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Abstract (< 100 words): 21 
 Environmental DNA (eDNA) technology has revolutionized biomonitoring, primarily 22 
capturing the presence/absence of target taxa. Recent advances have revealed that eDNA also 23 
retains epigenetic signatures (epi-eDNA), particularly DNA methylation, which enable 24 
functional ecological insights. This review synthesizes three pivotal milestones: (1) Initial 25 
detection of methylation signals in eDNA, confirming the feasibility of the epi-eDNA 26 
concept, (2) verification of stability across environmental matrices, demonstrating fidelity to 27 
source-tissue profiles despite degradation, and (3) emerging applications as ecological 28 
indicators—using epigenetic clocks for age-structure assessment, sex-specific markers for 29 
population sex ratios, germ cells methylation for spawning detection, and stress-linked 30 
methylation for health monitoring. This review highlights the potential of epi-eDNA in 31 
non-invasive population-level trait inference, overcoming the limitations of traditional eDNA. 32 
Future integration with multi-omics and sequencing innovations will unlock unprecedented 33 
precision in conservation and ecosystem management. 34 
  35 
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Main text (< 3000 words; currently 5,139 words): 36 
Introduction 37 

Environmental DNA (eDNA) refers to genetic material obtained directly from 38 
environmental samples, such as water, soil, and air (Banchi et al. 2020; Bohmann et al. 2014; 39 
Pawlowski et al. 2020). As organisms interact with their surroundings, they continuously 40 
release eDNA into the environment, which accumulates in various forms (Power et al. 2023). 41 
eDNA may include freely available DNA or may originate from cellular debris shed during 42 
movement or activity, such as hair, feathers, scales, setae, molted skin, feces, active and 43 
dormant plant tissues, seeds, pollen, and plant fragments (Fahner et al. 2016; Valentin et al. 44 
2018; Cavill et al. 2022). A typical eDNA-based biodiversity monitoring starts with 45 
collecting environmental samples (e.g., water, soil, or air), followed by eDNA extraction. The 46 
downstream workflow then diverges depending on the method used. Currently, qPCR and 47 
eDNA metabarcoding are commonly utilized for eDNA-based biodiversity monitoring, 48 
whereas shotgun metagenomics is emerging. qPCR amplifies species-specific genetic 49 
markers, enabling the detection and quantification of known target species eDNA (Hernandez 50 
et al. 2020; Benoit et al. 2023; Guri et al. 2024). eDNA metabarcoding involves the 51 
amplification of taxonomically informative marker genes, high-throughput sequencing, and 52 
subsequent taxonomic classification to infer the presence of species belonging to a specific 53 
taxon, such as fish (Lacoursière-Roussel et al. 2018; Bylemans et al. 2019; Ruppert et al. 54 
2019; Miya et al. 2015). In contrast, shotgun metagenomic sequencing enables unbiased 55 
analysis of eDNA by randomly sequencing all DNA fragments in a sample, avoiding the PCR 56 
biases of metabarcoding while revealing community composition, which has the potential to 57 
be another primary method to analyze eDNA (Tessler et al. 2017; Cowart et al. 2018; Manu 58 
& Umapathy 2023; McCauley et al. 2024; Nousias et al. 2025). 59 

One of the main advantages of using eDNA in biomonitoring programs is the relative 60 
ease of sample collection under field conditions and its non-invasive nature. In aquatic 61 
monitoring, for instance, sampling, filtration, and preservation can typically be completed in 62 
a short time. Compared to traditional monitoring techniques such as seining (Dias et al. 2022), 63 
electrofishing (Thomas et al. 2019), and visual observation (e.g., for marine mammals; Urian 64 
et al. 2015), sample collection for eDNA analysis is more time-efficient (d’Auriac et al. 65 
2019; Deiner et al. 2016). In addition, water samples can be collected without causing any 66 
noticeable disturbance to the environment (Carraro et al. 2018). The low time- and labor-cost 67 
for sampling and the non-invasive nature enable researchers to perform more frequent and 68 
broader sampling, improving the ability to detect early invasive species (Furlan et al. 2016) 69 
and assessing temporal changes in community composition (Rozanski et al. 2024; Ushio 70 
2022; Ushio et al. 2023). 71 

Nonetheless, although they are effective for biodiversity monitoring, the information that 72 
eDNA analysis can provide is still relatively limited to presence/absence detection (Beauclerc 73 
et al. 2019; Davison et al. 2019), species identification (Klymus et al. 2017; Mächler et al. 74 
2019), and abundance estimation (Lacoursière-Roussel et al. 2016; Yates et al. 2021; but see 75 
Harrison et al. 2021). Recently, new eDNA techniques have been developed to detect more 76 
detailed information about biodiversity. For example, intra-specific diversity (Mächler et al. 77 
2019; Tsuji et al. 2023; Zanovello et al. 2024), community composition and functional 78 
potential through metagenomics (Cowart et al. 2018; Ragot & Villemur 2022), and gene 79 
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expression activity through environmental RNA (Seeber & Epp 2022; Li et al. 2024a). 80 
Among these new directions, how to detect and utilize epigenetic information (e.g., DNA 81 
methylation) is a recent frontier in eDNA research. 82 

