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Abstract 

Substitution rate estimates are a key source of information in modern evolutionary biology, 

underpinning divergence time inference and other evolutionary analyses. Mitochondrial DNA 

nucleotide substitution rates, in particular, are commonly used for these purposes. However, these 

rates are typically derived from a small set of genes, closely related species, or from a limited number 

of model organisms. Such limitations become increasingly problematic at deeper phylogenetic levels, 

where errors in rate estimates and divergence times tend to accumulate with evolutionary distance. 

Here, we use nearly complete mitogenomes of 27 pleurodontan (Squamata: Pleurodonta) species to 

estimate substitution rates for the whole clade, paying special attention to the effect of data 

partitioning, calibrations and model choices on these estimations. The substitution rate estimates we 

obtained are consistent with previous findings for specific lineages within the group. Rates across 

individual genes ranged from approximately 0.004 to 0.02 substitutions/site/million years, with 

notable differences between coding and non-coding regions, and among codon positions. Calibrations 

had a less pronounced effect on the analyses than anticipated, although subtle differences were 
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observed. These findings underscore the challenges of estimating targeted nucleotide substitution 

rates, especially for lineages with limited genomic data, as is the case for several Squamata lineages. 

Moreover, the results provide valuable insights into the evolutionary dynamics of Pleurodonta and 

emphasize the importance of incorporating robust data and models to improve accuracy in 

substitution rates and divergence time estimations. 
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Introduction 

Genomic datasets are essential for addressing complex questions in modern evolutionary 

biology. In this context, substitution rate estimates are a cornerstone, providing critical insights into 

molecular evolution and serving as a foundation for various applications. For instance, in the absence 

of fossils or other secondary calibration points, substitution rates often represent the main available 

data for estimating divergence times (e.g., Ho, 2007; Arcones et al., 2021). Mitochondrial DNA 

(mtDNA), in particular, has long been used for this purpose, mainly due to its relatively stable coding 

function, high mutation rates, small effective population size, matrilineal inheritance, and relatively 

fast coalescent times (Avise et al., 1987; Ballard & Rand, 2005). Besides, mitochondrial proteins play 

a critical role in the oxidative phosphorylation pathway and exhibit functional conservation across 

different metazoan lineages (Gray et al., 1999; Broughton & Reneau, 2006). Consequently, the 

accuracy of mitochondrial substitution rate estimates is fundamental to advancing evolutionary 

biology. 

Substitution rates vary considerably across the mitochondrial genome and among different 

taxonomic groups. Empirical studies have revealed substantial variation among different 

mitochondrial genes (Williams & Hurst, 2002; Sloan et al., 2009; Pons et al., 2010; Duchêne et al., 

2011; Zhu et al., 2014; Yang et al., 2018) as well as across lineages (Parkinson et al., 2005; Bininda-

Emonds, 2007; Mower et al., 2007; Nabholz et al., 2008; Welch et al., 2008; Eo & DeWoody, 2010; 

Yan et al., 2021). Importantly, many studies have historically relied on a limited fraction of the 
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mitogenome—primarily cytochrome b, cytochrome c oxidase I, II, and III, and the 12S and 16S 

ribosomal RNAs (Johns & Avise, 1998; Hebert et al., 2003; Roe & Sperling, 2007; Patwardhan et al., 

2014)—and have been based on a few model organisms, typically at the intraspecific level or between 

closely related species (Avise et al., 1987; Ballard & Whitlock, 2004; Funk & Omland, 2005; Ballard 

& Rand, 2005; Rubinoff & Holland, 2005). 

