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ABSTRACT
Analyzing the Lime Seed Bug's (Oxycarenus lavaterae) European range expansion, optimized Maxent
models and comprehensive occurrence data (2007-2025) reveal a swift northward and eastward spread,
with a distinct "rapid expansion" phase starting in 2017. Key drivers include minimum and maximum
temperatures, and importantly, downward shortwave radiation (DSR). Increased DSR, linked to "global
brightening" from reduced air pollution since the 1990s, provides crucial thermal benefits. This enables
the  bug's  basking  behavior  to  effectively  elevate  body  temperatures,  mitigating  cold  stress  and
enhancing  overwintering  survival  in  newly  colonized  northern  regions.  Focusing  on  Ukraine  and
Latvia, optimal habitat is predicted in Ukrainian regions like Transcarpathia, aligning with observed
occurrences, while Latvia shows minimal invasion chances. This study rigorously integrates statistical
modeling (including SHAP analysis) with biological insights, demonstrating how temperature extremes
and DSR act as physiological "bottlenecks" for the species' successful adaptation and expansion. The
findings advance understanding of insect range dynamics under climate change and regional air quality
improvements, providing critical insights for biodiversity conservation and targeted pest management.
Furthermore,  the  presented  methodologies  facilitate  citizen  science  efforts  for  ongoing  ecological
monitoring,  empowering  broader  community  participation  in  tracking  environmental  responses.
Continued interdisciplinary research on these climatic and anthropogenic factors is vital for refining
predictive models and informing adaptive management in a changing world.
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1. Introduction
Climate  change  is  undeniably  reshaping  the  distribution  of  species  across  the  globe.  The  Sixth
Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) highlights that average
planetary temperatures have risen by nearly 1.2◦C over the last century due to human-driven warming,
with projections indicating continued increases (Lee et  al.,  2023). As temperature and precipitation
patterns alter (Forster et al., 2024), many species are being compelled to shift their geographical ranges
to find suitable environmental conditions (Bellard et al., 2011; Harvey et al., 2023; Zurell et al., 2024).
This phenomenon is primarily driven by the need for species to track their fundamental climate niche –
the  specific  set  of  primarily  temperature  and moisture  conditions  they  are  adapted  to  survive  and
reproduce within (Tingley et al., 2009). However, while range shifts often involve species tracking their
pre-existing  environmental  niches,  they  can  also  in  particular  cases  create  opportunities  for  novel
adaptations to arise, but whether these range shifts are a novel adaptation is a nuanced question.
In  response  to  climate  change,  poleward  and  altitudinal  migration  is  a  commonly  observed
phenomenon among species. As temperature and moisture conditions shift, many species are expanding
their  ranges  towards  higher  latitudes  and  elevations  to  track  suitable  environmental  conditions.
Latitudinal  range shifts  have especially been documented in  the Northern Hemisphere,  and chiefly
between  30°  and  60°  latitudes  (Lenoir  et  al.,  2024).  These  shifts  have  profound  implications  for
biodiversity conservation and ecosystem functioning, highlighting the urgent need to understand and
mitigate the impacts of climate change on the natural world.
True bugs, belonging to the suborder Heteroptera, represent a small fraction (around 3%) of the non-
native  arthropods  that  have  established themselves  in  Europe  (Roques  et  al.,  2010).  Despite  their



