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Abstract 

1. Understanding the basic ecology of endangered species is essenƟal for effecƟve 
conservaƟon, yet this remains challenging for elusive species inhabiƟng tropical 
forests. For the endangered Bornean white-bearded gibbon (Hylobates albibarbis), 
basic ecological informaƟon remains limited. Most research on the species is 
restricted to peat swamp forests, while liƩle is known from other forest types that 
make up a large part of its range. Passive acousƟc monitoring provides an 
opportunity to study vocal behaviour to obtain such ecological insights, while 
enabling research across larger spaƟal and temporal scales than previously possible.  

2. We deployed eight autonomous recording units across three forest types in Central 
Kalimantan, Indonesia, collecƟng 23,244 hours of acousƟc data over 18 months. A 
pretrained deep learning automated detector was applied to idenƟfy great calls, 
performed by female gibbons as part of morning duets and a key indicator for 
comparing populaƟon density. We idenƟfied 83,956 great calls and examined how 
daily call rates varied across habitats and in response to seasonal rainfall (as an 
indicator of resource fluctuaƟons).  

3. Daily call rates did not differ significantly among forest types but showed significant 
temporal variaƟon over the survey period. Higher call rates occurred during months 
with greater rainfall, consistent with seasonal resource availability driving vocal 
acƟvity. To clarify this effect, we invesƟgated the short-term effects of weather and 
found that rainfall on the day before observaƟon reduced both call rates and the 
probability of calling, while rainfall two days prior increased calling acƟvity, 
suggesƟng compensatory vocal behaviour.  

4. Our findings highlight the need to account for variable vocalisaƟon rates in acousƟc 
monitoring, parƟcularly when evaluaƟng the addiƟve effects of habitat loss and 
climate change on species behaviour and ecology. We emphasise the importance of 
considering phenological factors when interpreƟng calling acƟvity and the value of 
incorporaƟng spaƟal data to strengthen ecological inferences from acousƟc datasets. 
Furthermore, this study demonstrates the power of deep learning for large-scale, 
long-term monitoring of species’ vocal behaviour, providing valuable ecological 
insights across increasingly broad spaƟotemporal scales. 

 

 

 

 



IntroducƟon 

EffecƟve conservaƟon acƟon requires an understanding of the basic ecology of threatened 
species, including distribuƟon, habitat use, and the limiƟng factors on their populaƟon 
density (Rushton et al., 2004). However, obtaining such informaƟon is parƟcularly 
challenging for animals inhabiƟng tropical rainforests, which are among the most biodiverse 
and threatened biomes on Earth. This is due to limitaƟons on direct observaƟon caused by 
dense foliage, human-avoidance behaviour, and the inaccessibility of habitats to researchers 
(Zwerts et al., 2021). The gibbons (family HylobaƟdae) of Southeast Asia are a taxonomic 
group that exemplify these challenges. Despite 19 of the 20 species being classified as 
Endangered or CriƟcally Endangered by the IUCN Red List of Threatened Species, key 
ecological knowledge remains limited (IUCN, 2025). For example, while the boundaries of 
species’ ranges may be well known, occupancy and populaƟon density distribuƟons within 
those ranges, and how these may be affected by habitat variaƟon, remain largely unknown 
(Cheyne et al., 2016; Geissmann, 2007). Furthermore, where detailed knowledge from direct 
observaƟon does exist, it is typically restricted to small geographic areas and a limited 
number of habituated individuals; meanwhile, there is a severe lack of data on gibbons 
outside of protected areas (Cheyne et al., 2023). 

The Bornean white-bearded gibbon (Hylobates albibarbis) is endemic to southern Borneo, 
occurring within Indonesia’s Central Kalimantan and West Kalimantan provinces, south of 
the Kapuas River and west of the Barito River (Marshall et al., 2020). VariaƟon in soil types 
and elevaƟon has given rise to a range of forest types in this area, with disƟnctly different 
tree species composiƟons (Anirudh et al., 2025). This botanical variaƟon among forest types 
can be expected to influence the distribuƟon of gibbons across their range, as has been 
observed in relaƟon to canopy height (Hamard et al., 2010). Gibbons are primarily 
frugivorous and folivorous, and, because they live in small family groups in fixed territories, 
localised fruit availability and temporal variaƟon therein are likely key limiƟng factors on 
gibbon populaƟon density (Marshall, 2009; Marshall & Leighton, 2006). Such temporal 
variaƟon can differ greatly among forest types, with some showing masƟng, whereby mass 
fruiƟng events in some years are interspersed by a varying number of lean years, whereas 
other types show either no or limited masƟng but may show varying degrees of intra-annual 
variaƟon in response to seasonal variaƟon in rainfall (Curran & Leighton, 2000; Morrogh-
Bernard, 2009; van Schaik & Pfannes, 2005). Currently, most research on H. albibarbis 
ecology and behaviour has been conducted in a few non-masƟng peat swamp forest 
locaƟons, while liƩle is known from other forest types that make up a large part of the 
species’ range (Cheyne et al., 2016). 

