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Abstract

While monitoring biodiversity through camera traps has become an important
endeavor for ecological research, identifying species in the captured image
data remains a major bottleneck due to limited labeling resources. Active
learning—a machine learning paradigm that selects the most informative data
to label and train a predictive model—offers a promising solution, but typi-
cally focuses on uncertainty in the individual predictions without considering
uncertainty across the entire dataset. We introduce a new active learning
policy, Vendi information gain (VIG), that selects images based on their impact
on dataset-wide prediction uncertainty, capturing both informativeness and
diversity. Applied to the Snapshot Serengeti dataset, VIG achieves impressive
predictive accuracy close to full supervision using less than 10% of the labels.
It consistently outperforms standard baselines across metrics and batch sizes,
collecting more diverse data in the feature space. VIG has broad applicability
beyond ecology, and our results highlight its value for biodiversity monitoring
in data-limited environments.

Keywords: Active Learning, Information Gain, Diversity, Experimental Design,
Ecosystem Monitoring, Information Theory, Ecology, Vendi Scoring.

1 Introduction

The ability to monitor biodiversity at scale is critical for understanding ecosys-
tem health and informing conservation efforts. Camera traps—remotely activated
cameras triggered by motion or heat—have become a key tool for ecological data
collection, enabling large-scale, non-invasive monitoring of wildlife in their natural
habitats (Trolliet et al., 2014; Delisle et al., 2021; Tuia et al., 2022). These devices
generate vast volumes of image data, often spanning multiple times of day and
geographies. However, the subsequent task of identifying and labeling the species in
these images remains a significant bottleneck. Manual annotation is labor-intensive,
costly, time-consuming, and may require expert knowledge, especially when dealing
with rare species or poor image quality.

Recent advances in machine learning, specifically deep learning for image classifica-
tion, offer a promising direction for automating species identification (Norouzzadeh
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Figure 1: Overview of Vendi information gain (VIG) for active learning. We use
a trained dropout neural network to sample labels for a candidate datapoint. The
neural network is then retrained on this fantasized data to sample labels of the
entire pool. Uncertainty in these predictions is captured by VIG, and we select the
candidate that yields the highest information gain (i.e., lowest uncertainty) in the
predictions to label. The result is then added to the training dataset, and the process
repeats until the labeling budget is exhausted.

et al., 2018; Beery et al., 2018). Yet the performance of these models crucially
depends on the availability of large amounts of high-quality labeled training data.
In many ecological applications, however, labels are scarce and labeling is costly.
These challenges motivate the need for intelligent sampling strategies that maximize
model performance while minimizing labeling effort.

Active learning (Settles, 2009; Bothmann et al., 2023) offers a principled solution
to this problem. By iteratively selecting the most informative examples to label,
active learning algorithms can achieve high accuracy with fewer labeled instances
than naïve approaches. Existing active learning solutions reason about the level
of informativeness of candidates for labeling on an individual basis—targeting
datapoints that the model is most uncertain about—without accounting for the
effects of those datapoints post-labeling. This perspective neglects the overall
structure of the entire image pool.

In this work, we propose Vendi information gain (VIG), a novel active learning policy
designed to optimize the global informativeness of the training data. VIG builds on
recent advances in information-theoretic metrics and quantifies the reduction in pre-
dictive uncertainty across the entire image pool when a candidate image is labeled.
This approach selects datapoints not only because they yield high uncertainty, but
because they are likely to inform the model’s predictions across the board. Figure 1
shows the schematics of VIG consisting of the following steps. First, we sample
candidate labels for each unlabeled image using a dropout neural network predictor.
We then retrain the model on these fantasized labels and sample predictions for the
entire unlabeled pool. These sampled predictions quantify the reduction in Vendi
entropy (Friedman and Dieng, 2023; Nguyen and Dieng, 2025) across the unknown
labels, which guides the search for the candidate with the highest information gain.
This process repeats iteratively, expanding the labeled set until the labeling budget
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is exhausted. The use of a dropout neural network for active learning is described
in Section 2.2, and Section 2.4 includes the computational details of VIG.