Epigenetics is the study of heritable changes in gene expression that occur without 83 
alterations to the underlying DNA nucleotide sequence (Egger et al. 2004), including 84 
transcription factors, noncoding RNAs, DNA methylation, and histone modifications (Portela 85 
& Esteller 2010). DNA methylation refers to the covalent addition of a methyl group (–CH₃) 86 
to the 5th carbon of the cytosine ring in DNA, forming 5-methylcytosine (5mC), primarily at 87 
cytosine-phosphate-guanine (CpG) dinucleotides (Field et al. 2018; Smith et al. 2025). DNA 88 
methylation is regulated by DNA methyltransferase enzymes (DNMTs). DNMT1 is 89 
responsible for maintaining existing methylation patterns during DNA replication, while 90 
DNMT3A and DNMT3B establish de novo methylation at new loci (Kulis & Esteller 2010). 91 
Moreover, methylation is reversible. Active demethylation is mediated by TET family 92 
enzymes (TET1, TET2, and TET3), which oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 93 
and subsequently to other forms that are ultimately processed back to unmethylated cytosine 94 
through base excision repair (Wu & Zhang 2017). Genomic regions with a high frequency of 95 
CpG dinucleotides, called “CpG islands”, that are typically GC-rich and frequently located in 96 
or near gene promoter regions (Issa 2004), which often serve as a target of DNA methylation 97 
studies. The biological roles of DNA methylation include silencing gene expression 98 
(especially promoter hypermethylation inhibits transcription); X-chromosome inactivation; 99 
genomic imprinting; repression of repetitive elements; and maintenance of genomic stability 100 
(Jones et al. 2015; Smith et al. 2025).  101 

Previous research has shown that methylation landscapes exhibit high cell-type 102 
specificity and tissue dependence, making them powerful signals for cellular identity and 103 
phenotype (Stubbs et al. 2017; Lau & Robinson 2021). DNA methylation plays a pivotal role 104 
in the phenotypic prediction and mechanistic understanding of various human diseases, 105 
particularly cancers (e.g., Nishiyama & Nakanishi 2021), cardiovascular disease (e.g., 106 
Krolevets et al. 2023), and autoimmune syndromes (e.g., Lafontaine et al. 2023). Importantly, 107 
DNA methylation patterns also serve as powerful signals of age, as they reflect both 108 
programmed biological processes and the stochastic accumulation of changes over time. 109 
Specific CpG sites (Horvath 2013; McEwen et al. 2020) undergo highly predictable, often 110 
linear, methylation changes that are tightly correlated with chronological age across the 111 
lifespan, likely reflecting underlying developmental and maintenance programs. Moreover, 112 
DNA methylation patterns exhibit striking sex-specific differences that are detectable across 113 
tissues, developmental stages, and species. Numerous CpG sites, particularly on the X 114 
chromosome but also on autosomes, display consistent sex-associated methylation patterns 115 
from birth onward (Liu et al. 2010; Yousefi et al. 2015), although X-chromosome 116 
inactivation (Lyonization) is restricted to mammals and some rare exceptions (e.g., particular 117 
aphid species). These epigenetic signatures are implicated in shaping sex-biased gene 118 
expression and contribute to developmental, metabolic, and disease-related dimorphisms 119 
(Davegårdh et al. 2019; Govender et al. 2022). The role of DNA methylation in the 120 
reproductive process is primarily reflected in regulating gene expression during gonad 121 
development (Li et al. 2019), responding to environmental change signals (Venney et al. 122 
2022; Saito et al. 2025), and thus regulating germ cell formation (Laing et al. 2018). 123 
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Especially before and after spawning, dynamic changes in methylation status determine 124 
whether reproductive function is activated or suppressed (Woods III et al. 2018; Nilsson et al. 125 
2021). This mechanism is not only crucial for individual physiological regulation but also has 126 
wide application value in ecological adaptation and species protection. 127 

Detecting epigenetic signals of eDNA (epi-eDNA) has the potential to overcome several 128 
limitations of conventional eDNA-based biodiversity monitoring (Balard et al. 2024; Fig. 1). 129 
The term was first introduced by Schadewell & Adams (2021) to describe eDNA that retains 130 
epigenetic signals. In this review, we adopt a broad definition of eDNA, which encompasses 131 
DNA obtained not only from environmental substrates such as water, soil, and air but also 132 
from other biological materials found in the environment, including feces and shed tissues. 133 
This inclusive definition highlights the diversity of DNA sources used for biodiversity 134 
monitoring. Additionally, we use epi-eDNA specifically to refer to eDNA fragments—under 135 
our broad definition of eDNA—that preserve epigenetic modifications, and we particularly 136 
focused on (e)DNA methylation in this review. Such modifications provide additional 137 
biological information beyond the primary nucleotide sequence typically analyzed in 138 
conventional eDNA studies. 139 

Our review will introduce (1) how to measure DNA methylation rates, (2) existing 140 
examples of the detection of DNA methylation signals in eDNA, and (3) potential 141 
applications of epi-eDNA. 142 
 143 

 144 
Figure 1. Potentials of epi-eDNA to detect detailed characteristics of target 145 

organisms from eDNA.  146 
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There are four key ecological applications of epi-eDNA: (a) Age structure assessment 147 
through methylation-based epigenetic clocks; (b) Sex ratio estimation via sex-specific 148 

methylation signals; (c) Spawning detection by identifying germ cell-derived demethylation 149 
signatures; and (d) Stress and health monitoring. These advances transform eDNA from a 150 

taxonomic census tool into a functional phenotyping platform, revealing mechanisms 151 
underlying biodiversity dynamics such as reproductive timing, demographic shifts, and stress 152 

responses. 153 
 154 
Methods for measuring DNA methylation either in tissue-derived DNA or eDNA 155 