relatively in the meantime low numbers, they pose a significant risk as potential pests, causing damage
to crops and natural vegetation, or becoming a nuisance in indoor urban environments during the colder
winter months.
In this  paper  we focus on one species,  the Lime Seed Bug,  Oxycarenus lavaterae Fabricius  1787
(Hemiptera: Lygaeidae) (Fig. 1), which already occurs in Europe with a low economic impact and has
the potential to spread naturally, though passive dispersal by human-mediated translocations is assumed
a probable cause of spread of this species, for instance in Bulgaria (Simov et al., 2012). Therefore, the
status of this insect as a non-native species in Europe is not entirely straightforward. While its recent
spread and establishment in many parts of the continent suggest an invasion, the species has historically
been present in the warm Palaearctic region of the Mediterranean Basin (Péricart, 2001). Therefore, its
expansion could also be seen as a range extension from its native southern European distribution rather
than a strict introduction of a truly alien species as, for instance, the Colorado Potato Beetle (Weber,
2003). However, it is not known whether this is a consequence of global warming or an adaptation of
the species to colder conditions than in its area of origin, or perhaps both.
On the European continent, this species has been reported in the following years and countries: 1994 in
Hungary; 1995 in Slovakia and Spain; 1996 in Serbia; 1998 in Bulgaria and Bosnia and Herzegovina;
1999 in France; 2001 in Austria;  2002 in Switzerland;  2003 in Finland; 2004 in Germany; Czech
Republic and Croatia; 2007 in Netherlands and England; 2009 in Romania, Slovenia, and Greece; 2014
in Poland and Belgium; 2017 in Turkey; 2018 in Macedonia; 2019 in Luxemburg; 2020 in Russia
(Bunescu et al., 2023; EPPO Global Database, 2010, https://gd.eppo.int/reporting/article-310). Since
2015  the  species  has  been  discovered  in  Ukraine  (UkrBIN,  https://ukrbin.com/index.php?
id=347116%2F%29.&lang=1;  single  record,  Korolevo  in  Transcarpathia).  Numerous  first  records
across Europe in recent decades and the clear pattern of northward and eastward movement strongly
indicate that  O. lavaterae is indeed a species undergoing a significant expansion of its home range
within Europe (https://www.forestpests.eu/).

Fig. 1. Oxycarenus lavaterae,
22.11.2024, Ukraine, Kyivska oblast,

Bila Tserkva raion, 49.742344oN,
30.145343oE, by Serhij Oksenenko;

UkrBIN

This  study employs distribution  and climate  data  for  O. lavaterae,  applying an optimized Maxent
model to predict the species’ distribution (Phillips et al., 2006). We modelled the species’ niche models
using standard procedures (Sillero, Barbosa, 2021) with the algorithm implemented in Maxent v3.4.4.
In general, Maxent is a machine learning method using presence-only occurrence and background data,



and compares the available  environmental  conditions  in  the study area (i.e.,  background) with the
conditions used by the species, providing estimates of habitat suitability.
In  parallel,  modeling  an  advancing  species  like  O.  lavaterae in  Maxent  presents  some  unique
challenges because the algorithm is primarily designed for modeling the current potential distribution
of a species based on existing occurrence data and environmental variables. It doesn't inherently model
the process of invasion or its temporal dynamics. However, Maxent can be performed sequentially. The
most important aspect is to have occurrence records of the expanding species collected at different time
points as it spreads. Ideally, it would be to have data representing the initial occurrence points and
subsequent spread over several time steps. Also relevant environmental data should ideally be available
for  the spatial  extent  of  the considered  study area and,  if  possible,  for  the different  time periods.
Analyzing the output of each Maxent model will give a snapshot of the species' potential distribution at
each time step. Unfortunately, in reality, occurrence data is often collected erratically, with varying
effort and numerous gaps. The same largely applies to information gathered about the environment. 
More often Maxent has been used to model the distribution and potential spread of invasive species,
highlighting  areas  of  expansion  or  contraction  of  suitable  habitat.  These  studies  use  the  body  of
occurrences collected to date in order to project current distributions into the future under different
scenarios (in particular, climate change) (for example, Zhang et al., 2021; Mao et al., 2022; Liu et al.,
2023; Adamu,  Hussaini,  2024; Khwarahm, 2025).
In light of the aforementioned issues, taking  O. lavaterae as the subject, we will be aiming to apply
both a step-wise Maxent modeling approach using available time-series occurrence data to analyze the
species' spread over time, and a more common Maxent approach utilizing the entire occurrence dataset
to project current and potential future distributions under different climatic scenarios. We are going to
analyze the characteristics of its distribution patterns, predict its potential distributions, and evaluate the
important environmental factors affecting its distribution. Based on the obtained findings, we aim to
understand how relatively short- and long-term climate change, from the past to the future, affects the
distribution patterns and ranges of the species, resulting in shifts in habitat distribution over time. Our
intention is to make a special  focus on Ukraine and Latvia as biogeographically contrasting areas,
where Latvia is firmly within the northern, cooler, and more forested Boreal zone, while Ukraine acts
as a transition zone with a wider range of climates and habitats, including the extensive steppes that are
absent in Latvia (Roekaerts, 2002), not to mention Latvia's greater distance from the likely source
populations of the species under investigation.