Consequently, despite their widespread use, molecular clock approaches based on mtDNA 

have important practical limitations. Overlooking those variations can introduce substantial biases in 

substitution rate estimates, posing challenges for accurate evolutionary inference. This is particularly 

concerning in deep-level phylogenies, where errors in phylogenetic inference tend to amplify with 

increasing branch length (Buckley, 2002; Lemmon et al., 2009). To mitigate this problem, some 

studies have attempted to calibrate molecular rates using complete (or nearly complete) mitogenomes, 

across different groups (Pons et al., 2010; Park et al., 2012; Plazzi et al., 2016; Mackiewicz et al., 

2022). This specificity is crucial, as accurate divergence time estimates rely on the precision and 

accuracy of calibration points and the rates applied to each marker and lineage under investigation 

(Mello & Schrago, 2014; Zheng & Wiens, 2015; Ritchie et al., 2017; Smith et al., 2018). Also, 

effective calibrations help to counteract errors arising from clock model misspecification (Duchêne 

et al., 2014). 

Squamates (lizards, snakes, and amphisbaenians; Order Squamata) form a globally distributed 

clade of reptiles comprising approximately 11,000 extant species (Simões & Pyron, 2021; Uetz et al., 

2025), making them one of the most diverse vertebrate orders (Uetz et al., 2021). Despite recent 

advancements in next-generation sequencing, squamates remain underrepresented in genomic 

research compared to mammals and birds (Feng et al., 2020; Genereux et al., 2020; Gable et al., 

2023). This limited genomic data availability hinders a comprehensive understanding of key 

evolutionary parameters within the group, including substitution rates. In particular, the Pleurodonta 

clade (the main focus of this study) encompasses a wide range of taxa predominantly distributed 

throughout the New World, with desert iguanas, horned, spiny, and collared lizards dominating many 
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modern squamate faunas in North and South America (Pianka and Vitt, 2003; Losos, 2011; Avila et 

al., 2013; Carvalho et al., 2013). Although Pleurodontan evolutionary history is marked by multiple 

adaptive radiations in response to varied ecological pressures (Blankers et al., 2013; Alencar et al., 

2024), mitochondrial evolutionary parameters remain scarce for the group. Commonly used 

substitution rate values broadly range from 0.005 to 0.02 substitutions per site per lineage per million 

years (subs/site/MY), depending on the gene (e.g., Zarza et al., 2008; Chan et al., 2012; Fontanella et 

al., 2012; Olave et al., 2015; Werneck et al., 2015; Román-Palacios et al., 2018; Bernardo et al., 2019; 

Camurugi et al., 2022; Carvalho et al., 2024; Rogers et al., 2024). However, as in most vertebrate 

groups, these estimates are often based on a limited number of species, typically at shallow 

evolutionary scales, and frequently rely on a small set of mitochondrial genes. 

To address this issue, we integrated recently sequenced mitochondrial data with existing 

mitogenomic data to conduct comprehensive phylogenetic analyses, assessing evolutionary rate 

variation among Pleurodonta mitochondrial genes. Specifically, we analyzed their mitochondrial 

genomes to estimate its mitochondrial substitution rates. Using fossil-calibrated Bayesian 

phylogenetic analyses, we inferred molecular evolutionary rates across several families and 

characterized new nearly complete mitogenomes for seven Tropidurus species: T. guarani, T. 

melanopleurus, T. sp. nov. (species currently under formal description), T. spinulosus, T. tarara, T. 

teyumirim, and T. xanthochilus. We expect that these newly estimated rates will improve the precision 

of molecular clock dating and evolutionary inferences in squamates, offering deeper insights into the 

evolutionary processes influencing biodiversity patterns in this group. 

 

Methods 

We assembled a comprehensive dataset of Pleurodontan mitochondrial genomes available 

from GenBank by November 2024, including seven recently described sequences from different 

Tropidurus species (Salles et al., 2025). One Chamaleonidae species (Calluma parsonii) was included 

as an outgroup, resulting in a final dataset with 28 species (Table 1). Only coding regions (13 genes) 
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and the two mitochondrially encoded ribosomal RNAs (12 and 16s) were used. We excluded 

additional mtDNA markers because they represent regions that are either non-coding and hyper-

variable (D-loop) or ultra-conserved (tRNAs), and therefore inadequate for molecular clock 

calibrations. We separately aligned each mitochondrial gene with MAFFT v7.471 (Katoh & Standley, 

2013) using specific customized settings (-globalpair, --maxiterate 1000, --adjustdirection). 

