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Abstract

Most organisms undergo a series of complex phenotypic changes throughout their life cycles that
allow them to meet the demands of different niches throughout ontogeny. Theory suggests the
significant coordination required to undergo such ontogenetic transitions can impose evolutionary
constraints on variation to developmental programs. This produces patterns known as developmen-
tal hourglasses, which are periods during development where phenotypic and/or genetic variation is
constrained between taxa relative to other points throughout ontogeny. Although empirical support
for developmental hourglasses has been well established in animal embryonic development, it re-
mains unclear if other non-animal or non-embryonic development programs exhibit such patterns.
Furthermore, more recent investigations of developmental hourglasses have largely relied on relat-
ing gene age and sequence divergence to their temporal expression profiles across development, an
approach highly susceptible to noise due to historical contingency and developmental system drift.
Likewise, more recent investigations have described more complex fluctuations in the strength of
selective constraints across ontogeny, suggesting our understanding may be improved by more nu-
anced and flexible approaches for quantifying developmental constraints across ontogeny. To this
end, here I present a theoretical and empirical framework for leveraging population-level varia-
tion in developmental gene/trait expression dynamics to infer the strength of selective constraints
across an ontogeny. I first provide theoretical precedence for this approach using an extended geo-
metric model, which suggests that patterns of variation in gene/trait expression within populations
are stable and recapitulate the latent ontogenetic selective dynamics. I then describe an empirical
approach for inferring these latent ontogenetic selective dynamics and use a simple simulation to
illustrate its utility. Finally, I utilize this approach to infer the dynamics of selective constraints
from population-level transcriptional data of various stages across the monarch butterfly Danaus
plexippus metamorphosis, which suggests both the transitions from larva to pupa and from pupa to
adult constitute developmental hourglasses.
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Introduction

Most organisms undergo some degree of morphological, physiological, and/or behavior transi-
tion throughout their life cycles. These dynamics are often complex and abrupt, resulting in the
expression of disparate phenotypes across ontogeny that facilitate organismal development and
activity in different niches. Biologists have long been interested in explaining the evolution of
ontogenetic complexity, as changes in life cycle dynamics are often associated with patterns of
diversification throughout natural history (Haldane 1932, Moran 1994, Wheeler et al. n.d., Reiss
2002). Although the interplay between ontogenetic and evolutionary dynamics is well appreciated,
explaining prominent patterns in the diversification of developmental programs and assessing their
generality has been more challenging (Drost et al. 2017).

Developmental hourglasses are among the most striking patterns in the diversification of many
ancient ontogenetic programs. In a general sense, developmental hourglasses are marked by peri-
ods towards the middle of a developmental stage where phenotypic and/or genetic diversification
is constrained between taxa (Baer 1828, Duboule 1994, Raff 1996). This pattern has been mostly
defined and explored in animal embryonic development, where it is thought to be driven by selec-
tive constraints imposed by development of the basic body plan (Irie et al. 2014). More recently,
studies have shifted towards describing developmental hourglasses by examining the interplay be-
tween gene divergence/age and their patterns of expression across development. This has provided
evidence for hourglass patterns during the embryonic development of major animal groups, includ-
ing Chordates, Arthropods, and Nematodes (Cruickshank et al. 2008, Yanai et al. 2011, Drost et al.
2015, Drost et al. 2017, Ma et al. 2023). While previous studies have largely focused on animal
embryonic development, there is also some evidence of a developmental hourglass during plant
embryogenesis (Drost et al. 2015, Drost et al. 2017).

Despite the growing body of evidence for hourglass patterns being a general feature embryonic
development particularly in animals, there are several areas in which expanding our approach to
studying the dynamics of selective constraint across development may improve our understanding
of ontogenetic evolution. First, developmental hourglasses have been largely defined phenomeno-
logically in relatively few taxa and ontogenetic programs. Therefore, it remains unclear how gen-
eral these patterns are to a broad array of taxa and to non-embryonic development. For example,
hourglass patterns of selective constraint have been documented in fungal fruiting body develop-
ment, and it is hypothesized that insect metamorphosis and angiosperm flower development my
also exhibit hourglass patterns of selective constraint (Cheng et al. 2015, Drost et al. 2017). How-
ever, there are relatively few studies on these kinds of non-animal or non-embryonic developmen-
tal programs, thus limiting our understanding of how ontogenies have evolved throughout natural
history. Furthermore, more recent investigations of developmental hourglasses have been largely
based on examining gene ages or degrees of sequence divergence in relation to their temporal ex-
pression profiles across development. However, historical contingency and developmental system
drift stand to introduce a (high) degree of noise when examining such patterns across macro-
evolutionary scales, which may impede quantification of selective constraints (Haag et al. 2021).
Similarly, the dynamics of selective constraints can be more complex than simple hourglasses, as
more recent studies have found irregular shapes and fluctuations across ontogeny ( Wu et al. 2019,
Cordero et al. 2020, Aleksandra M. Ozerova et al. 2025). Taken together, previous studies sug-
gest more rigorous quantifications of how selective constraints acts across diverse developmental
programs may improve our general understanding of the evolution of complex ontogenies.



