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Abstract  

Abandoned, lost, or otherwise discarded fishing gears (ALDFG), commonly referred to as ghost nets, pose a 
persistent global threat to marine biodiversity. Constructed from durable synthetic polymers, ghost nets remain intact 
for decades, continuing to entangle and kill marine organisms while damaging habitats and imposing economic 
burdens on fisheries and coastal communities. Despite their ecological significance, ghost nets are notoriously 
difficult to detect due to oceanic dispersal, submersion, and burial in sediment. Side-scan sonar has emerged as a 
powerful detection tool, but its high cost and limited spatial coverage constrain its large-scale application. 

In this study, we evaluate the feasibility of applying modern computer vision and AI techniques to sonar-derived 
imagery for automated ghost net detection. In our experiments, we achieved an approximately 90% ghost net 
detection rate in data collected from the Baltic Sea and the Puget Sound regions. To operationalize this approach, we 
developed GhostNetZero, a human-in-the-loop web platform that integrates AI predictions with expert review, 
streamlining validation workflows and enabling iterative model refinement. 

Our results highlight the promise of AI-assisted sonar analysis in scaling ghost net detection, complementing costly 
manual surveys and supporting targeted removal operations. By advancing automated detection methods, this study 
contributes to global efforts to mitigate the impacts of ghost gear and safeguard marine biodiversity. 

 

1. Introduction and Background 
 
1.1 Ghost Nets and Their Impacts on Marine Biodiversity 

Ghost nets, formally referred to as abandoned, lost, or otherwise discarded fishing gear (ALDFG), are a 
pervasive and persistent source of marine debris. Once adrift, these nets do not merely entangle marine 
organisms—they become self-filling traps. Fish and other animals that die within them act as bait, 
attracting new prey and predators into the net, perpetuating a cycle of capture and mortality known as ghost 
fishing (Matsuoka et. al, 2005). This process undermines marine biodiversity, damages habitats, and 
imposes economic costs on fisheries and coastal communities. This phenomenon undermines marine 
biodiversity, damages habitats, and imposes economic costs on fisheries and coastal communities. 
Historically, fishing gear was manufactured from natural fibers that degraded rapidly, posing limited long-
term risks. In contrast, contemporary gear is predominantly synthetic—constructed from durable polymers 
such as nylon, polyethylene, and polypropylene—that can remain intact in the marine environment for 
decades (Richardson et al., 2022). 
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Quantifying the scale of ALDFG is challenging, but recent global estimates suggest that approximately 2% 
of all fishing gear deployed annually is lost, equivalent to 80.000 square kilometers of nets, millions of 
traps, and billions of long line hooks entering the ocean each year (Richardson et al., 2019; Richardson et 
al., 2022). Expressing losses in such gear-specific units is increasingly recognized as a more reliable 
indicator of ecological risk than earlier mass-based figures.  

The ecological consequences of ghost nets are well documented in various studies (Perroca et. al, 2024), 
confirming that hundreds of species—including fish, invertebrates, seabirds, marine mammals, and sea 
turtles—become entangled or are killed by derelict fishing gear (Kühn and van Franeker, 2020). 
Entanglement can cause drowning, starvation, or severe injury, while gear resting on the seabed damages 
benthic communities such as corals and seagrasses. Although precise population-level impacts are difficult 
to quantify due to inconsistent reporting and variable survey effort (e.g., uneven monitoring across regions), 
the scientific consensus is that ghost nets represent a chronic, global threat to marine biodiversity (Global 
Ghost Gear Initiative, 2023). 

 

1.2 Detecting and Scaling Ghost Net Removal 

Despite their persistence and ecological significance, ghost nets are notoriously difficult to locate and 
quantify once lost at sea. Ocean currents and storms can transport nets far from their point of origin, 
dispersing them across wide areas or depositing them in remote, hard-to-access regions. Many nets sink 
below the surface, becoming entangled on the seabed or buried in sediment, rendering them invisible to 
surface observation. Others drift in the water column, moving unpredictably with tides and currents. These 
dynamics, combined with the vastness of the marine environment and limited survey capacity, mean that 
only a fraction of ghost nets are ever detected or recovered (Global Ghost Gear Initiative, 2023). 