Alignments were broadly examined by eye, and AMAS (Borowiec, 2016) was used to concatenate 

alignments and compute final summary statistics. 

 

 

Table 1. Species used in all analyses in the present study. New mitochondrial genomes are in bold. 

Species Family GenBank accession number 

Calluma parsonii Chamaeleonidae AB474915 

Basiliscus vittatus Corytophanidae AB218883 

Amblyrhynchus cristatus 

Iguanidae 

NC_028031 

Conolophus subcristatus NC_028030 

Cyclura pinguis NC_027089 

Iguana delicatissima NC_044899 

Iguana iguana NC_002793 

Leiocephalus personatus Leiocephalidae AB266739 

Liolaemus darwinii 

Liolaemidae 

NC_057242 

Liolaemus millcayac NC_057243 

Liolaemus parthenos NC_057244 

Chalarodon madagascariensis 
Opluridae 

AB266748 

Oplurus grandidieri AB218720 

Holbrookia lacerata 

Phyrnosomatidae 

NC_041001 

Phrynosoma blainvillii NC_036492 

Sceloporus occidentalis AB079242 

Urosaurus nigricaudus NC_026308 
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Anolis punctatus 

Polychrotidae* 

NC_044125 

Anolis cybotes AB218960 

Polychrus marmoratus AB266749 

Plica plica 

Tropiduridae 

AB218961 

Tropidurus guarani will be submitted to genbank 

Tropidurus melanopleurus will be submitted to genbank 

Tropidurus sp. nov. will be submitted to genbank 

Tropidurus spinulosus will be submitted to genbank 

Tropidurus tarara will be submitted to genbank 

Tropidurus teyumirim will be submitted to genbank 

Tropidurus xanthochilus will be submitted to genbank 

* Traditionally, Anolis was classified within Polychrotidae. However, molecular phylogenetic studies 

have led to a major taxonomic reassessment. Recent evidence supports placing Anolis and related 

genera within Dactyloidae, rendering Polychrotidae paraphyletic or obsolete. While some taxonomic 

authorities now recognize Dactyloidae, references to Polychrotidae persist in the literature. Our 

option here was to consider Anolis and Polychrus to form a distinct phylogenetic group, despite of 

their taxonomical status. The group monophyly was not enforced and, hence, taxonomic 

arrangements had no influence in our analyses. 

 

 

Effect of calibration points on substitution rate estimates 

We implemented different calibration strategies to understand its possible effects on 

substitution rate estimates. Specifically, estimates were obtained separately through calibrated and 

non-calibrated analyses. Calibration points within the Pleurodonta clade were obtained consulting the 

specialized literature, prioritizing those that have been used in multiple evolutionary studies, and 

which are broadly supported by the fossil record (Table 2). Some possibly accurate calibrations, also 

commonly cited in the literature, but for groups whose monophyly is still under debate, were not used 

here, as monophyly was enforced for each calibrated node. We also note that estimating a fully 

resolved topology or divergence times for the entire group was not our primary objective, as the 

species included in this study represent only a limited sample of Pleurodontan diversity and exclude 

some of the group's most representative lineages. 
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Table 2. Values (million years, MY) of uniformly distributed calibration priors applied in dating 

analyses, based on both fossil and molecular data. Settings for calibration Bayesian prior mean, 

standard deviation and offset are provided. MRCA = most recent common ancestor. 

Calibrated node 

(MRCA prior) 
Species included 

Lower 

value 

Upper 

value 
Offset References 

Pleurodonta 
All except outgroup 

(Calluma parsonii) 
65 85 0.5 

Conrad & Norell 

(2007); Townsend et al. 

(2011); Prates et al. 

(2015); Scarpetta 

(2019) 

Anolis 
Anolis cybotes, 

Anolis punctatus 
40 60 0.5 

Sherratt et al. (2015); 

Zheng & Wiens (2016); 

Román-Palacios et al. 