To contribute to this goal, here I present a theoretical and empirical framework for leveraging
population-level variation in developmental dynamics to infer the dynamics of selective constraints
across ontogenies. This framework shifts the focus from testing for developmental hourglasses to
the more general task of inferring the strength of stabilizing selection as a function of ontogenetic
time. First, [ use an extended geometric model to show that variation in the strength of stabilizing
selection across ontogeny gives rise to patterns of variation in gene expression within populations
that are stable and recapitulate the latent selective dynamics. I then describe an empirical approach
for inferring how the strength of stabilizing selection varies across ontogeny using population-level
gene expression profiles, and use a simple simulation to illustrate its efficacy. Finally, I employ
this approach to infer the dynamics of selective constraints using population-level transcriptional
data from various life stages across the monarch butterfly (Danaus plexippus) metamorphosis.

Methods

A extended geometric model for ontogenetic dynamics

Consider an organism with G genes that may vary in their expression throughout the course of
ontogeny. Let 2:9(t) represent the expression of gene g at time ¢, where ¢ € [0, 7] and T is the total
organism’s life span. The transcriptional state at time ¢ can then be written as
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Fitness declines with the squared distance from the optimum, which is defined at time ¢ as
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In a traditional geometric model, fitness is determined by the distance from the optimum and the
(constant) width of the fitness peak o. This assumes that the fitness landscape is uniform through-
out ontogeny. To allow for varying degrees of selective constraint at different points throughout
ontogeny, I instead define a fitness ridge o (¢) whose width can change over the course of devel-
opment. Let m be the number of major transitions, S = (S1,...,8m) € [0,7]™ be the midpoints
of each transition, € = (e, ...,€,,) be the transition durations, and A = (Aq,...,A,,) be the
associated changes in width to the fitness ridge. The fitness ridge function is then
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where oy > 0 is the baseline ridge width. Using a Gaussian fitness function, fitness W is defined
with respect to distance from the optimum as

T d2 (t)
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Temporal gene expression patters z9(t) are mutated through the addition of Gaussian pulses.
Letting 11, be the average pulse amplitude and 7, be the standard deviation in pulse amplitude,
pulse amplitudes are drawn from a Gaussian distribution: a ~ N (u, = 0,7,). Likewise, letting
; and 7; be the mean and standard deviation in pulse widths, pulse widths are I ~ |N (u, 7).
Finally, let s be the time point on which the pulse is centered, where s ~ U(1,2,...,T). To
prevent systematic inflation at the beginning or end of ontogeny due to pulse truncation, pulses

are normalized in discrete time so that their contribution to expression variance is independent of
where s is positioned along the interval. Let

(t—s)*
22

p(t; s,1) = exp(— ) (6)

be the raw discrete Gaussian pulse and p,.¢(¢; ) be the same pulse centered at the midpoint of the
time interval. The normalized pulse is then
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Finally, temporal expression patterns are mutated as
@'(t) = x(t) + a-p(t;s,1), ®)

Evolutionary simulations

To examine how selective constraint acting at different points across ontogeny shapes patterns
of within-population transcriptional variance, I used the previously described model to conduct
individual-based evolutionary simulations. For simplicity, I considered the ontogenetic and evolu-
tionary dynamics of a single gene (G = 1). To highlight selective effects on variation, I defined
a simple linear ontogeny with uniform selective dynamics and contrasted it with that of a more
complex ontogeny marked by a period of selective constraint, both of which lasted 50 time points.
For the simple linear ontogeny, I defined the stabilizing selection function o () = 0.9. For the
complex ontogeny, I defined a developmental hourglass by specifying m = 1 (one transition),
S1 = 25 (occurs during the middle of the 50 time point ontogeny), €; = 5 (concentrated over five
time points), and A; = 0.6 (increase in the strength of stabilizing selection) for Equation 4. 1
conducted both sets of simulations using a standard Wright-Fisher approach and population sizes
of 1000. At each generation, I recorded the population variance in expression at each point in
ontogeny t. To decrease numerical noise for better pattern visualization, I used a Gaussian filter
to smooth variance data using the gaussian_filter function from the SciPy Python library (v.1.13.1)
(Virtanen et al. 2020).