Side-scan sonar has proven to be one of the most effective tools for overcoming these challenges. By 
emitting sound waves that reflect off objects on the seafloor, side-scan sonar produces high-resolution 
images capable of revealing derelict fishing gear, even when nets are partially buried or obscured by 
benthic habitats. This technology enables systematic seabed mapping over large areas, improving both the 
efficiency and accuracy of ghost net detection (Global Ghost Gear Initiative, 2023). However, side-scan 
sonar operations are costly and require substantial logistics, including vessels, trained crew, and sonar 
experts. Furthermore, a single vessel with crew and equipment can typically survey only around 130 
hectares per day. Compared to the size of the ocean (~36 billion hectars), the spatial coverage of such 
survey can be limited. To gain broader insights into ghost net distribution, it is necessary to rethink the 
methodology by incorporating existing datasets, which can be analyzed to identify likely hotspots and 
guide future removal efforts. 

To address this need, in this paper, we explore the feasibility of modern AI methods to identify areas with a 
high likelihood of ghost net presence. Our initial models achieve detection rates of around 90% on datasets 
from the Baltic Sea and Puget Sound. We also introduce GhostNetZero, a human-in-the-loop web interface 
that integrates AI with human expertise to operationalize ghost net detection. Finally, we discuss potential 
improvements and future directions for this project. 

 

2. Data Background 

In this study, we have used two datasets. One is from the Baltic Sea region, Germany, and the other is from 
the Pudget Sound region, US.  



2.1 Baltic Sea: 

The Baltic Sea dataset was collected under the WWF Germany Ghostnet Program, an initiative aimed at 
locating and documenting derelict fishing gear in the Baltic Sea. After a 2018 training workshop with sonar 
specialist Crayton Fenn, the WWF field team adopted side-scan sonar as a core survey method. From 2019 
through 2023, data were acquired using a Marine Sonic Mark II system operating at a 600 kHz frequency. 

Survey sites were identified in collaboration with local fishermen to focus on areas with a high probability 
of gear loss. Transects spanned near-coastal waters at depths of 5 m to 18 m, reflecting typical regional 
fishing grounds. From the cumulative sonar detections, 239 representative images were selected for model 
training and evaluation. 

Since 2022, state-funded programs in the German federal states of Mecklenburg-Vorpommern and 
Schleswig-Holstein have broadened the scope of the work. These initiatives provide financial and logistical 
support for fishermen, sonar technicians, and retrieval teams, increasing the mapped inventory of ghost-net 
locations and supplying a growing stream of annotated sonar data to enhance future AI model training. 

 

2.2 Pudget Sound: 

The Puget Sound data was collected by Fenn Enterprises in collaboration with the Northwest Straits 
Foundation and Natural Resources Consultants, Inc. Data collection was carried out in 2014 across selected 
areas of Puget Sound, Seattle, USA. Puget Sound is an extensive inland estuarine system encompassing 
roughly 1,000 square miles of marine waters and complex shoreline habitats. 

The survey targeted nearshore to mid-depth zones, spanning from the intertidal shoreline to approximately 
36 m (120 ft) water depth. Within these transects, sonar imagery was examined for indications of lost 
fishing gear. From the full set of detections, 173 discrete targets were ultimately selected to train the 
detection model used in this study. The dataset analyzed in this study was acquired using a Sea Scan PC 
side-scan sonar system (Marine Sonic) operating at a frequency of 600 kHz. 

Puget Sound has a well-documented history of intensive commercial and recreational fishing. Government 
records over the past four decades provide detailed information on fishing activity, which informed the 
spatial design of the survey. The search area was strategically aligned with known salmon migration 
corridors and historic fishing grounds, reflecting regions of sustained fishing effort and higher likelihood of 
derelict gear accumulation. 

 

3. Methods 
 
3.1 Model Selection 

To automatically detect ghost nets from sonar-derived imagery, we selected DeepLabV3 (Chen et al., 2017) 
with ResNet50 (He et. al, 2015) as the backbone computer vision model for semantic segmentation. This 
choice was driven by two key considerations. First, unlike image-based categorical classification 
(Russakovsky et. al, 2015) or bounding box-based object detection methods (Girshick 2015), semantic 
segmentation methods such as DeepLabV3 provide pixel-level classification, enabling more accurate 
localization of ghost nets. This is particularly important for irregularly shaped ghost nets, such as those in 



string-like configurations, as it allows divers to accurately target retrieval efforts. Second, DeepLabV3 is a 
widely adopted and thoroughly studied semantic segmentation model, known for its straightforward 
architecture and ease of implementation, making it suitable for this application (Chen et al., 2017).  