(2018) 

Phrynosomatidae 

Holbrookia lacerata, 

Phrysonoma blainvillii, 

Sceloporus occidentalis, 

Urosaurus nigricaudus 

35 55 0.5 

Townsend et al. (2011); 

Leaché & Linkem 

(2015); Zheng & Wiens 

(2016) 

Liolaemus 2 

Liolaemus darwinii, 

Liolaemus parthenos, 

Liolaemus millcayac 

30 45 0.5 Portelli et al. (2022) 

Liolaemus 1 
Liolaemus darwinii, 

Liolaemus parthenos 
10 25 0.5 

Fontanella et al. (2012); 

Portelli et al. (2022) 

 

Bayesian estimation of mitochondrial nucleotide evolution rates  

For each mitochondrial partition, mean nucleotide substitution rates were estimated using 

BEAST v2.7 (Drummond & Rambaut, 2007), applying a relaxed molecular clock with an 

uncorrelated log-normal distribution (ucld) and either a Yule or Calibrated Yule speciation model, 

depending on the test. The relaxed ucld-model assumes independent substitution rates across 

branches, as there is no assumed correlation between the rate of a given lineage and that of its 

ancestor. This model requires a prior for the mean clock rate. For coding sequences, we set the mean 

clock rate to 0.01 substitutions/site/MY, and for rRNAs, to 0.0055, based on prior estimates for 

various Pleurodonta species (Supporting Table S1). A normal distribution was used for the ucld mean 

rate prior, with the above values as the mean, a standard deviation (Sigma) of 0.005 for coding 

sequences and 0.0015 for rRNAs, with these same values used as the Offset. These hyperprior values 
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(Sigma and Offset) were determined based on preliminary analyses to ensure appropriate 

parameterization, and also computational and statistical demands. 

For each calibration scheme (whether or not it included calibration points), we estimated 

substitution rates for each mitochondrial gene and for each codon position within protein-coding 

sequences. Tree topologies were linked across partitions, while clock models were unlinked both 

between genes and among codon positions within genes. Site models were linked across codon 

positions within individual genes but unlinked between genes, with model selection performed using 

BEAST Model Test (bModelTest; Bouckaert and Drummond, 2017) under the ‘namedExtended’ 

model set. Uncalibrated analyses consisted of two independent MCMC runs of 500 million 

generations each, with parameters sampled every 25,000 generations. Calibrated analyses followed 

the same sampling scheme, but each run was extended to 850 million generations. Convergence of 

all parameters was verified using Tracer v1.4 (Rambaut et al., 2007), ensuring effective sample sizes 

(ESS) ≥ 200 whenever possible. In summary, we performed four BEAST analyses (two calibrated 

and two uncalibrated) and reported the final results as the combination of two runs per analysis using 

LogCombiner (Rambaut and Drummond 2014). 

 

Results 

Alignments and evolutionary models 

 The alignment of protein-coding sequences alone comprised 11,426 bp, while the inclusion 

of non-coding sequences increased the total length to 14,059 bp. All coding genes exhibited multiple 

substitution models within the 95% highest posterior density (HPD) interval estimated through the 

bModelTest. Only the two rRNAs had a single best-fitting model to explain site substitution, 

specifically the GTR model (Supporting Table S2). 
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Substitution rates 

Analysis of substitution rates across codon positions revealed heterogeneity in evolutionary 

rates across the mitochondrial genome of Pleurodontans; 95% posterior distributions of substitution 

rates for each gene can be observed in Fig. 1. When considering only protein-coding sequences, 

substitution rates appear relatively homogeneous across genes, with substantial overlap of the HPD 

intervals (Fig. 1A). Conversely, coding and non-coding regions exhibit markedly different 

substitution rates, with non-coding regions evolving approximately ten times slower (Fig. 1B). 