Variance dynamics in ontogenetic expression patterns under stabilizing selec-
tion

For population-level variation in ontogenetic patterns of expression to be useful for inferring how
stabilizing selection acts at different points across ontogeny, it is important to first define the dy-

namics of variance stabilization within a population. First, consider the discrete time log fitness
function, which from Equation 5, is
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Selection at each time point ¢ multiplies the distribution of 9 () — 09(¢) by a Gaussian distribution
with a variance of o(¢)2. Let V/(¢) be the variance of this distribution before selection. The post-
selection variance is then given by the precision additivity rule for the products of Gaussians:

1 1 1 V(t)o(t)?
= = Vielec = Y 2 10
Ve~ V(O T a(0P et = V) + o(1)? {10

To add mutational input from pulses, let M (t) = AT2E,;[p(¢; s,1)?] be the per-generation muta-
tional variance input at time ¢, where A is expected population mutation rate (number of pulses)
per generation. Since p(¢; s,1) is normalized to be independent of s, E, [p(¢; s,1)? is constant in
t for any fixed [. Therefore, M (t) is constant over time, leaving us with the mutational input M.
Combining the mutational input with Equation 10 gives the per-generation recursion
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For tractability, this recursion can be substituted in the continuous time approximation (assuming
small changes per generation) ‘fl—‘g/ ~ Vy41 — Vj, which gives
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Estimating selective constraints across ontogeny using sampled transcrip-
tional variation in a multi-dimensional space

As previously described, transcriptional variation should be constrained at points during ontogeny
where the strength of stabilizing selection is higher. At each time point, this constraint can be
empirically estimated by calculating the average squared distance from each transcriptional profile
in a multivariate Euclidean space to the centroid (population mean). Let N; be the number of
individuals sampled, and the centroid at time ¢ be

1 X
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Therefore, the mean squared distance to the centroid is
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This empirical dispersion corresponds to the population-level variance in transcriptional states at
time ¢. From theoretical expectations described in Equation 5, if individuals are distributed around
the optimum o(t) with a covariance 3; ~ o%(t)I, then the expected squared distance is the trace of
the covariance matrix

E[d?(t)] = trace(%;) = Go*(t) (15)

Substituting the sample centroid yi; for the unobserved o(t) shows that the estimated strength of
stabilizing selection is proportion to the square root of the mean squared distance to the centroid
divided by the number of genes:

0%(t)

Overall, this plug-in estimator shows how the strength of stabilizing selection can theoretically
be estimated from a population sample of transcriptional profiles. However, there are practical
considerations when directly applying Euclidean geometry for these purposes, which are discussed
below.

Empirically inferring the dynamics of selective constraint across the monarch
butterfly metamorphosis

To empirically demonstrate the utility of using inter-individual variation in expression to infer the
dynamics of selective constraints across ontogeny, I analyzed existing transcriptional data from
various life stages across the monarch butterfly D. plexippus metamorphosis. In addition to an
empirical demonstration, this also provides inference into the dynamics of selective constraints
across the holometabolous development, a developmental program that been less studied than the
common embryonic development. The data comes two mRNA sequencing studies from third instar
larvae, fifth instar larvae, early pupae (the day following pupation), late pupae (six to eight days
following pupation), and newly eclosed adults (the day of eclosion) (DuBose et al. 2024, DuBose
et al. 2025). Each life stage is represented by 18-20 replicate individuals, resulting in a total of
n = 96 samples for modeling fitting. Raw mRNA sequence data can be accessed using the NCBI
GEO accession number GSE253389 or the BioProject accession number PRINA1065445, and 1
processed said data into a transcripts/million matrix as described in the associated references.