The rapid development of DNA methylation research has been closely tied to continuous 156 
innovation in both molecular detection platforms and computational modeling strategies. 157 
From data acquisition to biological interpretation, these technical infrastructures form a vital 158 
bridge connecting methylome information with diverse phenotypic traits. Currently, the most 159 
widely adopted DNA methylation profiling techniques include methylation-specific 160 
polymerase chain reaction (MSP), whole-genome bisulfite sequencing (WGBS), reduced 161 
representation bisulfite sequencing (RRBS), targeted bisulfite sequencing including bisulfite 162 
amplicon sequencing (BSAS) and pyrosequencing, site-specific techniques including 163 
methylation-sensitive high-resolution melting (MS-HRM) and 5-Methylcytosine binding 164 
domain (MBD) sequencing (Licchesi & Herman 2009; Masser et al. 2015; Català et al. 2015; 165 
Hussmann & Hansen 2018; Dhingra et al. 2019; Jeltsch et al. 2020; Beck et al. 2022). 166 
Basically, methods for quantifying DNA methylation can be categorized along two axes: 167 
chemistry (bisulfite vs. non-bisulfite) and scope (genome-wide vs. locus-specific). We will 168 
introduce them in the following sections. 169 
 170 
Bisulfite-based methods 171 

Bisulfite-based methods are one of the most widely used, which include reactions of 172 
unmethylated cytosine (C) converted to uracil (U) by sodium bisulfite. Methylated cytosines, 173 
however, are protected from this conversion and remain unchanged. Following bisulfite 174 
treatment, the DNA methylation patterns can be analyzed using sequencing-based methods or 175 
PCR-based methods. Using sequencing-based methods, researchers can identify which 176 
cytosines are methylated by aligning the bisulfite-converted sequence data with a reference 177 
genome (Ogino et al. 2006). Among genome-wide bisulfite methods, WGBS is often 178 
considered the gold standard, offering single-base resolution across the entire genome, which 179 
enables mechanistic and comprehensive mapping (Beck et al. 2022; Habibi et al. 2013). 180 
WGBS, despite its resolution, is often cost-prohibitive for huge cohorts due to high 181 
per-sample sequencing depth and downstream compute needs. WGBS is generally 182 
challenging to conduct for studies using large sample sizes because of its high cost per 183 
sample. RRBS is more cost-effective and focused on CpG-rich regions, making it suitable for 184 
studies on transcriptional regulation (Ma et al. 2022; El Kamouh et al. 2024). However, it 185 
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offers broad but sparse genomic representation, with limited CpG enrichment and low 186 
reproducibility across biological replicates.  187 

Bisulfite-based methods also include several locus-specific assays, notably MSP, BSAS, 188 
pyrosequencing, and MS-HRM. MSP is performed using primers specifically designed to 189 
match either the bisulfite-modified methylated or unmethylated sequences, thereby 190 
selectively amplifying either methylated or unmethylated sequences. This allows for the 191 
determination of the methylation status at target CpG sites or regions (Licchesi & Herman 192 
2009). Its advantages include high sensitivity due to PCR-based discrimination and a simple 193 
workflow adaptable to low-input or degraded samples via nested or multiplex MSP. At the 194 
same time, its limitations lie in the dependence on proper primer design and complete 195 
bisulfite conversion, susceptibility to PCR contamination and bias, and limited ability to 196 
detect subtle methylation differences (Licchesi & Herman 2009). BSAS integrates 197 
next-generation sequencing with a library preparation that includes locus-specific PCR 198 
enrichment after bisulfite conversion (Masser et al. 2015). BSAS offers high sensitivity and 199 
cost-efficiency for multi-gene parallel DNA methylation analysis. Still, it is limited by poor 200 
coverage of large CpG islands and potential bias from heterogeneous tissue sources (Moser et 201 
al. 2020). 202 

Bisulfite-based pyrosequencing is also commonly used in the development of epigenetic 203 
clocks for cetaceans and other mammals (Polanowski et al. 2014; Beal et al. 2019; Nakamura 204 
et al. 2023a). Pyrosequencing is a method that detects real-time light signals from the release 205 
of pyrophosphate during nucleotide incorporation. Pyrosequencing accurately quantifies 206 
DNA methylation at specific CpG sites, making it a gold standard for regional methylation 207 
analysis (Kumar et al. 2020). 208 

Another widely utilized technique is PCR-based methods, such as MS-HRM, which has 209 
high sensitivity for detecting DNA methylation at specific loci (Hussmann & Hansen 2018). 210 
Rather than directly sequencing bisulfite-converted DNA, MS-HRM employs high-resolution 211 
melting analysis to detect methylation-induced sequence alterations. This method is 212 
particularly suitable for screening applications and low-frequency methylation detection with 213 
minimal cost (Qi et al. 2021). Its special primer design strategy, which ensures equal 214 
amplification efficiency for both methylated and unmethylated templates, can minimize PCR 215 
bias and allow the detection of rare methylation events at frequencies as low as 0.1% 216 
(Hussmann & Hansen 2018). The limitation of MS-HRM is that methylation levels are not 217 
provided per CpG site, but only as an average across the amplified region. 218 
 219 
Non-bisulfite methods 220 

Among non-bisulfite methods, methyl-CpG-binding domain (MBD)-based methods are 221 
widely used for genome-wide scale studies. Due to its methylation-specific DNA binding 222 
capacity, MBD can bind methylated DNA in vitro, thereby supporting genome-wide 223 
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methylation profiling (Jeltsch et al. 2020). MBD sequencing supports DNA methylation 224 
profiling by using methyl-CpG-binding proteins to enrich methylated fragments from sheared 225 
and purified genomic DNA, followed by next-generation sequencing and bioinformatic 226 
workflows. It was demonstrated that MBD-seq is a cost-effective method for obtaining 227 
genome-wide CpG methylation information, particularly suitable for large-scale research in 228 
fish breeding and nutrition (Naya-Català et al. 2023). 229 