Calibrated analysis (for all genes) has consistently shown similar rates to non-calibrated ones, but 

with slightly smaller estimates. Median substitution rate estimates for individual genes, based 

exclusively on third codon positions, are presented in Table 3 (estimates for all codon positions are 

available in the original BEAST output files archived on Zenodo). In the case of non-calibrated 

analysis, the fastest mean rate was observed for ND4 and the slowest for 12s and 16s. Regarding 

calibrated analysis, rRNAs also exhibited the lowest estimates, but in this case ND2 presented the 

higher value. 
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Fig. 1. Posterior distributions of mitochondrial substitution rates (substitutions/site/MY) from 

calibrated (pink) and non-calibrated (blue) analyses. (A) Violin plots for 13 protein-coding genes, 

illustrating the range and density of estimated rates for each codons position (B) Violin plots for two 

rRNA genes. In both cases, the width of each violin indicates the distribution density, and horizontal 

lines represent median values. 

 

Table 3. Nucleotide substitution rates per site per million years estimated from 13 mitochondrial 

protein-coding genes (3rd codon position) and 2 rRNAs across 27 Pleurodontan species plus one 

outgroup. These rates were inferred using BEAST with a relaxed clock model assuming a lognormal 

distribution. The reported values represent the combined results from two independent runs. 

Gene Non-calibrated Calibrated 

 ucld mean rate Stdev ucld mean rate Stdev 

12s 0.00598 0.0016623 0.00518 0.0017229 

16s 0.00632 0.0015115 0.00468 0.0019285 

ATP6 0.02059 0.0044696 0.01861 0.0049339 

ATP8 0.01977 0.0038046 0.01958 0.0038725 

COX1 0.02036 0.0039585 0.01578 0.0042038 

COX2 0.01945 0.0055384 0.01706 0.0055097 

COX3 0.01995 0.0043769 0.01836 0.0048264 

CYTB 0.02136 0.0042930 0.01840 0.0045799 

ND1 0.02011 0.0045590 0.01826 0.0047083 

ND2 0.02114 0.0043318 0.02025 0.0044484 

ND3 0.02049 0.0044802 0.01977 0.0046298 

ND4 0.02151 0.0042928 0.01986 0.0048263 

ND4L 0.02036 0.0045192 0.01996 0.0045306 

ND5 0.02157 0.0042466 0.01991 0.0044204 

ND6 0.02121 0.0044322 0.02006 0.0048847 
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Discussion 

The influence of different partitioning schemes on the estimation of substitution rates 

Our data support the widely accepted theory that nucleotides at the third codon position evolve 

at distinct rates and through different mechanisms compared to those at the first and second codon 

positions (Kimura, 1980). In practical terms, this also means that, within a gene, first codon positions 

are expected to evolve more similarly to other first codon than to second or third positions, with the 

same reasoning applying to each position (Bofkin & Goldman, 2007)—which is exactly what we 

detected here (Fig. 1). Thus, we emphasize that any studies drawing inferences from mitochondrial 

data must carefully account for the inherent heterogeneity in the composition of each gene, as ignoring 

this fact can introduce different phylogenetic artifacts (Hassanin, 2006).  

In this context, codon-position models offer a more robust framework for capturing the 

evolution of coding sequences in most multiple sequence alignments. By accounting for site 

heterogeneity and other evolutionary parameters, these models should provide greater accuracy and 

biological relevance compared to simpler alternatives. Consequently, substitution model testing can 

be a fundamental approach on this regard, and our results once again reveal notable patterns. We 

observed substantial differences in the evolutionary models best suited for each mitochondrial gene, 

including complex models that consider heterogeneity both in rates and nucleotide frequencies (Table 

S2), reflecting the inherent heterogeneity in substitution rates across the mitogenome. While the 

limitations of using overly simplistic evolutionary models may vary depending on the dataset, simpler 

models might invariably misestimate different evolutionary parameters by failing to account for the 

occurrence of multiple substitutions at the same site (Yang & Nielsen, 2000; Anisimova & Kosiol, 

2009; Duchêne et al., 2014)—which can also lead to errors in phylogenetic inferences (Buckley et 

al., 2001; Su et al., 2014). 