The first step for empirically inferring selective dynamics is to calculate the pairwise dissimi-
larity matrix as described in Equation 18, which I used the cor R function for (R Core Team 2022).
I then used the pcoa function from the stats.ordination module within the scikit-bio Python library
(v.0.7.0) for principal coordinate analysis and pairwise dissimilarity projection into a reduced mul-
tidimensional space. I calculated the distance from each sample to its corresponding life stage
centroid as described in Equation 20, and fit a generalized additive model (GAM) to these dis-
tances to estimate a smooth function of how transcriptional dispersion changes across ontogenetic
time. Here, I encoded ontogenetic time as the order of life stages (e.g., third instar = 1, fifth instar
= 2, etc.) and used the pygam Python library (v.0.10.1) for model fitting (Servén et al. 2018).



Results

Ontogenetic constraints give rise stable patterns of transcriptional variation
within populations that recapitulate latent selective dynamics

To infer patterns of selective constraint across ontogeny from population samples of transcrip-
tional profiles, said constraints must give rise to distinct patterns of transcriptional variation that
are stable over time. To establish theoretical precedence for such patterns, I used the previously
described geometric model to conduct individual-based evolutionary simulations of two different
ontogenetic programs and examined patterns of within-population transcriptional variation over
ontogenetic and evolutionary time. First, I considered a linear ontogeny in which the effect of
stabilizing selection is uniform across development. I then considered an ontogenetic program that
involves a life stage transition accompanied by greater selective constraint (decrease in o (t)). As
shown in Figure 1A, patterns of variance in gene expression for a linear ontogeny remain relatively
uniform across developmental and evolutionary time. In contrast, the increase in selective con-
straint associated with a significant life stage transition results in significantly reduced expression
variance during said transition (Figure 1B).

To discern the stability of these patterns for a given selective regime, I examined the behavior
of the expected variance dynamics over generations (Equation 12). This showed that variance in
expression rapidly saturates, where the apparent plateau is determined by the strength of selection
(inversely related to o) (Figure 1C). Solving (Equation 12) for % = 0 gives the equilibrium

variance V'*
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which scales approximately linearly with o (Figure 1D). This shows that within-population vari-
ance in expression rapidly stabilizes, suggesting such patterns can be used to infer ontogenetic
selective dynamics.

%8 a7

A framework for empirically inferring the dynamics of ontogenetic selective
constraints

As described by Equation 16, the strength of stabilizing selection acting at different points across
across ontogeny can be estimated using expression variance in a multivariate space. In practice
however, estimating variance with direct Euclidean geometry is difficult due noise and high-
dimensionality (organisms usually have thousands of genes). Instead, o(t) can be estimated by
calculating the sample dispersion around their centroid after using correlation-based distances and
dimensionality reduction to project individuals into a reduced multidimensional space. Let D(t) be
a transcriptional dissimilarity matrix computed between all individuals at each time point, where

pyt) = L=t -

and p is the Pearson correlation coefficient. In this, z-scoring each individual’s expression vector
within time ¢ and calculating the Euclidean distance between said standardized vectors satisfies
|2:(t) — z;(t)||* = 2G(1 — pij). Therefore, multidimensional scaling/principal coordinate analysis
on D;j o (1 — p) is equivalent (up to a constant scale) to principal component analysis on the
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Figure 1: Patterns of transcriptional variance associated with dynamic selective constraints across
ontogeny recapitulate the latent selective dynamics and are stable over evolutionary time. A)
Individual-based evolutionary simulations based on a linear ontogeny in which the strength of
stabilizing selection (x-axis) is uniform across ontogeny (y-axis). The left panel shows the latent
selective dynamics and the right panel shows the dynamics of within-population transcriptional
variance across ontogenetic time (y-axis) and evolutionary time (z-axis), where darker colors in-
dicate less variance. B) Individual-based evolutionary simulations based on an ontogeny that in-
cludes a significant transition accompanied by period of greater stabilizing selection (lower o (t)).
C) Expected dynamics of variance in expression over generations, where different lines corre-
spond to different strengths of stabilizing selection (o). D) Equilibrium variances as a function of
the strength of stabilizing selecting (o). Points correspond to where variance functions in C plateau
at 0. Taken together, these findings illustrate how dynamic stabilizing selection across ontogeny
produces patterns in transcriptional variation that are stable and recapitulate the latent selective
dynamics.



