during the late spring, where points are locations of bottom trawl surveys during the 2005-2023 period 800 

(a). The prediction grid used to predict BBRKC densities from the spatiotemporal model and to project 801 

BBRKC densities into October (purple; b). Overlaid on the prediction grid is the grid used to build the 802 

adjacency matrix for fitting movement models (black; b). 803 



 

 

 804 

Figure S2. Year-to-year summertime distribution predictions from the spatiotemporal model. Colors 805 

reflect densities in crab km-2. Note the differences in color scales between years. 806 



 

 

 807 

Figure S3. Year-to-year CPUE distributions from the BBRKC directed fishery. Colors reflect mean catch 808 

numbers pot-1. Note the differences in color scales between years. 809 



 

 

 810 

Figure S4. Year-to-year BBRKC October density projections using the diffusion-taxis model. Colors 811 

reflect densities in crab km-2. Note the differences in color scales between years. 812 



 

 

 813 

Figure S5. Year-to-year spatial overlap between projected BBRKC October densities and mean CPUE 814 

from the directed BBRKC fishery. Colors reflect the disaggregated Bhattacharyya overlap coefficient, 815 

i.e., the sum of overlap across cells is the Bhattachryya coefficient, B. 816 
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