2. Materials and Methods
2.1. Distributional Data
The geographic distribution data for  O. lavaterae  were compiled from two primary sources: (1) the
Global Biodiversity Information Facility (GBIF.org, 2025), contributing a majority of the total records;
and  (2)  the  Ukrainian  Biodiversity  Information  Network  (https://ukrbin.com/).  The  initial  dataset
comprised 16,564 occurrence points, encompassing locations across Europe and North Africa. 
To  mitigate  spatial  sampling  bias  and  potential  geolocation  errors  we,  after  removing  duplicate
occurences,  implemented  a  spatial  thinning  protocol  performed  in  SAGA GIS  using  the  'Points
Thinning' module (Conrad et al., 2015). As a rule of thumb, data points should be at least 2-3 cells apart
in  order  to  reduce autocorrelation (https://damariszurell.github.io/EEC-MGC/index.html).  Following
M. A. Nuñez and K. A. Medley (Nuñez, Medley, 2011), we measured the spatial autocorrelation of
occurrences by calculating Moran’s I for multiple distance classes using the GeoDa software (Anselin,
Koschinsky, 2022); values <0.3 were considered acceptable for building meaningful SDMs (Lichstein
et  al.,  2002).  Eventually,  3,134 occurence points were left  for analysis.  The longitude and latitude
coordinates (WGS84 datum), and years of collection (ranging from 2007 up to 2024) of the sample
were stored in an Excel database and converted into CSV format for the establishment of the Maxent
model. 



2.2. Environmental Variables and Processing
2.2.1. Environmental Data Sources
SDMs are primarily climate-driven, meaning that the variables used to develop them typically portray
climatic factors (Kriticos, 2012). 
For the step-wise approach the TerraClimate global database, which has a spatial resolution of 2.5 arc-
minutes or 5 km2 at the equator, serves as the source for the extraction of monthly climate and climatic
water  balance variables spanning from 1958 to the present (Abatzoglou et  al.,  2018).  This dataset
provides a detailed, long-term record of essential climate variables and derived water balance indices,
making it  valuable for  ecological  and hydrological  studies.  Available  terraclimate variables  can be
downloaded  using  the  'TerraclimateR'  package  (https://julianselke.github.io/TerraclimateR/)  and
clipped to the region of interest  (i.e.,   Europe and North Africa)  by employing the 'terra'  package
(https://cran.r-project.org/web/packages/terra/index.html).  At  large,  the  potential  geographical
distribution of species can be inferred from maximum temperature,  minimum temperature,  relative
humidity, rainfall, and other environmental factors (Wiens et al., 2009), therefore we have centered our
attention on maximum and minimum temperatures, precipitation and downward shortwave radiation
(DSR) at the surface, representing the total amount of solar radiation that reaches a horizontal unit area
at the Earth's surface. DSR is an important part of the Earth’s energy balance, driving Earth’s system’s
energy, water, and carbon cycles (Liang et al., 2019). In our case, it is important to note that DSR has
an indirect but significant influence on variables of several climate datasets (for instance, WorldClim,
https://www.worldclim.org/) commonly used in correlative species-distribution modelling because it is
a  primary  driver  of  both  temperature  and,  to  some extent,  precipitation  patterns.  Using the  PAST
v.2.17c software package (Hammer et al., 2001),  monthly variables were averaged to annual. 