Most gibbon species perform elaborate long-range vocalisaƟons in the form of sex-specific 
songs that are coordinated as morning duets by territorial mated pairs (Geissmann, 2002). 
These duets typically consist of introductory, interlude and great call sequences, with the 
laƩer being the most stereotyped and easily idenƟfiable component (Geissmann, 2002). The 
great call sequence, comprising the female great call, oŌen followed by a male coda, serves 



as a key indicator for comparing populaƟon density, as its presence indicates a mated pair 
(Gilhooly et al., 2015). These duets serve mulƟple funcƟons, including mediaƟng intergroup 
spacing, maintaining the pair bond, mate defence, and adverƟsing aƩributes of the 
individual or pair (Cowlishaw, 1992; Geissmann & Orgeldinger, 2000; Mitani, 1985). Studies 
of gibbon songs have been used to idenƟfy species (Cheyne et al., 2024), determine 
phylogeneƟc relaƟonships (Thinh et al., 2011), esƟmate populaƟon density (Cheyne et al., 
2016), assess spaƟal distribuƟon (Okuda et al., 2022), and idenƟfy individuals (Clink et al., 
2017). Recent advances in passive acousƟc monitoring (PAM) and machine learning have 
further expanded the scope of such research by improving the efficiency of collecƟng and 
analysing acousƟc data while enabling research across larger spaƟal and temporal scales 
than previously possible (Stowell, 2022; Wich & Piel, 2021). 

The deployment of PAM arrays in diverse forest types across a landscape provides the 
opportunity to infer differences in gibbon populaƟon densiƟes among habitats from the 
frequency of songs detected in recordings over prolonged periods. It should, however, be 
noted that the relaƟonship between song frequency and populaƟon density may not be 
linear, as gibbon singing has been shown to be density dependent, wherein animals sing less 
frequently in areas with fewer neighbouring groups (Brockelman & Srikosamatara, 1993; Yin 
et al., 2016). While this relaƟonship may complicate direct interpretaƟon, differences in 
populaƟon densiƟes among habitats can therefore be expected to manifest as amplified 
differences in relaƟve song frequencies. Further, singing is energeƟcally costly, and gibbons 
have been observed to produce shorter songs and call less frequently during periods of low 
fruit abundance (Cowlishaw, 1996). Therefore, temporal variaƟon in song frequency could 
reflect changes in the Ɵming of peaks and troughs in resource abundance in different habitat 
types.  

A potenƟally complicaƟng factor in deriving temporal variaƟon in resource abundance from 
gibbon song frequency is their short-term response to overnight or morning rainfall, which is 
more likely in the rainy season. This seasonal increase in rainfall is typically associated with 
peaks in animal-dispersed fruit abundance (Morrogh-Bernard, 2009; van Schaik & Pfannes, 
2005). However, rainfall generally reduces both the duraƟon and probability of pairs 
engaging in song duets, possibly because rainy or windy condiƟons impair sound 
transmission, reducing the effecƟveness of long-range vocal communicaƟon, and/or because 
the increased energeƟc cost of overnight thermoregulaƟon may cause gibbons to prioriƟse 
foraging over singing the following morning (Brockelman & Srikosamatara, 1993; Cheyne, 
2008; Clink et al., 2020; Mitani, 1985). Together, these factors contribute to gibbons singing 
on fewer days during months with higher rainfall (Mitani, 1985). Higher song frequency 
during the rainy season is therefore likely to be consistent with the hypothesis that song 
frequency is associated with resource availability, while higher song frequency in the dry 
season would indicate that the short-term effects of weather are the more important driver. 
Moreover, the cumulaƟve impact of consecuƟve missed song duets due to adverse weather 
remains unclear. Gibbons may compensate for missed duets by increasing vocal effort on 



fair-weather days, or the suppressive effect of rainfall on dueƫng may diminish over 
consecuƟve rainy days as the social costs of missing duets are compounded.  

Here, we use an 18-month acousƟc data set collected using a PAM array deployed in a 
mosaic lowland forest landscape in southern Borneo. We uƟlise a deep learning detector 
developed by Owens et al. (2024) to automaƟcally idenƟfy H. albibarbis great calls. We 
invesƟgate how paƩerns of H. albibarbis great calls vary across habitats and in response to 
changing seasonal condiƟons. Specifically, we test the following hypotheses: (1) the number 
of great calls detected per day differs among habitat types, which may reflect differences in 
populaƟon density; (2) the number of great calls detected per day varies seasonally, with 
temporal trends differing among habitats, which may reflect changes in resource availability 
and the Ɵming of peaks and troughs in resource abundance in different habitat types; (3) the 
number of great calls detected per day is posiƟvely associated with seasonal rainfall, despite 
the negaƟve short-term effects of rainfall on calling acƟvity, which would suggest that song 
frequency is associated with resource availability.  

Methods 

Study site 

The long-term acousƟc dataset used in this study derives from the Mungku Baru EducaƟon 
and Research Forest (MBERF), a ~50 km2 area of tropical rainforest in Central Kalimantan 
Province, Indonesia (1°39'S 113°44'E). The MBERF lies in the centre of the wider Rungan 
forest landscape, which spans approximately 1,500 km2 between the Kahayan and Rungan 
rivers, north of the provincial capital of Palangka Raya (Figure 1). This landscape represents 
the largest area of conƟnuous unprotected lowland rainforest remaining on the island of 
Borneo (Afitah & Purnama, 2021) and is home to an esƟmated ~4,000 H. albibarbis 
individuals, making the region criƟcally important for the conservaƟon of the species 
(Buckley et al., 2018). Despite this, the forests here are under threat from the conversion of 
primary forest to oil palm and acacia plantaƟons, expansion of coal mining concessions, gold 
mining in surrounding rivers, wildlife hunƟng, and forest fires. Ongoing wildlife monitoring 
has been recommended to strengthen the case for increased protecƟon and fully realise the 
conservaƟon potenƟal of the Rungan forest landscape (Anirudh et al., 2025; Buckley et al., 
2018). 