Applied to the Snapshot Serengeti dataset (Swanson et al., 2015)—a benchmark for
camera trap classification—VIG consistently outperforms standard active learning
baselines in terms of label efficiency and predictive accuracy. We show that VIG
collects more diverse data in feature space, leading to better generalization with
fewer labels. Our results suggest that VIG can serve as a general-purpose method
for data-efficient ecological monitoring.

2 Method

We first discuss the active learning framework and the use of a dropout neural
network as the predictor for this task. We then provide background on VIG as a
metric of information gain and present its adoption to active learning.

2.1 Active Learning Policies

Active learning targets the common setting in machine learning where labeling
data is costly (in terms of time, money, or some safety-critical conditions). The
goal is to design an active learning policy that selects a small amount of data
to label, so that the predictive model trained on the labeled data achieves good
generalization performance. In our setting, we have access to a large database
of unlabeled images X = {x i}ni=1, where each x i denotes a particular datapoint
(image) within the database. These images are classified into a predetermined
number of classes [C] = {1,2, . . . , C}, and the unknown label yi of datapoint x i
denotes the membership of that point. Active learning proceeds in an iterative
manner where at each step, the active learning policy selects a batch of images to
label, adding them to the training data. The process repeats such that we accumulate
a training set of increasing size until our labeling budget is depleted.

The main focus of active learning is the design of the policy that selects which data
to label. Increasing information (or decreasing uncertainty) in the knowledge of
the trained model serves as a popular heuristic for this task. Formally, assume that
we have a probabilistic model that produces the posterior probability that a point
x ∈ X belongs to class c ∈ [C], denoted as p(y = c | x). (We omit the dependence
on the labeled data D that the model is trained on for conciseness.) Many active
learning policies seek to minimize model uncertainty, quantified by various statistics
from the predictive distribution p(y | x). For instance, the Max entropy policy finds
the data that have the highest predictive entropy H (Shannon, 1948) to quantify
uncertainty in the predictions:

H(y | x) = −
∑

c∈[C]

p(y = c | x) log p(y = c | x). (1)

Other policies target alternative ways to quantify predictive uncertainty. This in-
cludes the Mean STD policy targeting the average standard deviation in the predic-
tions:

σ(x) =
1
C

∑

c∈[C]

q

E [p(y = c | x)2]−E [p(y = c | x)]2, (2)
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which corresponds to the standard deviation statistic in the regression setting,
but has been recently adopted in classification as well (Kampffmeyer et al., 2016;
Kendall et al., 2017). Another popular active learning policy, BALD, maximizes the
amount of information gained about the predictive model’s parameters ω, which is
equivalent to maximizing the mutual information I between predictions and model
posterior (Houlsby et al., 2011):

I(ω, y | x) = H(ω)−Ep(y|x) [H(ω | x , y)] . (3)

Finally, Kirsch et al. (2019) proposed BatchBALD that extends BALD to account
for interactions between datapoints within a batch. We use these active learning
policies as baselines to compare VIG against.

2.2 Dropout Neural Networks

The previously described active learning policies depend on a probabilistic model
producing predictions of the form p(y = c | x), and as such have been limited to
kernel-based methods such as Gaussian processes (Li and Guo, 2013). In the context
of image classification, these methods require a kernel to operate on images, which
do not scale well to high-dimensional data or capture spatial information within the
input images. On the other hand, convolutional neural networks (Rumelhart et al.,
1985; LeCun et al., 1989) have proven to be effective at learning from images and
achieved human-level performance at image recognition. However, neural networks
do not inherently produce probabilistic predictions with calibrated uncertainty
quantification.

Initially developed to regularize neural networks, dropout (Hinton et al., 2012;
Srivastava et al., 2014) dictates that random nodes in the hidden layers of a neural
network are disabled at each forward pass during training. Gal and Ghahramani
(2016) further showed that using dropout during inference produces Monte Carlo
samples from the predictive distribution of the corresponding Bayesian neural
network trained with variational inference, naming the technique MC dropout.
Finally, Gal et al. (2017) used MC dropout as the predictive model to perform active
learning on high-dimensional image data, showing that combined with MC dropout,
the policies previously described outperform kernel-based active learning methods as
well as their counterparts that use the predictions of a non-dropout neural network.
We use this neural network model with MC dropout as the probabilistic classifier in
our experiments.