Table 1. List of bioclimatic variables derived from downscaled monthly climate data of the KGClim 
dataset

Bioclimatic variables & description

BIO1 Annual mean temperature ( ◦ C)

BIO2 Temperature of the warmest month ( ◦ C)

BIO3 Temperature of the coldest month ( ◦ C)

BIO4 Annual precipitation (mm)

BIO5 Precipitation of the warmest half year (mm)

BIO6 Precipitation of the coldest half year (mm)

BIO7 Precipitation of the driest month (mm)

BIO8 Precipitation of the driest month in the warmest half year (mm)

BIO9 Precipitation of the driest month in the coldest half year (mm)

BIO10 Precipitation of the wettest month (mm)

BIO11 Precipitation of the wettest month in the warmest half year (mm)

BIO12 Precipitation of the wettest month in the coldest half year (mm)

For building Maxent models of the current distribution and potential spread of the bug species we
employed a 1 km global dataset of historical (1979–2013) and future (2020–2100) Köppen–Geiger
climate classification and 12 bioclimatic variables (Table 1),  resampled to a spatial resolution of 2.5



arc-minutes.  These  provide  detailed  descriptions  of  annual  averages,  seasonality,  and  stressful
conditions of climates (Cui et al., 2021). The dataset referred to as KGClim is publicly available via
http://glass.umd.edu/KGClim. The dataset presents six historical 30-year periods of the observational
record and four future 30-year periods under four Representative Concentration Pathways (RCPs). For
our purposes we downloaded data for the historical period of 1988-2017 and future (2030) under the
RCP 4.5 scenario, often described as a low to moderate emissions scenario (Thomson et al., 2011) or
semi-optimistic (Zeraatkar et al., 2025).

2.3. Modelling approach
MaxEnt was configured to conduct 10 cross-validate replicate runs with 10,000 random background
points. Consequently, the average of the 10 predictions from all replicates was used for our analysis. In
addition,  80% of occurrence data were selected for model training and 20% for model testing.  To
determine the optimal model complexity, we explored all combinations of the regularization
parameter from 0.5 to 4 at intervals of 0.5 and potential combinations of four feature classes: linear,
quadratic, product  and hinge, using the 'gridSearch' function in the 'SDMtune' R package (Vignali et
al., 2020) and assessing model selection by the area under the curve (AUC) of the Receiver Operating
Characteristic (ROC) plots (Hanley, McNeil, 1982), based on both the training and validation datasets.
Commonly used approaches recommend removing correlated predictor variables before modeling to
avoid multicollinearity, which affects model projections (Zhao et al., 2022). There are several statistical
packages offering functions that reduce collinearity in predictors, however in our work they were not
employed  because  the  benefits  of  using  all  available  variables  may  outweigh  the  drawbacks  of
collinearity.  Latest  research  indicates  that  modelling  with  correlated  climate  variables  increases
accuracy of predictions (Hanberry, 2023). Moreover, complex models such as Maxent take advantage
of existing collinearity in finding the best set of parameters (De Marco, Nóbrega, 2018). 
The model’s predictive accuracy was measured using the widely recognized AUC statistic. AUC scores
range from 0 to 1, with values closer to 1 reflecting strong discriminatory power in distinguishing
habitat suitability for the considered species (Wang, 2007). A score of 0.5 indicates random prediction,
while  values  above  this  threshold  demonstrate  increasing  reliability  for  differentiating  between
probable presence and absence zones (Phillips et  al.,  2017). Because AUC remains a controversial
criterion (Lobo, 2008), for greater confidence we employed the continuous Boyce index, CBI (Boyce et
al.,  2002),  one  of  the  most  reliable  presence-only  evaluation  metrics.  It  is  continuous  and  varies
between −1 and +1. Positive values indicate a model that presents predictions that are consistent with
the distribution of presences in the evaluation dataset, values close to zero mean that the model is not
different from a random model (Hirzel et al., 2006). Estimates of the CBI were reached using an R
code  (https://github.com/jmrmcode/contboyceindex.git;  author  Juan  M.  Requena-Mullor)  and
classifying habitats as suitable or unsuitable for the survival of the target species based on a decision
cut-off point equaling the Maximum training sensitivity plus specificity logistic threshold, as described
by Liu et al. (2005). 