 

 

The MBERF comprises a mosaic of different habitats, including three predominant forest 
types: ‘lowland heath’ (known locally as kerangas), ‘low-pole peat swamp’ (low pole), and 
‘mixed swamp’, with the laƩer represenƟng a transiƟonal habitat between the former two 

Figure 1. Map of the Rungan forest landscape within Borneo, showing the official land 
designaƟons and the locaƟon of the Mungku Baru EducaƟon and Research Forest 
(MBERF; General Directorate of Forestry Planning and Environmental Management, 
Indonesian Ministry of Forestry, 2020).  



(Anirudh et al., 2025). Compared to low pole, lowland heath has taller trees (average height 
~18 m) and greater tree diversity (12.05-15.74 species/100 stems). Low pole, on the other 
hand, has an average tree height of 14.90 m, lower tree diversity (6.43 species/100 stems), 
and is characterised by a low, open canopy. Mixed swamp has the highest tree diversity 
(19.67 species/100 stems). As a transiƟonal habitat, mixed swamp exhibits a gradient from 
tall conƟnuous to low disconƟnuous canopy cover (Anirudh et al., 2025). The northern part 
of the MBERF also features an area that was impacted by a tornado event in 2006 and is 
characterised by windblown trees and dense regrowth, forming a low, disconƟnuous canopy.  

Data collecƟon  

Eight autonomous recording units (ARUs; Song Meter SM4, Wildlife AcousƟcs, Maynard, 
MassachuseƩs) were deployed in the MBERF by W.M.E. and E.E. from July 2018 to 
December 2019. The ARUs were placed on trees, 5 m above the ground, in a dispersed grid 
with approximately 1,200 m between devices. This placement ensured full coverage of the 
study area while aiming to minimise overlapping detecƟons of ape calls between 
neighbouring ARUs. Playback experiments indicate that gibbon great calls can be detected in 
recordings from distances of 500 m or more (Erb, unpublished data). The ARU grid was 
designed to sample each of the habitats within the MBERF, wherein three were deployed in 
lowland heath, three in low pole, and two in mixed swamp habitats (Figure 2).  

 



 

The ARUs were programmed to record daily from 4 am to 6 pm (local Ɵme, UTC +7) to 
capture the predawn and diurnal period of ape calling. These used default seƫngs 
[sensiƟvity of -35 6 4 dB (0 dB ¼ 1 V/pa at 1 kHz), dynamic range of 14-100 dB sound 
pressure level (SPL) at 0 dB gain, microphone gain of 16 dB, and inbuilt preamplifier gain of 
26 dB] and recorded on two channels with a sampling rate of 24 kHz. Audio was captured in 
16-bit waveform audio file format (WAV) and saved as 1-hour files. Memory cards and 
baƩeries were changed every two weeks. Due to logisƟcal and technical difficulƟes, devices 
did not always record conƟnuously throughout the full survey period. To ensure full 
coverage of gibbon duets, we selected files recorded between 04:00 and 10:00 and only 
included days with no missing data. The average number of survey days per recorder was 
484 (range = 429–498 of a possible 535 days; Table S1, supplementary material). The 
resultant dataset contained 23,244 hours of audio.  

To detect H. albibarbis great calls, we applied the automated detector described in Owens et 
al. (2024). The detector splits audio files into 28s segments with a 27s overlap and assigns 
each segment a confidence score (ranging from 0 to 1), with higher scores indicaƟng greater 
confidence in the presence of a great call. We used a confidence score threshold of 0.78 to 
balance precision (the proporƟon of true posiƟve predicƟons among all posiƟve predicƟons) 
and recall (the proporƟon of true posiƟve predicƟons among all actual posiƟve instances), 
enabling reliable detecƟon while minimising false posiƟves (Owens et al., 2024). 
Neighbouring segments with scores above the threshold were grouped into detecƟons and 
exported as selecƟon tables using Raven Pro 1.6 (K. Lisa Yang Center for ConservaƟon 
BioacousƟcs, 2024). SelecƟon tables were processed in R (R Core Team, 2023; see Owens et 
al., 2024) to esƟmate the number of great calls per day at each ARU, henceforth daily call 
rate, which served as the basis for subsequent analysis. Since the idenƟty of calling 
individuals was unknown, daily call rate is a measure of daily calling acƟvity within the 
vicinity of each ARU, but not an accurate esƟmate of the number of calling individuals or 
groups. 

To esƟmate rainfall variables for our study site, we used the PERSIANN-CDR dataset, a high-
quality climate data record of precipitaƟon with a spaƟal resoluƟon of 0.25 degrees (~25 km) 
(Ashouri et al., 2015). This dataset is generated by applying the PERSIANN algorithm (Hsu et 
al., 1997) to the GridSat-B1 infrared data archive from geostaƟonary earth-orbiƟng satellites 
(Knapp et al., 2011). We chose the PERSIANN-CDR dataset as it represents the nearest and 

Figure 2. Map of the Mungku Baru EducaƟon and Research Forest) showing the 
distribuƟon of different habitat types over the survey area and the locaƟon of the 
autonomous recording units (ARUs; Buckley et al., 2018). The dashed red circles represent 
a predicted minimum 500m detecƟon radius around each ARU, based on playback 
experiments (Erb, unpublished data). The ARU labels correspond to the forest type where 
each device was deployed (LH – lowland heath, MS - mixed swamp, LP - low pole). 



most comprehensive rainfall data available for the study site. We accessed monthly and daily 
rainfall accumulaƟons from July 2018 to December 2019 for the coordinates 1°45' S, 113°48' 
E, approximately 11 km from the centre of the ARU grid, downloaded from the CHRS data 
portal (Center for Hydrometeorology and Remote Sensing, University of California, Irvine). 