3.2 Data Preparation 
 

3.2.1 Image conversion 

The sonar data were preprocessed to generate imagery suitable for computer vision analysis. Raw sonar 
signals, which represent acoustic reflections from the seafloor, were first converted into grayscale images. 
Then, these sonar images were separated into left and right views to account for the dual-channel nature of 
side-scan sonar data. Depending on the resolution of the generated images, they were split into patches of 
either 2000 × 500 or 1000 × 250 pixels. All patches were then resized to a uniform dimension of 2000 × 
500 pixels to standardize input for the DeepLabV3 model. Both datasets used in this study—from the Baltic 
Sea and Puget Sound regions—were manually annotated and verified by marine science experts using the 
Azure Machine Learning Studio Labeling tool. As the task was to segment ghost net regions, annotations 
were converted into binary masks (see Figure 1). In total, the Baltic Sea dataset comprised 239 annotated 
image segments, while the Puget Sound dataset included 173 annotated segments. 

 

3.2.2 Train, Validation, and Test Split 

In this study, due to the focus on evaluating the feasibility of AI-based ghost net detection and the limited 
size of the datasets, the 239 Baltic Sea image segments were divided into 205 for training and 34 for 
validation. Similarly, the 173 Puget Sound image segments were split into 145 for training and 28 for 
validation. No separate test set was allocated. Hyperparameters, including learning rate, batch size, and 
optimizer settings, were optimized using the validation subsets to ensure robust model performance. 

Figure 1. Raw uncut sonar imagery is precut into small image segments and then annotated into binary 
semantic segmentation masks for ghost nets 



3.2.3 Data Augmentation 

To enhance the generalizability of the DeepLabV3 model and mitigate overfitting, we applied random data 
augmentation techniques to the input imagery during training. Including transformations such as rotation, 
flipping, and intensity adjustments. Each augmentation was applied with a predefined probability to 
balance diversity and stability in the training process. 

 

4. Results 
 
In this study, we trained and evaluated three models to assess the performance of AI-based ghost net 
detection method: one was trained on Baltic Sea (BS) dataset, one was trained on Puget Sound (PS) dataset, 
and one combining both BS and PS datasets. Each model was evaluated on both the BS and PS validation 
sets to assess its generalizability across regions. 

Model performance was measured using two metrics: mean Intersection over Union (mean IoU, 
Everingham et. al, 2010), a standard semantic segmentation evaluation metric, and centroid detection rate 
(CD) with buffer ranges of 3px, 5px, 10px, and 20px. The centroid detection rate, a metric commonly used 
in remote sensing and medical imaging (Stereńczak et. al, 2012, Xing et. al, 2016), considers a predicted 
polygon a true positive if its centroid falls within or near the target polygon. If multiple predictions are 
within the range of the same annotated polygons, they are considered one single true positive. This 
approach accommodates the potential inaccuracies in our annotations and the discontinuity of polygon 
predictions. The rationale for selecting this metric alongside mean IoU is detailed in Section 5.1. 

The results are presented in Table 1. The BS-Only model, trained on Baltic Sea data, achieved a mean IoU 
of 0.740 for BS and 0.547 for PS, indicating strong performance on its training region but limited 
generalization to Puget Sound. Its centroid detection rates improved with larger buffers, ranging from 0.761 
(3px, BS) to 0.891 (20px, BS) for BS, and remained constant at 0.607 across all buffer sizes for PS, 
suggesting poor adaptability to the PS dataset. The PS-Only model, trained on Puget Sound data, recorded a 
mean IoU of 0.611 for BS and 0.683 for PS, showing better performance on its training region but weaker 
transferability to BS. Its centroid detection rates ranged from 0.543 (3px, BS) to 0.674 (20px, BS) for BS, 
and from 0.889 (3px–10px, PS) to 0.940 (20px, PS) for PS, with the highest rate reflecting optimal 
performance on PS data with the largest buffer. These results also suggest that even though the mean IoU of 
PS-Only model is relatively lower, the majority of the predictions are very close to the annotated ghost nets. 

The combined BS+PS model, trained on both datasets, exhibited the most robust performance, with a mean 
IoU of 0.739 for BS and 0.685 for PS, demonstrating enhanced generalizability. Its centroid detection rates 
increased with buffer size, ranging from 0.761 (3px, BS) to 0.891 (20px, BS) for BS, and from 0.821 (3px, 
PS) to 0.929 (20px, PS) for PS. Notably, the BS+PS model achieved centroid detection rates of 0.891–
0.929 for the 20px buffer across both regions. These findings underscore the combined model’s 
effectiveness in handling regional variations and improving detection accuracy with larger spatial 
tolerances. 