2.4. Spatiotemporal issues
As climate change progresses, species are shifting their  ranges to find suitable habitats.  This often
involves moving towards or away from the equator. In this respect, 'Distance to Null Island' (D2NI) can
be a useful factor in analyzing species distribution patterns. Null Island is the point where the equator
intersects the prime meridian (0° latitude, 0° longitude) in the Atlantic Ocean and D2NI is simply the
distance from any point on Earth to this  specific location calculated by using Pythagoras'  theorem
(Şevgin, Öztürk, 2024). By monitoring changes in the D2NI of locations where a species is found,
researchers can assess how climate change is affecting their shifting distribution and potentially predict
future ranges. In order to track these shifts, the aforementioned Excel database composed of columns



"longitude",  "latitude"  and  "year  of  collection"  was  supplemented  with  a  column representing  the
D2NI.  
As this dataset represents an 18 years long time series of D2NI values, subsequent analyses might
benefit from smoothing techniques to reduce noise, performing trend analysis to identify long-term
patterns, and searching for breakpoints that indicate abrupt changes and/or turning points (Hamilton,
2020).  In this  context corresponding modules of the PAST software have been used.  We explored
trends over time with the Mann-Kendall test and Sen's slope, through the R package 'trend' (Pohlert,
2023). The Mann-Kendall test is a non-parametric test for monotonic trend detection in a time series. It
analyses differences in signs between two consecutive dates: if a trend is present, the sign values will
tend to increase or decrease, constantly. Sen's slope is a non-parametric estimator of the magnitude of a
linear trend in a time series. It provides a measure of the average rate of change in the data over time.
For finding breakpoints the 'BreakoutDetection' R package was employed, implementing a technique
for robustly, i.e., in the presence of anomalies, detecting single or multiple change points in univariate
time series (https://github.com/twitter/BreakoutDetection).

2.5. Conditioning factors
1. The important environmental factors influencing the potentially suitable habitats of  O. lavaterae
were searched using the percentage and permutation contributions and Jackknife test results produced
by the Maxent software. Here we prioritize permutation importance as far as it provides a more stable
and interpretable measure of a variable's influence on the model's ability to accurately predict species
distribution (Zeraatkar et al., 2025). To further explore the impact of these identified environmental
factors, we employ a SHAP framework from XAI (i.e., eXplainable artificial intelligence) to rank and
uncover  the  most  influential  drivers  (Lundberg,  Lee,  2017;  Farooq et  al.,  2022).  SHAP (SHapley
Additive exPlanations) is a unified framework in explainable artificial intelligence used to interpret the
output of any machine learning model by assigning each feature an importance value for a particular
prediction. We post-processed the best model results with SHAP by comparing what a model predicts
with and without the predictor for all possible combinations of predictors at every single observation.
The predictors are then ranked according to their contribution for each observation and averaged across
observations.  Another  useful  item are  dependence  plots.  In  our  case,  the  R  package  'shap-values'
(https://github.com/pablo14/; author Pablo Casas) in a modified version was used to perform the SHAP
analysis. Also the package can produce SHAP dependence plots, a model agnostic visualization tool
that helps understand the relationship between a variable and the model’s prediction (Niemann et al.,
2020). 
The  application  of  SHAP  for  understanding  the  influence  of  environmental  factors  on  species
distribution has, until today, seen limited exploration, but is now being investigated more widely (for
instance, Song, Estes, 2023).

3. Results & Discussion
3.1. Trends regarding D2NI
Descriptive statistics of D2NI such as mean, maximum and minimum, difference between them, were
computed on an annual scale for the study period (Table 1). 
The availability and quantity of observational species occurrence records have greatly increased due to
technological advancements and the rise of online portals, such as the Global Biodiversity Information
Facility (GBIF), however it is well-established that such records are biased in time and space (Petersen
et al., 2021). Therefore, we tested the need for a smoothing technique to reveal underlying trends and
patterns  likely  obscured  by the  noise  and  inconsistencies  in  the  data  collection  process  using  the
original and the 3-point moving average smoothed data, graphically shown in Fig. 2 and presented in
Table 2.  Even so,  we understand that  smoothing can result  in  the loss of some, maybe important,
information (Berthouex, Brown, 2002).