Response variable DescripƟon 
Daily call rate Number of great calls detected per day at each ARU 
Daily call presence Binary variable indicaƟng presence (1) or absence (0) of a 

great call at each ARU on a given day 
Predictor variable 
Habitat Habitat type in which the ARU was located 
Month Month-year of data collecƟon 
Daily rainfall Total daily rainfall (mm) 
Monthly rainfall  Total monthly rainfall (mm) 
Hour Recording hour  
Call quality DescripƟon of the clarity of great call annotaƟons: ‘clear’, 

‘faint’, or ‘very faint’ (see Owens et al. 2024) 
Random effect 
ARU Unique ID of each recording unit 

 

Detector validaƟon 

To evaluate the precision of the automated detector across condiƟons, we visually assessed 
a subset of detecƟons using Raven Pro 1.6 (K. Lisa Yang Center for ConservaƟon 
BioacousƟcs, 2024). Specifically, we reviewed all detecƟons from one randomly selected 
date per month between July 2018 and December 2019, restricted to dates when recordings 
were available from all ARUs (n = 864 sound files). This yielded 2,923 detecƟons in 326 
sound files. DetecƟons were annotated as true posiƟves (TPs) if they overlapped with a great 
call or false posiƟves (FPs) if they did not. We fiƩed a generalised linear model (GLM) with a 
quasibinomial distribuƟon, using the log-odds of TPs relaƟve to FPs as the response variable. 
Month, ARU and hour (Table 1) were added as categorical predictor variables to assess 
whether these factors accounted for variaƟon in precision. As the survey period did not 
include every month in each year, month was treated as a categorical variable represenƟng 
unique month-year combinaƟons. Nested models were compared using analysis of variance 
(ANOVA).  

To evaluate recall, we assessed detector performance relaƟve to a manually annotated test 
dataset comprising 522 great calls in 90 sound files described in Owens et al. (2024). Great 
calls were annotated as TPs if they overlapped a model detecƟon, and false negaƟves (FNs) 
if they did not. A GLM with a quasibinomial distribuƟon was fiƩed with the log-odds of TPs 
relaƟve to FNs as the response variable. Call quality (Table 1), month, ARU and hour were 

Table 1. Summary of response variables, predictor variables and random effects included 
in models for validaƟon and data analysis. 



included as categorical predictor variables to assess their effect on recall. AddiƟonally, to test 
if the effect of call quality varied by ARU, hour and month, we tested models including 
interacƟon terms between call quality and each of these variables. Model selecƟon was 
performed using ANOVA. 

For the best-fiƫng models for both precision and recall, we computed esƟmated marginal 
means using the R package “emmeans” (Lenth, 2025) to assess detector performance across 
predictor variables. Pairwise post hoc comparisons were conducted with Tukey adjustments 
for mulƟple tesƟng. Confidence intervals for observed precision and recall were calculated 
using Wilson’s method to provide robust interval esƟmates. Finally, to assess whether 
variaƟon in precision could be explained by the number of great calls for each condiƟon, we 
tested for correlaƟons between precision and the number of TPs for significant predictor 
variables using Spearman’s rank correlaƟon.  

Data analysis 

To test whether daily call rate varies among habitat types (hypothesis 1), and seasonally, 
with temporal trends differing among habitats (hypothesis 2), we fiƩed a generalised linear 
mixed model (GLMM) with a zero-inflated negaƟve binomial (ZINB) distribuƟon using the R 
package “glmmTMB” (Brooks et al., 2017). This incorporates excess days with zero detected 
calls and accounts for overdispersion in the count data (Stoklosa et al., 2022). ARU was 
included as a random effect to account for variaƟon in daily call rate among recording units 
within the same habitat, and to avoid pseudo-replicaƟon. Daily call rate was treated as the 
response variable, and we invesƟgated the effects of habitat, month, and their interacƟon.  

To test hypothesis 3, that daily call rate is posiƟvely associated with seasonal rainfall, we 
fiƩed a GLMM with a ZINB distribuƟon with daily call rate as the response variable, ARU as a 
random effect, and monthly rainfall as the predictor variable. To clarify the short-term 
effects of rainfall on calling acƟvity, we also tested for a lag effect of daily rainfall on both 
daily call rate and daily call presence (Table 1). For daily call rate, we fiƩed a GLMM with a 
ZINB distribuƟon and ARU as a random effect. For daily call presence, we fiƩed a GLMM 
using the R package “lme4” (Bates et al., 2015), specifying a binomial distribuƟon, daily call 
presence as the response variable, and ARU as a random effect. For both analyses, we first 
assessed the effect of daily rainfall one day prior to observaƟon, then successively added 
lagged daily rainfall variables up to five days prior. Rainfall on the day of observaƟon was 
excluded, as it could encompass rainfall occurring aŌer the morning song bout. 

Nested model comparisons were conducted using ANOVA and model fit was evaluated using 
Akaike’s InformaƟon Criterion (AIC) and Bayesian InformaƟon Criterion (BIC). 