2.3 Vendi Information Gain

VIG was based on the Vendi Score (VS), a flexible diversity metric. First proposed by
Friedman and Dieng (2023) and later extended by Pasarkar and Dieng (2024), the
VS operates on a set of datapoints D = {θi}ni=1 sampled from some domain Θ. To
realize the VS, we first require a positive semidefinite kernel function k : Θ×Θ→ R,
where k(θ ,θ) = 1,∀θ ∈ Θ. We then compute the kernel matrix K ∈ Rn×n, where
each entry Ki, j = k(θi ,θ j). Finally, we define the VS as:

VSq(D; k) = exp

�

1
1− q

log
� n
∑

i=1

(λi)
q
�

�

. (4)
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where λ1,λ2, . . . ,λn are the eigenvalues of K, normalized so that they sum to 1,
and the order q ≥ 0 is a hyperparameter. The VS has since been extended and
applied to various domains, including evaluating generative models (Hall et al.,
2024; Senthilkumar et al., 2024; Jalali et al., 2024), molecular simulations (Pasarkar
et al., 2023), Bayesian optimization (Liu et al., 2024) and active search (Nguyen
and Dieng, 2024), sequence generative models (Rezaei and Dieng, 2025a), RAG
approaches for LLMs (Rezaei and Dieng, 2025b), analysis of large-scale data Pasarkar
and Dieng (2025), and reinforcement learning (Lintunen, 2025).

In particular, Nguyen and Dieng (2025) introduced VIG as a metric of information
gain, defining it as the difference in the Vendi entropy HV of a random variable θ
before and after conditioning on another variable y:

VIG(θ , y; q) = HV (D; q)−Ey[HV (Dy ; q)], (5)

where D = {θi}ni=1 is a set of samples of θ , and Dy = {θi | y}ni=1 is the corresponding
set of samples conditioned on a particular value of y. Here, the Vendi entropy is
the logarithm or the VS, or the Rényi entropy of the normalized eigenvalues of the
kernel matrix computed from a set of samples:

HV (D; q) =
1

1− q
log
� n
∑

i=1

(λi)
q
�

. (6)

Nguyen and Dieng (2025) demonstrated many of VIG’s advantages over mutual infor-
mation, the default measure of information gain in the scientific literature (Shannon,
1948; Cover, 1999). Namely, VIG works well with only samples of the random vari-
able of interest and offers a more principled quantification of information gain that
accounts for sample similarity. The authors showcased VIG’s superior performance
in a wide range of tasks, including experimental design problems and level-set
estimation.

2.4 Vendi Information Gain for Active Learning

We adopt the VIG criterion for active learning, proposing a policy that minimizes
the Vendi entropy of the posterior predictions across the entire database of images,
conditioned on a candidate datapoint. Formally, denote θ as the vector that con-
catenates the unknown labels of the images within the database, the VIG policy
finds the datapoint x that minimizes the posterior Vendi entropy in θ :

VIG(θ , x) = HV (D)−Ey|x
�

HV (Dy | x)
�

, (7)

where D is a set of samples of the label vector θ , and Dy is the corresponding set
of samples conditioned on a particular label y of image x . These samples can be
generated using the MC dropout neural network when predicting on the images in
the database.

The computation of Vendi entropy requires a kernel that compares two given sample
label vectors θ1 and θ2. We compute the Hamming distance dH between these vectors
and subtract the normalized distance from 1 to produce a similarity measure:

k(θ1,θ2) = 1−
dH(θ1,θ2)

N
, (8)
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Figure 2: Average test accuracy (±1 standard error) by various active learning poli-
cies. VIG obtains a large gain right from the start and maintains its lead throughout
the active learning loop. It takes VIG only 150 datapoints to achieve the accuracy of
75% that other methods need 500 points to achieve. Meanwhile, at 500 points, VIG
achieves close to 90% accuracy. In comparison, training on all available training
data (5000+ images) yields an accuracy of 99%.

where N is the length of the label vectors. Note that this is not the same kernels
in the kernel-based active learning policies, which seek to operate on the images
themselves.