Table  1.  A statistical  summary  of  distances  between  Null  Island  (0°  latitude,  0°  longitude)  and
occurrence locations of Oxycarenus lavaterae recorded throughout the years 2007-2024

year maxD minD diffD meanD year maxD minD diffD meanD

2007 48.83 37.59 11.24 42.59 2016 52.46 36.89 15.57 43.76

2008 52.26 37.30 14.96 40.94 2017 52.89 32.78 20.11 45.60

2009 51.55 36.73 14.83 42.63 2018 53.79 31.94 21.85 47.03

2010 48.64 33.02 15.63 40.04 2019 54.90 33.00 21.90 49.98

2011 47.28 32.02 15.27 39.78 2020 57.00 32.84 24.16 50.23

2012 47.29 33.61 13.67 40.61 2021 56.33 31.93 24.39 48.10

2013 51.29 33.74 17.54 41.26 2022 60.15 31.83 28.32 49.61

2014 51.29 33.74 17.54 41.26 2023 60.15 31.73 28.42 49.89

2015 50.13 32.00 18.13 41.17 2024 60.93 32.12 28.81 50.78

abbreviations: maxD - maximum value of D2NI; minD -  minimum value of D2NI; diffD
- difference between maxD and  minD; meanD - arithmetic mean of D2NI values

Table 2. The Mann-Kendall (MK) and Sen’s slope estimation applied to detect trends in annual D2NI
series (n=18) recorded during the study period; p<0.05

maxD* minD diffD meanD maxD minD diffD meanD

Mann-Kendall (MK) tau Sen’s slope

Original data

0.708 -0.590 0.866 0.669 0.773 -0.201  0.945 0.736

Smoothed data

 0.804 -0.695 0.961 0.739 0.856 -0.233 0.956 0.674

*abbreviations as in Table 1

In general, despite possible variations in sampling locations and intensity each year, both original and
smoothed data for O. lavaterae showed similar trends, as evidenced by the figures in Table 2, and we
have chosen to primarily base our reasoning and conclusions on the original data. For example, figures
representing temporal changes regarding the difference between  the maximum and minimum values of
D2NI in both instances indicate a very steep upward trend with a significant rate of change over time.
Basically,  this  reflects  the  rapid  expansion  of  the  species  in  recent  years  and  can  serve  as  a
quantification of this process. Instead of just saying the expansion of an invasive species is happening,
we now have a specific number that describes its rate and strength (as indicated by Sen’s slope and
tau). 
Considering the overall consistency between the original and smoothed data in reflecting the general
trends of  O. lavaterae regarding changes over time, we can look into the specific behaviors of other
aspects of the D2NI trend issues.



Fig. 2. Annual trend for the mean D2NI over the 18 year time period: black line - original values of the
arithmetic mean of  D2NI values, red line - the 3-point moving average smoothed data; graph drawn
using PAST ver. 2.17c 

Firstly,  examination of the temporal evolution of the D2NI's minimum values shows a pronounced
negative downward trend characterized by a significant decreasing rate of change over the 18 year time
period, whereas maximum values show the opposite. This most likely suggests a dual expansion of the
species,  both towards the equator  and northwards; however,  the northward shift  has occurred at  a
considerably greater rate, nearly four times the absolute value of the rate of the southward expansion.
Secondly, considering mean values, the overall trend exhibits a strong positive increase of D2NI values
over the study period with a noticeably high rate of change.
While the average D2NI values show a strong upward trend over the entire study, this increase doesn't
appear consistent, as evidenced by the graph in Fig. 2. The initial period seems to lack significant
change, followed by a much sharper rise later  on.  This non-uniform pattern suggests the potential
presence  of  a  breakpoint  in  the  trend,  warranting  further  investigation  to  identify  when  this  shift
occurred.  Using the  method =  'amoc'  (At  Most  One Change)  in  the  breakout()  function  from the
BreakoutDetection library,  we revealed a breakpoint at  the 10-year mark of the observation period
(with a p value <0.05, meaning a real change in the mean of our time series and not just random
variation). 
To analyze the trends before and after the identified breakpoint, smoothing the data might be necessary
due to a seemingly insufficient number of data points to achieve statistical significance in the trend
analysis for these shorter periods. Indeed, a trend analysis of the smoothed D2NI values within the time
frame of 2007-2016 found no changes  in the data over  this  specific  period (p values substantially
exceeding 0.05, suggesting no significant trend), whereas for the period of 2017 to 2024, we obtain a
statistically sound (p < 0.05) output value of 0.929 (tau), which indicates a strong, monotonic increase
in  annual  average  D2NI  values  over  this  time  period  occurring  at  a  noticeable  rate  of  0.542,  as
indicated by Sen’s slope. Speaking figuratively, the spread of O. lavaterae can be broadly divided into
an earlier period of "staticity" up to 2016 and a subsequent phase of "rapid expansion" starting in 2017,
however a closer look at the data presented in Fig. 1 suggests a deceleration in this later expansion
phase. This visual indication of a slowdown aligns with the behavior often described by the Michaelis-