Although the mitogenome evolves as a single non-recombining unit, and typically exhibits a 

largely consistent phylogenetic signal across genes, our results also align with established evidence 

that evolutionary pressures act differentially on individual mitochondrial genes (Saccone et al., 1999; 



12 

 

Xu et al., 2006). While substitution rates showed broad similarity across the mitogenome, some 

degree of heterogeneity was observed among specific genes. In the calibrated analyses, genes such as 

ND2 and ND6 had substitution rates above 0.02 substitutions/site/MY, while others like COX1 and 

COX2 generally ranged between 0.015 and 0.017. These findings highlight the importance of using 

partitioned analyses that account for both site- and gene-specific rate variation, along with 

appropriately selected substitution models, given the observed heterogeneity across loci and codon 

positions (Table S2). Such approaches are critical for improving the precision of evolutionary 

inferences, including divergence time estimation and substitution rate calibration. 

 

Substitution rates heterogeneity depending on the presence of calibration points 

Our study also evaluated the influence of temporal calibrations on Pleurodontan mitochondrial 

substitution rate estimates. Analyses incorporating fossil calibrations yielded estimates slightly lower 

than those from uncalibrated analyses (Table 3), consistent with evidence that well-constrained 

calibrations reduce biases in molecular dating (Hipsley & Muller, 2014; Warnock et al., 2015). This 

underscores the importance of integrating multiple fossil calibrations, particularly at deep nodes, to 

improve the accuracy of divergence time inferences—a critical consideration for groups like 

Pleurodonta, that exhibit complex biogeographic histories and potential rate heterogeneity across 

subclades (Blankers et al., 2013; Alencar et al., 2024). Nonetheless, uncalibrated estimates did not 

depict large standard deviations, highlighting that, at least in the Bayesian framework we 

implemented, node calibrations were not as important as the used priors in the estimate’s variation.  

 

Difference between coding and non-coding regions 

Mitogenomes are often established as superior to single genes-based approaches for 

divergence time estimation, as the latter typically overestimate node ages (e.g., Duchêne et al., 2011). 

In Pleurodontan squamates, our analyses revealed minimal substitution rate variation across 

mitochondrial coding regions, implying that, except for the rRNAs, practically any chosen gene 

subset may effectively capture their genome-wide evolutionary rate patterns. This finding offers 
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practical advantages for research on this squamate group, where targeted sequencing of subsets could 

reduce costs and labor while preserving phylogenetic signal. Selecting loci with intermediate 

substitution rates and robust phylogenetic resolution might be an important strategy for future 

research design. For instance, the use of genes such as 12S and 16S rRNAs should be critically 

pondered, as they present considerably lower substitution rates (Table 3), likely driven by functional 

constraints on ribosome assembly and saturation in conserved domains (Mueller, 2006; Duchêne et 

al., 2011). Additionally, loci exhibiting reduced phylogenetic informativeness (whether due to limited 

variability, homoplasy, or alignment ambiguity) require rigorous evaluation to avoid compromising 

analytical resolution (Zardoya and Meyer, 1996; Non et al., 2007). Either way, delineating such gene 

subsets demand taxon-specific substitution models and rigorous calibration to minimize biases, 

underscoring the need for tailored analytical frameworks, which can now be achieved by using our 

provided estimates. 

 

Pleurodontan evolutionary dynamics and future perspectives 

The substitution rate estimates from this study (nearly 0.01–0.02 substitutions/site/MY) align 

with prior estimates reported for Pleurodontan lineages (Supporting Table S1). However, we note 

that many of these earlier values were extrapolated from studies of distantly related taxa rather than 

empirically derived from lineage-specific calibrations. This reinforces the reliability of our 

methodological framework, which incorporated different partitioning schemes, appropriate 

substitution models, and string prior calibration strategies. Furthermore, our chosen priors, which 

were informed by values for different taxa within the Pleurodontan clade already reported on the 