z-scored features. Furthermore, this Euclidean link is approximated if the Spearman rank corre-
lation coefficient is used in place of the Pearson correlation coefficient. Multidimensional scaling
(MDS) or principal coordinate analysis (PCoA) can then be applied to project individuals into a
multidimensional space z;(t) that preserves pairwise dissimilarities. The centroid for this multidi-
mensional space is

1
=5 >zl (19)
=1

The mean squared distance to the centroid then provides an empirical estimate of transcriptional
dispersion, which is

Sem(t) = 37 Z |2:(t) — 2(1)]|? (20)

Following Equation 16, this can be transformed into an estimator of the ridge width o (¢).
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Figure 2: An illustration of how the dynamics of ontogenetic selective constraints can be em-
pirically inferred from population sampling of transcriptional data. A) Simulated samples in a
two-dimensional ordination space from five life stages across an ontogenic program. Each point
represents the transcriptional state of an individual sample and dashed gray lines show the distance
from each sample to the sample centroid. The thicker gray arrowed line depicts the latent onto-
genetic program. B) The left y-axis and black line represents the empirical estimate of stabilizing
selection for each life stage (x-axis), where error bars represent the standard error. The right y-axis
shows the corresponding latent strength of stabilizing selection (o (¢)) for each life stage.

To illustrate the mechanics of this approach, I simulated population sampling of five life stages
across an ontogeny with a distinct increase in selective constraint (decrease in o (t)) during the third
life stage. Here, I defined a centroid z(¢) for each life stage and generated N = 20 individuals
z;(t) by drawing coordinate variations (in a two-dimensional Euclidean/ordination space) from a
normal distribution, such that each z;(t) ~ N(Z(t),o(t)). Inspecting sample coordinates shows
clearly reduced dispersion around the centroid for the more selectively constrained third life stage
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(Figure 2A). Likewise, calculating the average distance from each life stage to its corresponding
centroid shows that the empirical estimates d7,,,(t) closely align with the latent o(t) function
(Figure 2B). For simplicity, this example considered time as discrete stages. However, inferring
selective dynamics across ontogeny could also be accomplished by treating time continuously and
fitting a generalized additive model to dispersion data (as done in the following section). Here,
dfmp ~ s(t) and s(t) is a smooth function, which gives an estimate of how observed dispersion
changes continuously across ontogeny.

Quantifying selective constraints across the monarch butterfly metamorpho-
sis

Empirical investigations of selective constraints across ontogeny are largely limited to few repre-
sentative developmental programs (e.g., embryonic development). Therefore, I used the previously
described framework to infer patterns selective constraint across the metamorphosis of the monarch
butterfly D. plexippus. This showed non-linear variation in dispersion across life stages (effective
degrees of freedom =4.98, p < 0.001), with the estimated smooth term s(¢) explaining 44% of the
variance in sample distances to their stage centroid (Figure 3). Specifically, transcriptional disper-
sion slightly increased from the third instar larval stage to fifth instar larval stage, before sharply
decreasing early in the pupal stage. Dispersion increased again throughout pupal development and
decreased again in adults shortly after eclosion (Figure 3). Overall, this suggests the metamorphic
transitions of pupation and eclosion are accompanied by significant selective constraint.

Discussion

To improve our understanding of how selective constraints have shaped the evolution of ontoge-
netic programs, quantification of said constraints from diverse systems and developmental pro-
grams, including embryonic and non-embryonic, are needed. Existing approaches for this task
typically rely on examining the relationship between gene age/sequence divergence between taxa
and their patterns of expression across development. However, historical contingency and develop-
mental system drift across macro-evolutionary scales can add noise to extant signals of ontogenetic
selective constraints (Haag et al. 2021). Likewise, the dynamics of selective constraints across on-
togeny can have irregularities and fluctuations not accounted for by the simple hourglass model
framework typically employed (Wu et al. 2019, Cordero et al. 2020, Aleksandra M. Ozerova et al.
2025). Here, I described a framework for inferring the dynamics of selective constraints acting
across ontogeny based on within-population variation in developmental gene/trait expression. I
first used a geometric model that considers expression values as functions of ontogenetic time to
examine theoretical support for this concept. This showed that variation in the strength of sta-
bilizing selection acting across ontogeny gives rise to stable patterns of expression variation that
recapitulate the latent selective dynamics (Figure 1). I then describe a framework for leveraging
this expression variation to empirically infer the strength of developmental selective constraints
across ontogeny, and use a simple simulation to illustrate its mechanics (Figure 2). Finally, I em-
ploy this approach to describe the dynamics of selective constraints acting across the monarch
butterfly metamorphosis. This showed evidence that the metamorphic transitions from larva to
pupa and from pupa to adult were accompanied by significant developmental constraints, while
within-stage development was subject to weaker constraints (Figure 3).