This choice of kernel is natural, as two labels are similar to each other only if they
belong to the same class. When there is only one datapoint in the pool, the Vendi
entropy induced by this kernel coincides with the Shannon entropy of the datapoint’s
class distribution—a reassuring feature.

Overall, while traditional active learning policies target individual predictive uncer-
tainty measures, VIG selects datapoints expected to reduce uncertainty in predictions
over the entire unlabeled pool, accounting for global informativeness. To compute
the VIG score for a candidate image x , we sample possible labels y, retrain the
model with the labeled x , then sample predictions θ for the full pool. The candidate
with the highest VIG score is selected.
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Figure 3: The 5 most (top row) and 5 least (bottom row) accurate predictions
by the model trained with data collected by VIG. In the bottom row, the model
understandably makes mistakes on instances where the animal is barely visible.

Table 1: Average test statistics by various active learning policies at 500 labeled
datapoints. (Recall is omitted as it coincides with accuracy by definition.) VIG
consistently outperforms the baselines across the different metrics.

Max entropy BALD Mean stddev BatchBALD VIG

Precision ↑ 0.780 0.799 0.780 0.764 0.888
F1 score ↑ 0.755 0.775 0.765 0.738 0.883

Cross-entropy loss ↓ 0.705 0.635 0.625 0.707 0.402

3 Experiments

We benchmark our method VIG against existing baselines in active learning described
in Section 2. At each iteration of the active learning loop, each policy obtains a batch
of 20 images to label, and the process repeats until 500 images are collected.

Figure 2 shows the accuracy on a hold-out test set of the model trained on data
collected by various active learning policies, averaged across repeated, as a function
of the number of datapoints labeled. VIG significantly outperforms the baselines,
achieving a higher accuracy with fewer labels. After obtaining 500 labeled data-
points, VIG yields a test accuracy close to 90%, while other policies reach 75%. To
achieve the same performance, VIG needs only 150 labels. In comparison, assuming
unlimited labeling resources, the model trained on all available training data (5585
images) yields a test accuracy of 99%.

To inspect the learned behavior of VIG’s model, Figure 3 visualizes the top five most
and least accurate predictions on the test set by VIG. On the top row that the trained
model reassuringly makes accurate predictions with high confidence on instances
where the animal is visibly in the middle of the camera trap images. On the bottom
row, the model understandably makes mistakes on instances with low visibility,
including those taken in the dark—situations even humans find challenging.

Table 1 lists other metrics of classification performance than accuracy in Figure 2.
This includes the cross-entropy loss, which accounts for the model’s predictive
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Figure 4: Diversity of the collected data by various active learning policies. Left:
The Shannon entropy of the class distribution of the collected data. Here, all
methods are comparable. Right: The Vendi score of the collected data using the
embedding in the second-to-last layer of the neural network classifier trained on all
available data. VIG selects more diverse data right from the beginning.

confidence, rewarding confident correct predictions and punishing confident in-
correct ones. Overall, VIG consistently achieves the best performance across the
metrics.

To understand what drives VIG’s performance, we inspect the diversity of the data
collected by each method in Figure 4. The left panel shows diversity in the labels of
the collected data, measured by the Shannon entropy of the class distribution. Here,
all policies are comparable. In the right panel we show diversity in the features
of the images, quantified by the Vendi score (VS) (Friedman and Dieng, 2023)
of the labeled images. The VS is a flexible diversity metric whose output has the
natural interpretation of the effective number of unique elements in a set. The
VS requires a kernel function to compute the similarity of two given datapoints.
Following previous works (Friedman and Dieng, 2023; Pasarkar and Dieng, 2024;
Askari Hemmat et al., 2024), we choose the cosine kernel operating on the image
embedding. To have a consistent embedding across different active learning policies,
we train a neural network classifier on all available data and use the features in the
second-to-last layer. Right from the start of the active learning loop, VIG collects
more diverse data (feature-wise), a behavior previous works have demonstrated to
be beneficial for active learning (Yang et al., 2015; Du et al., 2015; Buchert et al.,
2022).