Results 

Detector validaƟon 

To assess potenƟal factors influencing the precision of the automated detector, we fiƩed a 
GLM with a quasibinomial distribuƟon, using the log-odds of TPs relaƟve to FPs as the 
response variable and month, ARU and hour as categorical predictor variables. IniƟal model 
fiƫng suggested that month improved overall model fit (F = 2.127, p < 0.01). However, 
examinaƟon of individual month coefficients revealed no significant effects for any specific 
month, with some months showing extremely large standard errors indicaƟve of sparse 
data. Therefore, month was excluded from the final model, which included ARU and hour as 
predictors (Figure S1, supplementary material). Precision varied across ARUs, with LH3 
showing the highest precision (0.962, 95% CI: 0.942–0.975) and LP3 the lowest (0.716, 95% 
CI: 0.648–0.775). Post hoc pairwise comparisons indicated that precision was significantly 
higher at LH1 (p < 0.05) and LH3 (p < 0.001) compared to LP3. No other pairwise differences 
among ARUs were staƟsƟcally significant aŌer adjustment. Precision also varied significantly 
by hour. The highest precision occurred at 6 am (0.982, 95% CI: 0.973–0.988) and the lowest 
at 4 am (0.238, 95% CI: 0.165–0.329). Pairwise comparisons showed that precision was 
significantly lower at 4 am than all other hours of the morning, except for 9 am (p = 0.328). 
AddiƟonally, precision at 6 am was significantly higher than at 8 am (p < 0.001) and 9 am (p < 
0.001). Precision was posiƟvely associated with the number of TPs for both ARU (ρ = 0.929, 
p < 0.01) and hour (ρ = 0.943, p < 0.05; Figure S2, supplementary material). This suggests 
that, in some condiƟons, a lower occurrence of great calls may account for the observed 
reducƟon in precision, as would be expected given a constant FP rate.  

For recall, we also fiƩed a GLM with a quasibinomial distribuƟon, this Ɵme using the log-
odds of TPs relaƟve to FNs as the response variable and call quality, month, ARU and hour as 
categorical predictor variables. The best-fiƫng model included call quality as the sole 
predictor (Figure S3, supplementary material). We then tested interacƟon terms between 
call quality and the other predictor variables, with only the call quality x month interacƟon 
being significant (F = 2.15, p < 0.05). However, examinaƟon of individual interacƟon 
coefficients again revealed extremely large standard errors indicaƟve of sparse data, so 
interacƟons were excluded. Recall varied by call quality, with the greatest recall observed for 
“clear” calls (0.951, 95% CI: 0.920–0.971) and the lowest for “very faint” calls (0.406, 95% CI: 
0.332–0.485). All pairwise comparisons were significant, showing that recall decreased with 
call quality.   

Detector output 

Over the survey period, 83,956 H. albibarbis great calls were idenƟfied by the automated 
detector across all habitats and ARU devices, with a mean of 10,545 (range: 6,463 at LP3 – 
14,915 at LH3, SD = 2,756) great calls per ARU. The mean daily call rate per ARU, including 
days without calls, ranged from 13.0 (LP3) to 31.4 (LH3), with an overall mean of 21.7 (SD = 
5.6) calls per day. Great calls were detected across the enƟre 04:00-10:00 period, with half 



of all detected great calls occurring between 05:57 and 06:57, and a mean Ɵme of 06:32 
(Figure 3). 

 

 

Hypotheses 1 

To test whether daily call rates differ among habitat types, we added habitat to the month-
only model, which resulted in a non-significant improvement in model fit (χ² = 4.957, p = 
0.084). Although the month + habitat model had the lowest AIC, the difference was not 
substanƟal enough to jusƟfy the inclusion of habitat (ΔAIC = 0.96), consistent with the 
ANOVA and BIC results (Table S2, supplementary material). While visual inspecƟon of the 
data suggested habitat differences (Figure 4), there was insufficient evidence to support a 
meaningful effect of habitat on daily call rate.  

Hypothesis 2 

To test whether daily call rates vary seasonally, with temporal trends differing among 
habitats, we examined the effect of month and its interacƟon with habitat. Including month 
as a predictor significantly improved model fit compared to a model with habitat alone (χ² = 
170.044, p < 0.001). The month-only model also had the lowest BIC and the second-lowest 

Figure 3. Density plot showing the temporal distribuƟon of 83,956 great call detecƟons 
between 04:00 and 10:00. The solid red line indicates the mean detecƟon Ɵme, and the 
dashed red lines indicate the interquarƟle range.  



AIC (Table S2, supplementary material), indicaƟng significant temporal variaƟon in the rate 
of detected great calls over the survey period. Compared to July 2018, the most notable 
peak occurred in February 2019 (z = 4.470, p < 0.001), while June 2019 showed a significant 
decrease in daily call rate (z = -2.689, p < 0.01; Table S3, supplementary material). Further, 
including an interacƟon between habitat and month did not significantly improve model fit 
compared to a model with only the main effects (χ² = 30.029, p = 0.663), suggesƟng that 
temporal variaƟon in daily call rate did not differ significantly across habitat types. 

Hypothesis 3 

To test hypothesis 3, we examined the relaƟonship between daily call rate and monthly 
rainfall. Monthly rainfall was posiƟvely associated with daily call rate (z = 5.41, p < 0.001), 
supporƟng the hypothesis that daily call rate is posiƟvely associated with seasonal rainfall. 
However, this relaƟonship was not consistent across all months. For example, the rate of 
detected great calls was lower in November 2018 and December 2019 than in the preceding 
month despite high rainfall accumulaƟon (Figure 4).  