Additionally, a nanopore sequencing-based protocol was developed to detect base 230 
modifications in eDNA molecules derived from water samples (Ruiz et al. 2025). Nanopore 231 
sequencing is a long-read DNA sequencing technology developed by Oxford Nanopore 232 
Technologies (ONT). It detects DNA sequences by measuring changes in electrical current as 233 
DNA molecules pass through a nanopore. This method can directly identify epigenetic 234 
modifications without chemical conversion or amplification (Doshi et al. 2025). Depending 235 
on the library preparation and enrichment, it supports both genome‑wide methylation 236 
profiling and locus‑specific analysis (Flynn et al. 2022; Ruiz et al. 2025). 237 

Lastly, PacBio-based methylation profiling is another method for detecting DNA 238 
methylation using Pacific Biosciences Single Molecule Real-Time (SMRT) sequencing. It 239 
identifies methylated bases by analyzing real-time kinetic signatures that are generated during 240 
DNA synthesis. This method does not require chemical treatment or bisulfite conversion and 241 
enables base-resolution, quantitative, and strand-specific methylation detection directly from 242 
native DNA molecules (Somerville et al. 2019). The approach can be applied genome‑wide 243 
using whole‑genome sequencing (Somerville et al. 2019), or locus‑specifically using 244 
PCR‑free CRISPR–Cas9 (Tsai et al. 2017), enabling both comprehensive surveys and 245 
focused interrogation of selected regions. A recent technology, named enzymatic methyl-seq 246 
(EM-seq), is a bisulfite-free, enzyme-based method for detecting 5mC and 5hmC at 247 
single-base resolution (Vaisvila et al. 2021). During PCR amplification, unmethylated 248 
cytosine (C) is read as thymine (T), while 5-methylcytosine (5mC) and 249 
5-hydroxymethylcytosine (5hmC) remain as cytosine (C), thus achieving high differentiation. 250 
EM-seq offers high sensitivity, even coverage, and DNA integrity with low input 251 
requirements; however, it cannot detect 5fC/5caC and involves complex enzymatic steps. 252 
 The accompanying Table 1 is organized based on two criteria (non-bisulfite-based vs. 253 
bisulfite-based; genome-wide vs. locus-specific) to elucidate the methodological landscape 254 
for eDNA methylation detection. 255 

 256 
Table 1. Pros and Cons of Different Methods for Studying DNA Methylation. 257 

Methods Method 
Type 

Resolution 
Scope 

Pros Cons Reference 

Whole-Genome 
Bisulfite 

Bisulfite Genome-w
ide 

- Single-base 
resolution 

- Expensive 
- Requires high 

Beck et al. 
(2022) 
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Sequencing 
(WGBS) 

across entire 
genome 
- Ideal for 
comprehensi
ve 
methylation 
mapping 

input DNA 
- 
Computationall
y intensive 

Reduced 
Representation 
Bisulfite 
Sequencing 
(RRBS) 

Bisulfite Genome-w
ide 

- 
Cost-effectiv
e 
- Enriches 
CpG-rich 
regions 
- Suitable for 
transcription
al regulation 
studies 

- Limited 
genome 
coverage 
- Bias towards 
certain regions 

El Kamouh 
et al. 
(2024) 

Methylation-speci
fic polymerase 
chain reaction 
(MSP) 

Bisulfite Loci-specif
ic 

- High 
sensitivity 
- Works on 
low‑quantity 
or 
low‑quality 
DNA and 
allows 
multiple 
promoters to 
be profiled 
- Technically 
easy 

- Highly 
dependent on 
primer design 
and complete 
bisulfite 
conversion 
- Susceptible to 
PCR 
cross-contamina
tion and bias 
- Limited to 
detect minor 
methylation 
differences 

Licchesi & 
Herman 
(2009) 

Bisulfite 
Amplicon 
Sequencing 
(BSAS)  

Bisulfite Loci-specif
ic 

- Scalable 
for multiple 
loci 
- Integrates 
NGS with 
locus-specifi
c PCR 

- Requires 
sequencing 
infrastructure 
- Limited to 
predefined 
regions 

Masser et 
al. (2015) 
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- Efficient 
for targeted 
analysis 

Methylation-Sens
itive 
High-Resolution 
Melting 
(MS-HRM) 

Bisulfite Loci-specif
ic 

- High 
sensitivity 
(detects 
~0.1% 
methylation) 
- Low cost 
- 
PCR-based, 
simple setup 
- Suited for 
rare event 
detection 

- 
Semi-quantitativ
e 
- Interpretation 
may be complex 
- Requires 
careful primer 
design 
- Does not 
provide 
methylation 
levels per CpG 
and only leads 
an average 
methylation 
level across the 
amplified 
region. 

Hussmann 
& Hansen 
(2018) 

5-methylcytosine 
binding domain 
(MBD) 

Non-bisulf
ite 

Genome-w
ide 

- Low-cost 
dsDNA 
enrichment 
- Reliable 
(high 
cross-assay 
concordance
) 
- 
5-mC-specifi
c 

- Medium 
resolution 
- CpG-density 
bias 
(preferentially 
captures 
CpG-rich, 
densely 
methylated 
regions) 
- Detects 5-mC 
only (does not 
directly report 
5-hmC) 

Jeltsch et 
al. (2020) 

Nanopore-based 
epi-eDNA 
profiling 

Non-bisulf
ite 

Genome-w
ide & 
Loci-specif

- Detects 
methylation 
directly 

- Relatively new 
- May have 
lower accuracy 

Doshi et al. 
(2025)9/11
/25 
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ic - No need 
for bisulfite 
conversion 
or 
amplificatio
n 
- Suitable for 
eDNA from 
water 
samples 

than 
bisulfite-based 
methods 

12:17:00 
PM 

PacBio-based 
methylation 
profiling  

Non-bisulf
ite 

Genome-w
ide & 
Loci-specif
ic 

- Detects 
native 
methylation 
(e.g., 5mC, 
6mA) 
directly 
during 
sequencing 
- No 
bisulfite 
conversion 
or 
amplificatio
n needed 
- Enables 
complete 
genome 
assembly 