Figure 2 shows the performance of the active learning policies when the batch size
(the number of images selected to be labeled at each step of the learning loop) is
set to 20. We repeat these experiments while varying this batch size to investigate
the effect of this parameter. The left panel of Figure 5 shows the same results under
batch size 10, representing a low-throughput setting, while the right panel gives
batch size 50 (a high-throughput setting). We see the reasonable trend that policies
tend to perform better when the batch size is small, as they get more frequent
feedback from the labels and thus can be more adaptive in their selections. Further,
VIG stays competitive across the different batch sizes, illustrating the benefits of our
method.
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Figure 5: Test accuracy by various active learning policies under different batch
sizes. VIG’s superior performance stays consistent in both low- and high-throughput
settings, underscoring its robustness to selection frequency.

These results collectively show that VIG’s reasoning allows it to extract more infor-
mation from fewer labels, making it suitable for ecological settings with limited
annotation budgets.

4 Discussion

We study a new active learning policy, Vendi information gain (VIG), and demon-
strate its effectiveness in image-based biodiversity monitoring. By selecting images
that maximize information gain over the entire unlabeled pool, VIG prioritizes
examples that not only have high uncertainty but are also informative and diverse.
With camera trap data from the Snapshot Serengeti dataset, VIG achieves substan-
tial gains in label efficiency and predictive performance compared to established
baselines.

Though we focus on species classification from camera trap images, VIG is general-
purpose and model-agnostic. The method only requires a probabilistic predictor
capable of generating samples, such as a dropout neural network like ours or a
Gaussian process. This makes VIG generalizable to a broad range of machine
learning tasks beyond ecological applications.

VIG requires retraining the predictive model for each evaluation of a candidate,
which leads to high computational complexity. To make the method more efficient,
we employ early stopping for this retraining step, terminating the training process
early if the training loss converges. Our justification is that during VIG’s computation,
as we add one single sampled label to the training set, the model trained at the
previous step is already close to an optimum. Further, due to the difficulty in
obtaining labels in active learning settings, the size of the training set is often
limited, which allows for faster training. In our experiments, VIG takes about 4
seconds per evaluation—an acceptable speed given the boost in performance from
the method.
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VIG’s superior performance highlights the value of using structured diversity to
quantify uncertainty—an approach that aligns well with the complexity and richness
of ecological data. Future work may explore its application in regression tasks such
as estimating the abundance of species, or integration with crowd-sourced labeling
platforms to elicit expert labeling effort when it is most needed.

Dedication

This paper is dedicated to Wangar̃ı Muta Maathai.
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Figure 6: Average test accuracy and one standard error by VIG of different orders
q. VIG’s performance is robust against the value of q.

A Additional Experiment Results

We now present the result of an ablation study where we investigate the effect of
the hyperparameter q in the formulation of VIG. Pasarkar and Dieng (2024) showed
that the order q controls the sensitivity of the Vendi score (and thus the Vendi
entropy and VIG) to rarity: low values of q lead to more sensitivity to rare features,
while high values of q prioritize common features of the samples. By setting this
hyperparameter, we can induce a family of VIG policies with different levels of
sensitivity to rare samples. Figure 6 shows the results of VIG across a wide range of
values for q, where test performance is comparable across the VIG policies. This
shows that the performance improvement from existing active learning baselines
we obtain is mainly due to VIG’s information gain-based reasoning, which is robust
against the order q when computing Vendi entropy.

B Data

We use the latest iteration of the Snapshot Serengeti dataset (Swanson et al., 2015)
and extract the top five species, making a dataset with the following class break-
down:

• Paca: 1196 images

• Red deer: 2830 images
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• Red squirrel: 639 images

• Roe deer: 1271 images

• White-nosed coati: 1295 images

This makes up a 7231-image dataset. In each experiment, we pick a randomly
selected 20% of the data as the test set to evaluate the trained models; the other
80% acts as the image pool for active learning.
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