 



 

To clarify the short-term effects of rainfall on calling acƟvity, we examined how daily call rate 
and daily call presence were influenced by rainfall on the previous day up to five days prior. 
For daily call rate, model comparison indicated that the best-fiƫng model included rainfall 
up to the previous four days, which significantly improved model fit compared to a model 
that included only three days of prior rainfall (χ² = 10.787, p < 0.01) and had the lowest AIC 
(Table S4, supplementary material). The best-fiƫng model showed that rainfall one day prior 
to observaƟon had a negaƟve effect on daily calling rates (z = -9.320, p < 0.001; Figure 5a). 
Rainfall two and four days prior had a posiƟve effect on daily calling rates (z = 6.940, p < 
0.001, z = 3.250, p < 0.01, respecƟvely), while rainfall three days prior had a negaƟve effect 
(z = -2.910, p < 0.01).  

For great call presence, model comparison indicated that the best-fiƫng model included 
rainfall up to the previous three days, which significantly improved model fit compared to 
the model that included only two days of prior rainfall (χ² = 7.906, p < 0.01) and had the 
lowest AIC (Table S5, supplementary material). The best-fiƫng model showed that rainfall 
one day prior to observaƟon had a negaƟve effect on the probability of calling (z = -14.573, p 
< 0.001; Figure 5b). Rainfall two days prior had a posiƟve effect on the probability of calling 
(z = 4.549, p < 0.001), while rainfall three days prior had a negaƟve effect (z = -2.851, p < 
0.01).  

Figure 4. Line graph showing the mean daily call rate (number of great calls detected per 
day) per month across habitats and monthly rainfall. Shaded areas indicate 95% 
confidence intervals around the means. 



 

 

Discussion 

Studying the ecology of elusive species inhabiƟng tropical forests remains challenging, such 
as for H. albibarbis, where large parts of the species’ range remain understudied. To address 
this, we deployed eight ARUs across a mosaic lowland forest landscape over 18 months to 
examine differences in calling paƩerns among forest types and assess the effects of 
environmental factors on vocal behaviour. Our results highlight spaƟotemporal variability in 
H. albibarbis vocalisaƟon rates, shaped by rainfall paƩerns, suggesƟng an influence of 
seasonal fluctuaƟons in resource availability.  

We found insufficient evidence to conclude that the daily rate of detected great calls differed 
significantly among habitats. This contrasts with our expectaƟons, as low pole has a lower 
disconƟnuous canopy cover, which has been associated with lower gibbon densiƟes 
(Hamard et al., 2010), and lower densiƟes are in turn associated with lower song rates 

Figure 5. Coefficient esƟmates (with 95% confidence intervals) for daily rainfall lagged by 
1-5 days prior to observaƟon, predicƟng (a.) log daily call rate (the number of great calls 
detected per day) and (b.) the log-odds of daily call presence, defined as the presence (1) 
or absence (0) of great call detecƟons at each ARU on a given day.  



(Brockelman & Srikosamatara, 1993; Yin et al., 2016). In Sebangau NaƟonal Park, previous 
studies have presumed a low to near-zero populaƟon density in low pole, observing 
infrequent dueƫng and a single gibbon sighƟng in this habitat (Buckley et al., 2006; Cheyne 
et al., 2008). Our results show consistent detecƟon of great calls from ARUs placed in low 
pole, suggesƟng that breeding groups are present within, or at least bordering, this habitat, 
and that low pole may be more suitable for gibbons than previously assumed.  

However, direct habitat comparisons are complicated by the small number of sampling 
locaƟons, with only 2-3 replicates per habitat, which limits staƟsƟcal power and increases 
the influence of site-specific factors or individual variaƟon in calling behaviour. For example, 
the effecƟve detecƟon area of each ARU was not enƟrely homogeneous, and ARUs deployed 
in low pole may acousƟcally sample small pockets of more suitable gibbon habitat. 
AddiƟonally, the distance that great calls propagate may vary across habitats (Erb, 
unpublished data), meaning detecƟon ranges may vary between ARUs. Consequently, calls 
may have been detected from adjacent habitats with higher group densiƟes, potenƟally 
inflaƟng observed great call rates. Furthermore, ARUs located centrally within a group’s 
home range may detect fewer calls than those posiƟoned at the boundary between mulƟple 
groups, where calls from a greater number of individuals may be recorded. Finally, 
consistent differences in the rate of detected calls across ARUs may reflect variaƟon in 
individual or group-level calling behaviour that does not necessarily correspond to group 
density (Clink et al., 2020); for instance, the number of great calls can be influenced by pair-
bond strength (Ma et al., 2022). AddiƟonal spaƟal context, parƟcularly empirical esƟmates 
of effecƟve detecƟon ranges for both ARUs and the automated detector, would enable 
clearer interpretaƟon of habitat-related paƩerns in future studies. Furthermore, applying 
acousƟc localisaƟon methods, such as the Ɵme difference of arrival technique (Lellouch et 
al., 2025), would allow calls to be clustered spaƟally to idenƟfy disƟnct groups, providing 
more precise esƟmates of group density.  