- High raw error 
rate (requires 
polishing) 
- Expensive and 
requires high 
DNA input 
- Challenging 
for 
high-complexity 
microbiomes 

Somerville 
et al. 
(2019) 

Enzymatic 
Methyl-seq 
(EM-seq) 

Non-bisulf
ite 

Genome-w
ide 

- 
Non-destruct
ive to DNA 
- High CpG 
detection  
- Effective 
with 
low-input 
and 
degraded 

- Does not 
detect 5fC or 
5caC 
- Dependent on 
precise enzyme 
activity and 
reaction 
conditions 
- Slightly 
reduced 

Vaisvila et 
al. (2021) 
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samples 
- 

detection in 
highly 
methylated 
DNA 

 258 
 259 

Detection of DNA methylation signals in aquatic environmental DNA 260 
Traditionally, eDNA has been utilized primarily for species detection (Rees et al. 2014; 261 

Sigsgaard et al. 2019). However, eDNA analysis could be utilized to explore population 262 
genetics (Adams et al. 2019) and even population epigenetics (Balard et al. 2024). Building 263 
on this conceptual expansion, researchers started to explore whether DNA methylation 264 
signals can be preserved in eDNA. In this section, we will introduce recent studies that 265 
detected DNA methylation signals in eDNA. 266 

Freshly shed eDNA likely retains the methylation signals of the source organism, though 267 
these methylated cytosines are prone to deamination as the DNA degrades (Sigsgaard et al. 268 
2019). This hypothesis laid a theoretical foundation for detecting epigenetic signals in 269 
environmental samples. Following this, the years 2022–2023 saw the emergence of the first 270 
empirical studies that detected DNA methylation signals in aquatic systems (mainly in 271 
aquarium tanks). For example, Zhao et al. (2023) conducted aquarium tank experiments 272 
using the freshwater snail (Lymnaea stagnalis), comparing methylation profiles between 273 
tissue-derived DNA and eDNA extracted from water samples. Tissue DNA was extracted 274 
from four life stages of snails, and eDNA was extracted from tanks with the four life stages 275 
of snails, which were sequenced to assess methylation levels. Water eDNA exhibited clear 276 
and quantifiable DNA methylation patterns, which varied significantly across water eDNA 277 
extracted from tanks with snails of different developmental stages. This study provided the 278 
first experimental evidence that water eDNA carries information on population-level traits 279 
such as age structure. 280 

Zhao et al. (2023) demonstrated that DNA methylation can be detected in water eDNA; 281 
however, it remains unclear whether these signals are stably retained in environmental 282 
samples and accurately reflect the methylation status of the source tissue. Recent studies have 283 
provided some evidence. For example, Hirayama et al. (2024) conducted a tank experiment 284 
focused on the zebrafish species (Danio rerio) and demonstrated that even after partial 285 
degradation of eDNA in the environment, the methylation levels of eDNA closely mirrored 286 
those of the original somatic tissue DNA. Additionally, they found no significant differences 287 
in methylation rates between tissue-derived DNA and eDNA. Furthermore, the study also 288 
investigated the effects of different cellular sources on the methylation signals. During the 289 
peak spawning period of fish, the water eDNA showed a high abundance of unmethylated 290 
DNA fragments, which could originate from germ cells. The gene regions they detected are 291 
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known to be highly unmethylated in maternal germ cells and were possibly released into the 292 
aquatic environment during oviposition, supporting the idea that not only global methylation 293 
levels, but also cell–type–specific methylation signatures can be retained in eDNA. 294 
 295 
Potential applications of epi-eDNA to ecological studies 296 

Based on some pioneering studies that detected DNA methylation signals in 297 
environmental samples, researchers have begun exploring the use of eDNA methylation to 298 
infer functional ecological information. Epi-eDNA, like eDNA, provides information at the 299 
population level rather than the individual level because eDNA typically represents a mixture 300 
of DNA from multiple individuals. As a result, the detected epigenetic signals represent an 301 
aggregate of biological traits across the population. Since epigenetic signals are closely 302 
associated with biological characteristics such as age, sex, reproductive state, and health 303 
status, epi-eDNA is a promising tool for monitoring population-level functional attributes. 304 
Here, we introduce several potential applications of epi-eDNA to study ecological 305 
communities, namely, (1) age structure inference, (2) sex identification and sex ratio 306 
monitoring, (3) reproductive state and spawning detection, and (4) health status and stress 307 
responses. 308 

 309 
Age structure 310 

DNA methylation changes predictably with chronological age, enabling the development 311 
of epigenetic clocks—statistical models that estimate biological age from a subset of CpG 312 
methylation levels (Teschendorff & Horvath 2025). 313 