10



4
——va

> o

»
o

Dispersion

Figure 3: Evidence of selective constraint at life stage transitions across the monarch butterfly
metamorphosis. Patterns of transcriptional dispersion (y-axis) across life stages (z-axis). The
solid black line depicts the smooth function s(t) estimated by fitting a generalized additive model
(R? = 0.44), and the shaded area represents the 95% confidence interval. Each point represents
the sample transcriptional dispersion, and error bars represent the standard error.

Generally speaking, the concepts I have described here are intuitive and by no means novel, as it
is well established that stabilizing selection reduces variation. Furthermore, this approach is empir-
ically justified, as inter-individual variation in developmental dynamics have been previously used,
albeit to a lesser extent than macro-evolutionary focused approaches, to described developmental
hourglasses (Cruickshank et al. 2008, Liu et al. 2020). However, macro-evolutionary approaches,
most notably transcriptome age indexing, have become the primary way of studying ontogenetic
evolutionary constraints (Domazet-LoSo et al. 2010). While this is not inherently problematic be-
yond possible noise (as previously described), our understanding of ontogenetic evolution could
be improved by linking macro-evolutionary patterns with the underlying micro-evolutionary pro-
cesses. To this end, I believe formalizing an approach for leveraging extant patterns of population
variation in developmental dynamics may be useful for making such inferences, which is what this
manuscript hopes to accomplish.

The majority of previous investigations into the evolutionary dynamics of developmental pro-
grams have focused on embryonic development, with an even more specific bias towards verte-
brates. Therefore, here I focused my empirical case study on examining patterns of selective con-
straints across a the holometabolous development of the metamorphic insect D. plexippus. This
showed that the transitions from larva to pupa and from pupa to adult were accompanied by sig-
nificantly reduced transcriptional variation, while variation increased during development within
larvae and pupae. This suggests that metamorphic transitions are accompanied by significant se-
lective constraint, while development within a given life stage may be more free to vary. However,
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this inference warrants caution, as it is possible that the decreases in transcriptional dispersion as-
sociated with metamorphic transitions were not driven by variation in transcriptional dynamics, but
rather because the sampling of early pupae and newly eclosed adults was done with more precise
relative times. In other words, the increased variation seen in later larval and pupal development
may be attributed to differences in developmental rates that would have been removed by more
precise sampling of early pupae and newly eclosed adults in relative ontogenetic time (day after
pupation and day of eclosion). In this case, it may still be interesting if selective constraints are
acting against heterochrony associated with metamorphic transitions, but more temporal resolution
in expression profiles would be needed for further investigation. Nonetheless, these findings are
consistent with previous studies, which have found evidence of increased regulatory conservation
and decreased inter-individual variation early in pupal development (Artieri et al. 2010, Aleksan-
dra M. Ozerova et al. 2025). Consistent with this decreased variation, there is also evidence that at
least part of the embryonic developmental program is recapitulated in pupal development (Alexan-
dra M. Ozerova et al. 2022, Aleksandra M. Ozerova et al. 2025). However, to my knowledge,
the reduced transcriptional variation associated with eclosion in adults has yet to be described, as
previous studies have typically focused on older adults. Therefore, future studies would be needed
to discern the generality of this pattern.

Overall, the presented framework will hopefully facilitate future studies that focus on linking
the well established macro-evolutionary patterns to micro-evolutionary processes across diverse
taxa and developmental programs. In this, future focus on understanding selective constraints in
non-embryonic development will improve our general understanding of developmental evolution
throughout natural history.

Data and code availability

All code written for model simulations, output analysis, and visualization, are available on GitHub
athttps://github.com/gabe-dubose/evontogeny/tree/main/scripts. Toaid
in model exploration, I also wrote a small Python package for running simulations, which is avail-
ableathttps://github.com/gabe-dubose/evontogeny. All code is also archived via
Zenodo at https://doi.org/10.5281/zenodo.17107808.
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