We observed significant seasonal variaƟon in the rate of detected great calls, with disƟnct 
peaks and troughs in calling acƟvity across months. Call rates increased during weƩer 
periods, despite the negaƟve short-term effects of rainfall on calling acƟvity, suggesƟng that 
song frequency reflects resource availability. Given that the rainy season is associated with 
peaks in animal-dispersed fruit abundance (Morrogh-Bernard, 2009; van Schaik & Pfannes, 
2005), this is consistent with Cowlishaw (1996), who found that duet frequency and duraƟon 
are greater during periods of high fruit availability. Notably, monthly variaƟon in daily call 
rates in our study was broadly consistent across habitats. While the underlying mechanisms 
behind this paƩern remain unclear, this could suggest that fruiƟng responses to rainfall 
across the three predominant forest types are similar, or that the key food species driving 
temporal variaƟon in calling acƟvity are present in all three habitats. These findings highlight 
the value of incorporaƟng phenological data in future studies. Examining fluctuaƟons in the 
availability of key food species alongside gibbon vocal acƟvity could help clarify the causal 



links between resource abundance and calling behaviour and potenƟally allow gibbon vocal 
paƩerns to serve as an indicator of habitat producƟvity over Ɵme.  

Alongside this seasonal paƩern, our analyses indicate that short-term rainfall significantly 
influences calling behaviour at daily scales. Rainfall on the day prior to a song duet had a 
significant negaƟve effect on both daily call rate and the probability of calling, possibly due 
to increased energeƟc costs of overnight thermoregulaƟon associated with adverse weather 
(Cheyne, 2008; Clink et al., 2020). This may explain the lower rate of detected great calls 
during the onset of the rainy season in November 2018 and December 2019, when resource 
availability would also be low due to a lagged fruiƟng response to rainfall. InteresƟngly, 
rainfall two days prior was associated with an increase in calling acƟvity, suggesƟng that 
gibbons may compensate for missed song duets by increasing vocal effort the following day, 
potenƟally to miƟgate the cumulaƟve social costs of reduced calling. We also observed 
significant posiƟve and negaƟve effects of rainfall three- and four-days prior, though further 
invesƟgaƟon using higher-resoluƟon rainfall data may be required to clarify these 
interacƟons. Understanding how short-term rainfall influences gibbon singing behaviour is 
parƟcularly important, since vocally derived populaƟon esƟmates rely on call probability 
correcƟon factors to account for days when singing does not occur (Brockelman & Ali, 1987; 
Cheyne et al., 2016).  

The occurrence of the El Niño weather event in 2019 may have further influenced observed 
paƩerns of calling acƟvity. This event triggered drought and resulted in forest fires across 
Borneo, which blanketed large areas in a smoke haze and increasing levels of harmful 
pollutants such as PM2.5 and carbon monoxide, parƟcularly from September to November 
2019 (Yokelson et al., 2022). Wildfire smoke has been shown to negaƟvely affect H. 
albibarbis singing behaviour, reducing both the number of singing days per month and the 
length of song bouts, potenƟally due to respiratory stress (Cheyne, 2008). Similarly, Erb et al. 
(2023) found that Bornean orangutans (Pongo pygmaeus wurmbii) perform fewer long calls 
per day when exposed to increased air polluƟon from wildfire smoke. Although it remains 
unclear whether wildfire smoke directly influenced our results, our study highlights the 
importance of accounƟng for underlying variaƟon in vocal paƩerns when examining the 
addiƟve effects of wildfire smoke or other anthropogenically exacerbated factors. Future 
studies should compare smoke and non-smoke condiƟons during the same season to control 
for seasonal differences and beƩer isolate the effects of wildfire smoke on vocal behaviour.  

The performance of the automated detector varied significantly across ARUs, Ɵmes of day, 
and the quality of the target calls. However, it is unlikely that this substanƟally affected our 
findings, and observed temporal variaƟon in daily call rates is more likely aƩributable to 
ecological processes rather than fluctuaƟons in detector precision or recall. While the lower 
precision for LP3 may have contributed to an inflated daily call rate in low pole due to a 
higher number of false posiƟve detecƟons, this ARU also recorded the fewest calls. Similarly, 
although precision was lowest for files recorded at 4 am, this accounted for a relaƟvely small 



proporƟon of total detecƟons. The markedly low precision in files during this hour is likely 
due to the presence of male solo calls preceding the duet (Clink et al., 2020), some of which 
were misclassified as great calls. Furthermore, precision for both ARU and hour was 
correlated with the number of true posiƟves present, suggesƟng a relaƟvely stable false 
posiƟve rate, which would result in lower precision where great calls are scarce. Therefore, 
cauƟon is warranted when interpreƟng daily call rates during off-peak calling hours and in 
low-density populaƟons. As expected, recall varied with call quality, since “clear” calls are 
more likely to originate closer to the ARU than “very faint” calls. Further invesƟgaƟon into 
the relaƟonship between detecƟon probability and distance to the call source would help to 
contextualise this relaƟonship. Overall, our validaƟon process highlights the importance of 
comprehensive performance assessment when interpreƟng the output of automated 
detectors in ecological applicaƟons. Special aƩenƟon should be given to generaƟng test 
datasets to ensure robust detector performance, especially when applying automated 
detecƟon across different locaƟons, habitats, and Ɵme periods.  