Table 1: Model performance on the Baltic Sea and Puget Sound datasets 

Model 
mean IOU CD (3px) CD (5px) CD (10px) CD (20px) 

BS PS BS PS BS PS BS PS BS PS 

BS-Only 0.740 0.547 0.761 0.607 0.783 0.607 0.804 0.607 0.891 0.607 

PS-Only 0.611 0.683 0.543 0.889 0.587 0.889 0.652 0.889 0.674 0.940 

BS+PS 0.739 0.685 0.761 0.821 0.783 0.893 0.848 0.893 0.891 0.929 



 

5. Discussion 

5.1 Mean IoU v.s. centroid detection rate   

As introduced in Section 3, the centroid detection rate considers a predicted polygon a true positive if its 
centroid falls within or near the target polygon. Compared to conventional semantic segmentation 
evaluations like mean IoU, the centroid detection rate offers a more relaxed evaluation criterion, which is 
particularly relevant for real-world applications of ghost net detection for several reasons. First, the quality 
of manual annotations can vary and is not always reliable due to factors such as human error or inconsistent 
sonar imagery, making precise overlap metrics less robust. Second, for practical purposes, identifying the 
relative locations of ghost nets is sufficient to guide divers to retrieval sites, reducing the need for exact 
boundary delineation. 

This distinction is illustrated in the example in Figure 2, where the model successfully detects both 
annotated ghost nets in the image, providing actionable location information for divers. However, 
traditional mean IoU might yield a lower score due to imperfect boundary alignment, potentially 
underrepresenting the model’s practical utility. In this scenario, using the centroid metric, the detection 
would be scored as two true positives and one false positive, reflecting a more operationally relevant 
assessment. This flexibility in the centroid approach ensures that the evaluation better aligns with the needs 
of practitioners, offering a more instructive metric for deployment. 

Additionally, the centroid detection rate accounts for disconnected predictions that represent a single ghost 
net object. For example, in Figure 2 (b), the three predicted polygons in the top right corner collectively 
correspond to a single annotated ghost net and are counted as one true positive. This capability is 
particularly valuable for ghost nets with fragmented or irregular shapes. By aggregating such predictions, 
the centroid metric provides a more holistic evaluation of detection performance, complementing the 
limitations of mean IoU and enhancing the model’s applicability in real-world efforts. 

 

Figure 2. Example of a predicted ghost net mask and it's corresponding annotation mask. 



5.2 GhostNetZero – A human-in-the-loop ghost net detection platform 

We have developed GhostNetZero.ai (in collaboration with Accenture), a human-in-the-loop platform 
designed to enhance ghost net detection using AI and expert oversight. This platform allows users to upload 
raw sonar files, which are automatically processed by the AI models trained in this study. The models 
generate preliminary predictions, identifying segments likely containing ghost nets. This automation 
streamlines the workflow by reducing the need for manual review of entire datasets. 

Experts utilizing GhostNetZero.ai are only required to review and verify sonar segments flagged with ghost 
net predictions, rather than the entire sonar dataset, significantly reducing the time and effort involved in 
the validation process. This human-in-the-loop approach complements the AI models with expert oversight, 
enhancing the reliability of predictions. Feedback from expert reviews can also be leveraged to fine-tune 
and iteratively refine the AI models, improving their performance. As model performance increases, the 
need for human review will decrease, further boosting the efficiency of the ghost net detection process. The 
overall pipeline of this platform, from data upload to expert validation and model retraining, is illustrated in 
Figure 3. 

 

5.3 Next steps 

As mentioned in the previous sections, the dataset used in this study is relatively small, comprising only 
239 annotated image segments from the Baltic Sea and 173 from Puget Sound. This limited scale can 
constrain the performance of AI models, particularly for a non-traditional task such as segmenting ghost 
nets. One of our primary next steps is to largely increase the number of annotations to enhance model 
accuracy and robustness. 

In addition to expanding the absolute number of annotations within single regions, we aim to broaden the 
geographical scope of our dataset. Currently, our annotated data are confined to the Baltic Sea and Puget 
Sound areas. To extend the impact of our ghost net detection efforts to a global audience, we plan to 
incorporate annotated datasets from other regions worldwide. This expansion will facilitate the 
development of a versatile AI model capable of supporting diverse groups across different marine 
environments. 

Figure 3. Pipeline of GhostNetZero.ai. 



Beyond ghost nets, other types of lost fishing gear, such as crab pots, also pose threats to marine life and 
warrant attention. As part of our future work, we will expand the annotation categories to include these 
additional lost gears, enhancing the model’s utility for groups with varied operational needs.  

By addressing these next steps—scaling up annotations, diversifying geographical coverage, and 
broadening gear categories—this study lays the groundwork for a more comprehensive and globally 
applicable solution to mitigate the ecological impacts of marine debris. Through continued innovation and 
collaboration, we aim to advance the fight against ghost gear, safeguarding marine biodiversity for future 
generations. 
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