literature (Table 2), proved to be robust. The close agreement of our substitution rate estimates with 

those previously reported for Pleurodonta also highlights the relative stability of mitochondrial 

evolutionary rates within the group. Prior research has demonstrated that mitochondrial substitution 

rates tend to cluster within narrow ranges among closely related taxa, often reflecting shared 

evolutionary constraints (Päckert et al., 2007; Pons et al., 2010). On the other hand, while 

mitochondrial protein-coding genes show conserved rate variation patterns across vertebrates—a 
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phenomenon stable for ~450 million years (Broughton & Reneau, 2006)—the drivers of this variation 

remain poorly understood. This gap highlights an opportunity to explore how structural, functional, 

and selective pressures differentially shape mitochondrial gene evolution. 

Furthermore, by providing robust substitution-rate estimates for Pleurodontans as a whole, 

our study offers a valuable resource for future molecular dating analyses. In any case, lineage-specific 

rates for individual clades or species within the group might be warranted, depending on the study 

design. Such an approach could offer valuable insights into the evolutionary dynamics of particular 

species, particularly when ecological, physiological, or demographic factors influence mitochondrial 

evolution (e.g., Welch et al., 2008; Nabholz et al., 2016; Jing et al., 2024). Estimating lineage-specific 

rates could thus help identify these patterns and refine our understanding of the drivers of molecular 

evolution within Pleurodonta. However, the limited availability of complete mitochondrial genomes 

for several Pleurodontan lineages still hinders a full understanding of their evolutionary history from 

being achieved. 

In this context, it is important to recognize that multiple methods exist for estimating 

substitution rates beyond the approach used here. For instance, germline-based estimates (e.g., 

Bergeron et al., 2023) are particularly relevant for assessing average nuclear genomic variation, a task 

that has only recently become feasible with advances in genomic sequencing and bioinformatics. 

However, obtaining such estimates is challenging, as it requires genomic data from multiple 

generations. Additionally, these methods remain taxonomically limited (Chintalapati & Moorjani, 

2020; Bergeron et al., 2023), posing a major challenge in groups like Pleurodonta, where evolutionary 

parameters remain largely unknown for most species. Branch-specific substitution rate estimates, 

such as those generated using PAML (Yang, 2007), offer a robust alternative but are influenced by 

several factors that may affect their reliability for specific research objectives (e.g., sequence quality, 

alignment accuracy, and model assumptions) (Rasmussen & Kellis, 2007; Yan et al., 2023). 

Lineage-specific rate estimation approaches can be computationally demanding, as it requires 

constructing tailored substitution models that account for codon position variation, partition-specific 
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evolutionary dynamics, and rate heterogeneity across the mitochondrial genome, as demonstrated 

here. Also, the accuracy of such specific estimates depends on the availability of high-quality 

sequence data and well-supported calibration points, both of which remain limited for many species, 

including those within Pleurodonta. This gains further importance as incomplete or biased sampling 

and poorly chosen calibrations can introduce substantial uncertainty into divergence time estimates 

(Zheng & Wiens, 2015; Schenk, 2016). Therefore, while lineage-specific rate estimation has the 

potential to refine our understanding of evolutionary rates, it must be applied cautiously, weighing 

the benefits of increased resolution against computational and methodological challenges. 

 

Conclusion 

In this study we examined the phylogenetic utility of nearly complete mitogenomes regarding 

the estimation of substitution rates, offering critical insights into the application of mitochondrial data 

in evolutionary studies. Despite the study's focus on a specific taxonomic scope (the Pleurodonta 

clade), the framework applied here may be broadly applicable across different taxa and divergence 

times. 

Our findings reveal relatively homogeneity in substitution rates across Pleurodontan 

mitochondrial protein-coding genes, but heterogeneity between these and non-coding regions. Also, 

there is a considerable amount of difference in substitution rates when accounting for codon positions. 