This study highlights the advantages of applying automated detecƟon to acousƟc data when 
studying species’ vocal behaviour. Although frequent maintenance of ARUs was required, 
conducƟng manual acousƟc surveys at eight locaƟons over an equivalent Ɵme period would 
be unfeasible. Furthermore, the 23,244-hour dataset was analysed by our automated 
detector in only ~123 hours. Unlike manual acousƟc surveys, our approach allows for 
conƟnuous monitoring without the presence of human observers, which can influence vocal 
behaviour. The scalability of this method from single-site to landscape-level monitoring 
provides opportuniƟes to study species’ distribuƟons and responses to environmental or 
anthropogenic factors across habitats and over extended Ɵme periods. For example, our 
findings suggest that lowland heath forests support healthy gibbon populaƟons, as 
evidenced by the relaƟvely high call rates recorded in this habitat. Although widespread, 
lowland heath forests have oŌen been overlooked in conservaƟon planning due to 
misconcepƟons about their biodiversity and ecological producƟvity (Anirudh et al., 2025). 
Our results challenge this percepƟon by highlighƟng the importance of lowland heath for 
endangered H. albibarbis, thereby strengthening the case for protecƟng this habitat type in 
future conservaƟon strategies.   
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Supplementary tables and figures are provided below. 
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ARU Jul-
18 

Aug-
18 

Sep-
18 

Oct-
18 

Nov-
18 

Dec-
18 

Jan-
19 

Feb-
19 

Mar-
19 

Apr-
19 

May-
19 

Jun-
19 

Jul-
19 

Aug-
19 

Sep-
19 

Oct-
19 

Nov-
19 

Dec-
19 

Total 

LH1 15 20 30 31 23 29 25 28 31 30 31 30 31 25 30 31 30 29 498 
LH2 1 9 30 22 30 27 24 28 31 29 31 30 31 26 28 18 28 8 429 
LH3 12 30 30 31 30 26 23 27 31 30 31 28 30 26 25 26 22 23 475 
MS1 16 20 30 31 30 27 24 28 31 30 31 30 24 26 30 28 30 24 490 
MS2 14 24 30 31 30 24 23 28 31 30 31 30 30 26 30 23 30 28 493 
LP1 17 30 21 31 30 27 24 27 31 30 30 30 30 25 29 26 30 25 493 
LP2 14 31 30 31 30 27 24 27 31 30 31 30 31 26 30 23 30 22 498 
LP3 17 31 30 31 30 25 24 26 31 30 31 30 29 23 30 26 28 27 498 

Table S1. The number of survey days for each ARU per month. 



Model df AIC BIC ΔAIC 
habitat + month 23 30897.15 31041.18 0.00 

month 21 30898.11 31029.61 0.96 
habitat x month 57 30935.12 31292.06 37.97 

habitat 6 31033.20 31070.77 136.05 

 

Month EsƟmate SE z-value p-value 
August 2018 0.039 0.116 0.335 0.738 

September 2018 0.223 0.111 2.013 0.044* 
October 2018 0.247 0.111 2.228 0.026* 

November 2018 -0.074 0.116 -0.636 0.525 
December 2018 0.162 0.114 1.423 0.155 

January 2019 0.273 0.117 2.345 0.019* 
February 2019 0.501 0.112 4.470 <0.001*** 

March 2019 0.210 0.111 1.899 0.058 
April 2019 -0.216 0.112 -1.924 0.054 
May 2019 -0.036 0.110 -0.325 0.745 
June 2019 -0.300 0.112 -2.689 0.007** 
July 2019 -0.162 0.111 -1.463 0.144 

August 2019 -0.174 0.114 -1.518 0.129 
September 2019 -0.033 0.110 -0.304 0.761 

October 2019 0.060 0.113 0.529 0.597 
November 2019 0.245 0.111 2.208 0.027* 
December 2019 0.038 0.119 0.317 0.751 

 

 

 

Table S2. Model fit comparisons for hypotheses 1 and 2. Generalised linear mixed models 
with a zero-inflated negaƟve binomial distribuƟon and random effect of recording unit 
were fiƩed to test the effects of habitat, month, and their interacƟon on daily call rate. 

Table S3. Effects of month on daily call rate relaƟve to July 2018. Results are from a 
generalised linear mixed model with a zero-inflated negaƟve binomial distribuƟon, 
random effect of recording unit, and month as a fixed effect. Significance codes: p < 0.05 *, 
p < 0.01**, p < 0.001***. 



 

No. of lagged days df AIC BIC ΔAIC 
1 5 30972.93 31004.24 65.85 
2 6 30918.82 30956.40 11.74 
3 7 30915.87 30959.70 8.79 
4 8 30907.08 30957.18 0.00 
5 9 30908.16 30964.52 1.08 

 

No. of lagged days df AIC BIC ΔAIC 
1 3 2842.954 2861.740 21.840 
2 4 2827.020 2852.068 5.906 
3 5 2821.114 2852.424 0.000 
4 6 2822.339 2859.911 1.225 
5 7 2824.282 2868.116 3.168 

 

  

Table S4. Model fit comparisons for daily call rate and lagged daily rainfall. Generalised 
linear mixed models with a zero-inflated negaƟve binomial distribuƟon and random effect 
of recording unit were fiƩed. Models include daily rainfall accumulaƟons from one day 
prior up to the specified number of lagged days. 

Table S5. Model fit comparisons for daily call presence and lagged daily rainfall. 
Generalised linear mixed models with a binomial distribuƟon and random effect of 
recording unit were fiƩed. Models include daily rainfall accumulaƟons from one day prior 
up to the specified number of lagged days.  



 

 

 

 

Figure S1. Precision of the automated detector by ARU (a.) and hour (b.) with 95% Wilson 
confidence intervals.  

Figure S2. Precision of the automated detector by ARU (a.) and hour (b.) relaƟve to the 
total number of true posiƟves. 



 

 

Figure S3. Recall of the automated detector by call quality with 95% Wilson confidence 
intervals.  
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