The pan-tissue epigenetic clock proposed by Horvath (2013) demonstrated high accuracy 314 
in methylation-based age prediction across cell types and tissues in humans. For non-human 315 
species, minimally invasive epigenetic approaches have been developed. Polanowski et al. 316 
(2014) was the first study to establish an epigenetic clock for cetaceans by targeting specific 317 
loci using pyrosequencing. It was also the first to investigate which loci exhibit 318 
age-associated DNA methylation, identifying three key loci, TET2, GRIA2, and CDKN2A. 319 
This foundational work laid the groundwork for subsequent research, including the study by 320 
Beal et al. (2019). The Bottlenose Dolphin Epigenetic Aging Tool (BEAT) utilizes DNA 321 
methylation levels in skin biopsy samples for age estimation in small cetaceans (Beal et al. 322 
2019). Similarly, Mori et al. (2024) established a non-lethal method to estimate the 323 
chronological age of Risso’s dolphins (Grampus griseus) by analyzing DNA methylation in 324 
skin tissues, providing an alternative to traditional tooth growth layer group (GLG) counting. 325 
A blood DNA methylation-based age prediction model was also developed for brown bears 326 
(Ursus arctos) across populations, offering a practical tool for wildlife conservation 327 
(Nakamura et al. 2023). Lu et al. (2023) showed a universal mammalian epigenetic clock 328 
capable of accurately predicting tissue age across diverse mammalian species and tissue types. 329 
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They compiled the results of 11754 methylation arrays (a microarray that measures the level 330 
of methylation at specific CpG sites) from 185 species. They presented three models using 331 
different age indices: a basic chronological age clock, a relative age clock (chronological age 332 
divided by maximum lifespan), and a log-linear clock (utilizing age at sexual maturity and 333 
gestation time). All models demonstrated high prediction accuracy, with a correlation 334 
coefficient (r) exceeding 0.95 (for example, see Fig. 2a for bottlenose dolphins). 335 

Estimating population age composition is one of the early applications of epi-eDNA. 336 
Other than the study on the freshwater snail (Zhao et al. 2023), Ruiz et al. (2025) developed a 337 
genome-wide methylation “epigenetic clock” using eDNA derived from aquaculture tanks of 338 
European seabass (Dicentrarchus labrax). Their model achieved a median age prediction 339 
error of only 2.6 days for larvae aged 10–24 days, comparable to or exceeding the accuracy 340 
of traditional tissue-based methods such as otolith or scale analysis. This result validates the 341 
feasibility of using epi-eDNA for high-accuracy, non-invasive age estimation in wild 342 
populations. In addition, Yagi et al. (2024) demonstrated that methylation clocks from fecal 343 
samples of wild Indo-Pacific bottlenose dolphins (Tursiops aduncus) using MS-HRM 344 
analysis targeting GRIA2/CDKN2A achieved an accuracy of MAE of 5.08 years (10–13% of 345 
lifespan; Fig. 2b). Also, Hanski et al. (2024) established an epigenetic clock for house mice 346 
(Mus musculus) based on DNA extracted from fecal samples. While the clock, trained on 347 
laboratory mice, yielded highly accurate age predictions both in the training set (mean 348 
absolute error (MAE) = 23 days; Fig. 2c) and in the validation set (MAE = 26 days), its 349 
application to wild mice revealed individual variation in epigenetic aging rates. Despite these 350 
differences, the clock successfully distinguished juveniles from adults in natural populations 351 
of house mice, marking one of the first demonstrations of fecal epi-eDNA for age inference 352 
in wild mammals.  353 

 354 
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 355 
Figure 2. Applications of DNA methylation to infer the age and sex of target organisms. 356 
 Some of the key applications of DNA methylation include inferring age and sex. (a) An 357 
epigenetic clock based on skin tissue DNA in bottlenose dolphins (Tursiops truncatus) 358 
(recreated using the data from Lu et al. 2023). (b) Age prediction in wild Indo-Pacific 359 
bottlenose dolphins (Tursiops aduncus) using fecal epi-eDNA. The scatter plot shows the 360 
predicted versus actual age, colored by sex (red for females and blue for males), recreated 361 
using data from Yagi et al. (2024). (c) Age estimation in wild house mice (Mus musculus) 362 
using faecal epi-eDNA (recreated using the data from Hanski et al. 2024). (d) Detection of 363 
sex-specific methylation differences in skin tissue of green sea turtles (Chelonia mydas) 364 
using qPCR targeting the UBN2 gene. A positive ΔCq was suggested to be a female, while a 365 
negative value is a male (recreated using the data from Mayne et al. 2023). Created in 366 
BioRender. Chengbin, L. (2025) https://BioRender.com/j9pl83z 367 
 368 
Sex identification and sex ratio monitoring 369 

Sex-specific DNA methylation is a fundamental epigenetic mechanism that underlies 370 
sexual differentiation across a wide range of animal species. In mammals, such as mice, 371 
genome-wide methylation studies have revealed sexually dimorphic patterns in tissues like 372 
the liver, with differential methylation regions (DMRs) influenced not only by genetic 373 
background but also by physiological experiences such as pregnancy, indicating the 374 
persistence of epigenetic memory linked to sex and life history events (Grimm et al. 2019). 375 
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Fish exhibit remarkable sexual plasticity, with numerous species undergoing natural sex 376 
transitions during their lifetime or experiencing sex reversal in response to environmental 377 
factors, such as temperature, social cues, and stress. Epigenetic mechanisms, particularly 378 
DNA methylation and histone modifications, play pivotal roles in both initiating and 379 
stabilizing these sex transitions. For sex identification, epigenetic approaches are especially 380 
valuable because they capture phenotypic states rather than relying exclusively on genotypic 381 
information. Given the high diversity and plasticity of sex in fish, methodologies that do not 382 
rely on genotyping are critical in eDNA analysis, where direct observation of individuals is 383 
unfeasible (Ortega-Recalde et al. 2020). 384 