Although this heterogeneity is relatively localized, employing rate estimates specific to the genes or 

genomic regions under study clearly enhance the accuracy of evolutionary inferences. Future research 

will be essential to determine whether this heterogeneity arises primarily from conserved replication 

mechanisms that drive variation in mutation rates across genomic regions, the effects of natural 

selection on individual genes, a combination of these factors, or other evolutionary processes. 

Furthermore, evaluating the best modelling and partitioning schemes when conducting 

evolutionary analyses constitute a key factor and must not be overlooked when using mitochondrial 

markers. While subsets of informative genes might approximate these results, their effectiveness 

depends on robust methodological frameworks and careful taxon-specific selection. On this regard, 
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our results provide a valuable reference for future investigations into evolutionary dynamics 

specifically within the Pleurodonta clade and its closely related lineages, offering a foundation for 

comparative studies across Squamata. We then hope that our findings establish a foundation for 

optimizing mitochondrial phylogenetics in squamates, facilitating more accurate evolutionary 

reconstructions across diverse taxa and timescales. 
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Supporting information 

Table S1. References regarding values for substitution rate priors adopted in the present study. 

Gene Values References 

COX1 0.01  
Phrynosomatidae: Bernardo et al., 2019; 

Tropidurus: Camurugi et al., 2022 

CYTB 0.019355 | 0.0113 | 0.0223 

Cyclura: Rogers et al., 2024; Liolaemidae: Olave et 

al., 2015; Liolaemus: Fontanella et al., 2012; 

Tropidurus: Werneck et al., 2015;  

ND1 0.013876 Oplurus: Chan et al., 2012 

ND2 0.013 Anolis: Román-Palacios et al., 2018 

ND4 0.0113 | 0.0078 
Cyclura: Rogers et al., 2024 

Iguaninae: Zarza et al., 2008 

12s & 16s 0.006339 | 0.00576 
Liolaemidae: Olave et al., 2015; Liolaemus: Fontanella 

et al., 2012; Tropidurus: Carvalho et al., 2024;  
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Table S2. Model selection results from BEAST, including only models within the 95% HPD interval 

for each gene. The four-digit model code represents how substitution rates are grouped, following the 

order of relative rates for A-C, A-G, A-T, C-G, C-T, and G-T. A complete list of model codes can be 

found here: https://taming-the-beast.org/tutorials/Substitution-model-averaging/. 

Gene Non-calibrated Calibrated 

Models 

12s GTR GTR 

16s GTR GTR 

ATP6 
HKY, GTR, K81123324, 

TIM123345, TVM123425  

GTR, K80, K81123324, 

TIM123345, TN93121131, TIM123345  

ATP8 
K80, K81123321, K81123324, 

TIM123341, TIM123345, TN93121131 

K80, K813321, K813324, 

TIM3341, TIM3345, TN931131 

COX1 TIM3341, TIM3345, TN931131 TIM3341, TIM3345, TN931131 

COX2 
K80, K813321, K813324, 

TIM3341, TN931131 

K80, K813321, K813324, 

TIM3341, TN931131 

COX3 K80, K813321, K813324, TIM3345, TN931131 
K80, K813321, K813324, 

TIM3341, TN931131 

CYTB GTR, TVM3425 GTR, K813324, TVM3425 

ND1 GTR, K813324, TIM3345, TVM3425 GTR, K813324, TIM3345, TVM3425 

ND2 K813324, TIM3345, TVM3425 K813324, TIM3345, TIM3345 

ND3 K80, K813321, TIM3341, TIM3345 
K80, K813321, TN931131, 

K813324, TIM3341 

ND4 GTR, TIM3345, TN931131 GTR, TIM3345 

ND4L 
GTR, K80, K813321, 

K813324, TIM3341, TIM3345 

K80, K813321, K813324, 

TIM3341, TIM3345, TVM3425 

ND5 K813324, TIM3345, TVM3425 K813324, TIM3345, TVM3425 

ND6 GTR, TVM3425 GTR, TVM3425 

 

https://taming-the-beast.org/tutorials/Substitution-model-averaging/