DNA methylation plays a pivotal role in sex determination and transition in zebrafish, 385 
which lack heteromorphic sex chromosomes; reprogramming events in primordial germ cells 386 
(PGCs) mirror those of oocytes during early development, and inhibiting DNA methylation 387 
prevents female-to-male transition, establishing a causal role for methylation in sexual fate 388 
(Wang et al. 2021). Temperature-sensitive species like the American alligator (Alligator 389 
mississippiensis) and the tiger pufferfish (Takifugu rubripes), whose sex is determined by 390 
incubation temperature during the critical developmental phase, demonstrate that 391 
environmental cues can induce sex-specific methylation reprogramming, enable accurate 392 
prediction of hatchling sex, or facilitate sex reversal via methylation changes in key 393 
developmental genes such as amhr2 and cyp19a (Sun et al. 2022; Zhou et al. 2019). Even in 394 
insects like aphids (Myzus persicae), where males are haploid for the X chromosome, 395 
methylation patterns compensate for gene dosage, with X-linked genes hypermethylated and 396 
autosomal genes hypomethylated in males, suggesting a conserved mechanism of dosage 397 
regulation through epigenetics (Mathers et al. 2019). In hermaphroditic Argopecten scallops, 398 
sterile hybrids show significantly higher global methylation levels than fertile parents, with 399 
differentially methylated genes (DMGs) enriched in pathways like ubiquitin-mediated 400 
proteolysis and ECM-receptor interaction, suggesting impaired oogenesis due to ROS 401 
accumulation and ATP deficiency (Yu et al. 2023). Likewise, studies in Pacific oysters 402 
(Crassostrea gigas), an invertebrate species lacking defined sex chromosomes, reveal that 403 
male gonads exhibit significantly higher methylation levels than females. That sex-biased 404 
methylation is enriched in broadly expressed regulatory genes rather than canonical 405 
sex-determining loci, pointing to a distributed epigenetic architecture (Sun et al. 2022). 406 
Altogether, these findings suggest that sex-associated DNA methylation is flexible and 407 
responsive to environmental and developmental contexts, making it a critical regulator of 408 
sexual dimorphism in animal biology. 409 

Although no published studies have used epi-eDNA for population-level sex ratio 410 
inference, the concept is theoretically established. Many organisms exhibit sex-specific 411 
methylation patterns across the genome (Bock et al. 2022; Chien et al. 2024). If DNA from 412 
sexually dimorphic loci is released and retained in environmental matrices, it should be 413 
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possible to infer sex ratios based on the methylation status of eDNA. In Zhao et al. (2023), 414 
which detected the methylation rate of eDNA from freshwater snail, a hermaphroditic species 415 
was chosen to avoid confounding effects from sex-specific methylation. It was noted that for 416 
gonochoristic species, sexually dimorphic methylation could be a target signal. Many reptiles, 417 
including turtles, exhibit temperature-dependent sex determination (TSD). In such species, 418 
genotyping alone cannot be used to reliably identify phenotypic sex (While et al. 2018). 419 
Indeed, studies on green sea turtles have successfully utilized methylation profiles from skin 420 
tissue to determine sex (Mayne et al. 2023). Mayne et al. (2023) applied RRBS to adult green 421 
turtle skin biopsies to pinpoint 16 sex‐specific methylation loci, then built 422 
methylation‐sensitive qPCR assays that achieve 100 % accuracy in sexing turtles older than 423 
17 years. It provides a rapid, less invasive, and cost-effective tool for determining the sex of 424 
adult green turtles. These findings lay a conceptual and methodological foundation for the 425 
future use of epi-eDNA in sex ratio estimation.  426 
 427 
Reproductive state and spawning detection 428 

DNA methylation regulates gene expression during reproduction, affecting gonadal 429 
development, sex determination, hormonal signaling, fertility, and spawning timing. 430 
Dynamic, stage-specific methylation patterns have been observed in gametogenesis across 431 
species, such as scallops (Patinopecten yessoensis) and oysters (Crassostrea gigas), where 432 
global methylation levels increase during the oogenesis and spermatogenesis stages, 433 
coinciding with high DNMT3 expression (Zhang et al. 2018; Li et al. 2019). For example, in 434 
zebrafish, promoter methylation of reproductive genes such as esr1 (estrogen receptor alpha) 435 
and amh (anti-Müllerian hormone) is associated with sex-biased gene expression in both 436 
gonads and liver, while epigenetic regulators like dnmt1, dnmt3, and hdac1 are more highly 437 
expressed in ovaries than in testes, indicating a sex-specific methylation landscape governing 438 
gonadal function (Laing et al. 2018; Li et al. 2019).  439 

Sexual maturity prediction has been advanced using conserved CpG sites to develop 440 
predictive models for reproductive timing. By using tissue-derived DNA methylation signal, 441 
Heydenrych et al. (2024) demonstrated that CpG density in promoter regions can accurately 442 
predict sexual maturity age. The correlation coefficients of their models were 0.81 in females 443 
and 0.76 in males, supporting the notion that methylation mediates the regulation of 444 
reproductive processes. This approach is particularly beneficial for endangered species or 445 
those that are difficult to observe longitudinally in the wild.  446 

Gestation and fertility have also been linked to DNA methylation through the 447 
development of epigenetic clocks. Li et al. (2024b) found that gestational duration correlated 448 
with methylation levels in placental tissues, achieving a correlation coefficient = 0.96 in 449 
model predictions, emphasizing the potential of epigenetic clocks in reproductive ecology. 450 
Sperm quality and fertility are influenced by methylation as well: in striped bass, MBD-Seq 451 
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identified 171 DMRs distinguishing high- and low-fertility sperm, enriched in genes such as 452 
WDR3/UTP12 and GPCRs (Woods III et al. 2018), while in common carp (Cyprinus carpio), 453 
in vitro sperm aging is associated with temporal methylation changes that correlate with 454 
declines in motility and fertilization rate, peaking at 24 hours post-stripping and declining by 455 
96 hours (Cheng et al. 2021). The observed stage-specific methylation patterns during 456 
gametogenesis and regulation of hormonal and metabolic pathways suggest it may contribute 457 
to coordinating reproductive cycles and energy allocation.  458 

Epi-eDNA has also shown potential in reproductive ecology. Hirayama et al. (2024) 459 
demonstrated that spikes of unmethylated DNA, a characteristic of germ cell genomes, 460 
appeared in water samples during the peak spawning periods of fish. Since complementary 461 
unmethylated rDNA accounts for most rDNA repeats in unfertilized eggs, their release leads 462 
to a transient but detectable signature in eDNA, compared to the high methylation rate 463 
detected in somatic cells. Thus, the sharp shift in the eDNA methylation signals served as an 464 
indicator of spawning events. Importantly, methylation patterns confined to gonadal tissues 465 
are unlikely to be detected in eDNA unless germ cells are released; therefore, the primary 466 
application of epi-eDNA is the detection of spawning events. 467 
 468 
Health status and stress responses 469 

Epigenetic modifications are responsive to physiological stress and disease, making 470 
epi-eDNA a potential indicator of ecosystem health, as it can reflect the current biological 471 
state of organisms and the environmental pressures affecting entire communities. Balard et al. 472 
(2024) reviewed the potential of DNA methylation signals to assess health conditions in 473 
wildlife populations. If specific methylation changes are linked to exposure to pollutants or 474 
pathogens, their detection in eDNA could indicate an early warning signal of ecosystem 475 
stress or disease outbreaks. Although still in a conceptual phase, studies have shown that 476 
stressors such as chemical pollutants or infections can induce reproducible methylation 477 
changes (Cavalieri & Spinelli 2017). 478 

In marine mammals, anthropogenic stressors such as underwater noise and tourism 479 
pressure are of growing concern. These impacts are complicated to quantify. While cortisol 480 
levels provide a measurement of short-term stress, DNA methylation analysis offers a 481 
non-invasive method for assessing medium- to long-term stress, which could be valuable for 482 
cetacean conservation (Crossman et al. 2021). Recent studies have demonstrated this 483 
potential. For example, killer whales (Orcinus orca) were found to have distinct methylation 484 
patterns in stress-response genes between populations exposed to different levels of human 485 
activity, suggesting cumulative stress can be detected epigenetically (Crossman et al. 2021). 486 
In bottlenose dolphins (Tursiops spp.), DNA methylation-based epigenetic clocks not only 487 
estimated age with high accuracy but also showed that individuals with accelerated 488 
epigenetic aging—i.e., a higher DNA methylation age than expected—tended to have lower 489 
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health scores that are significantly related to the survival probabilities (Barratclough et al. 490 
2024). These findings highlight the utility of DNA methylation as an indicator of age and 491 
health impacts, enabling more precise and long-term monitoring of cetacean populations 492 
under human pressure. 493 

Epi-eDNA thus provides a powerful tool for monitoring organismal response to 494 
environmental stress, particularly in scenarios where direct biological sampling in the field is 495 
not feasible. For example, temperature and salinity can induce methylation changes in 496 
promoter regions of specific genes in crustaceans (Guo et al. 2025) and fish (Blondeau-Bidet 497 
et al. 2023). Promoters with varying CpG densities are associated with distinct gene functions, 498 
and alterations in their methylation states—detected through epi-eDNA—can be used to infer 499 
whether organisms are experiencing stress and to assess the level of stress. However, there 500 
are differences in methylation patterns and functions among different species (Klughammer 501 
et al. 2023), and the broad applicability of epi-eDNA still needs further verification. 502 

In line with this concept, Hishikawa et al. (2024) reported that accelerated DNA 503 
methylation age and increased DNA damage in urinary shedding cells are significantly 504 
correlated with current renal function and predict future renal deterioration. Their pilot study 505 
on patients with chronic kidney disease (CKD) showed that epigenetic age 506 
acceleration—measured using Hannum’s and PhenoAge clocks—was strongly associated 507 
with both reduced estimated glomerular filtration rate (eGFR) and its rate of decline. 508 
Moreover, DNA double-strand breaks detected in urine-derived renal cells, particularly those 509 
associated with proximal tubule markers, were closely linked to biological aging and 510 
functional decline. These clinical findings, though focused on human kidney health, highlight 511 
the potential of methylation-based signatures in excreted DNA to noninvasively monitor 512 
systemic stress, offering a compelling analogy for health surveillance in wildlife via 513 
environmental DNA. 514 

As sensitivity improves and new methylation signals are validated, it may become 515 
feasible to routinely monitor population health and environmental stressors through analysis 516 
of epi-eDNA in water or soil samples. 517 
 518 
Conclusions and perspectives 519 

In summary, research on DNA methylation in environmental DNA (epi-eDNA) has just 520 
emerged in recent years. From its conceptual inception in 2019, when researchers first 521 
proposed that methylated cytosines in eDNA could be detected in environmental samples 522 
(Sigsgaard et al. 2019), several empirical studies in recent years support the idea (Hanski et 523 
al. 2024; Hirayama et al. 2024; Ruiz et al. 2025; Yagi et al. 2024; Zhao et al. 2023). Recent 524 
studies confirm that epi-eDNA may stably capture functional information at both the 525 
individual and population levels. These findings position epi-eDNA as a promising method 526 
for ecological inference. Looking forward, continued advances in sequencing technologies 527 
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and methylation detection methods will likely unlock the full potential of epigenetic 528 
information embedded in eDNA. As methodological sensitivity improves, epi-eDNA is 529 
poised to play a transformative role in ecological monitoring, resource management, and 530 
biodiversity conservation (Balard et al. 2024). 531 
 532 
 533 
  534 
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