Menten model, a nonlinear fitting option available in software like PAST, which is commonly used to
model processes exhibiting an initial rapid increase followed by a plateau as limiting factors come into
play.  Indeed,  the  Michaelis-Menten  model  statistically  confirms  this  observed  deceleration  and
performs  better,  according  to  the  Akaike  information  criterion,  than  other  proposed  in  the  PAST
software models.

3.2. Model development and evaluation
As mentioned in the 'Introduction', in the first place of our analysis of the species' spread over time we
apply a Maxent modeling approach using available time-series occurrence points and relevant for the
spatial extent of the study area environmental data encompassing the period from 2007 to 2024. Taking
into account that this time frame is split, as we see from above, into two phases both the occurrences
and the corresponding environmental variables have been accordingly assigned to two separate sets of
data. Further we model the potential distribution of the species in two steps: before its pronounced
home range expansion and after, giving a snapshot of the species' potential distribution at each time
step.
A total of 314 spatially filtered occurrence points of O. lavaterae from across its home range were used
to model the potential distribution of the species that would accord to the time period between 2007
and 2016.  As spelled  out  by the 'SDMtune'  algorithm, optimal  model  complexity was reached by
employing  a  regularization  parameter  of  0.5  and  a  combination  of  three  feature  classes:  linear,
quadratic, and hinge. This optimized model exhibited high AUC and CBI scores, 0.852±0.039 SD and
0.848±0.021 SD, respectively, making it sufficiently well-suited for projecting the habitat distribution
of the considered species at this precise time interval.
Another set of 2,820 processed  occurrence points of  O. lavaterae was used to model the potential
distribution of the species that would relate to the time period between 2017 and 2024. This set too
represents the entire bug's  home range.  Consistent with the previous  findings using the 'SDMtune'
algorithm, optimal model complexity was achieved by repeatedly applying a regularization parameter
of 0.5 and the same combination of feature classes. AUC and CBI scores indicate a satisfactory result:
0.788±0.011 SD and 0.865±0.020 SD, respectively, with the CBI score being particularly noteworthy.
Looking at these home rage models and clipping them to boundaries of Latvia and Ukraine allows
using geostatistics available in SAGA GIS to assess how suitable has the environment been for the
considered bug species at different time intervals. Corresponding habitat suitability scores based on the
modeling exercises are presented in Table 3. 

Table 3. Habitat suitability scores based on Oxycarenus lavaterae distribution models for different time
periods

Time
period 

Habitat suitability scores

Europe & N. Africa Latvia Ukraine

Min.* Max. Mean Min. Max. Mean Min. Max. Mean

Models using predictors from the TerraClimate global database

2007-2016 0.000 0.972 0.206 0.000 0.006 0.001 0.000 0.476 0.071

2017-2024 0.000 0.717 0.292 0.017 0.081 0.052 0.014 0.503 0.182

Models using predictors from the KGClim dataset

current 0.000 0.924 0.135 0.013 0.224 0.064 0.000 0.371 0.090

2030 0.000 0.848 0.136 0.011 0.158 0.055 0.095 0.431 0.095

*Min. - minimum, Max. - maximum, Mean - arithmetic mean of habitat suitability scores



Consistently across all considered instances, an upward trend in mean habitat suitability is apparent and
proved to be statistically significant, as evidenced by the p-value <0.05, demonstrating a robust pattern.
The very low scores for Latvia relating to both the period before 2017 and after are suggesting that
conditions have not yet been established here that would favour the species' presence. Indeed, at the
moment there are no records of O. lavaterae from Latvia. The same largely applies to Ukraine for the
time period of 2007-2016 during which a single finding of the bug species was made in 2015 in the
Transcarpathian region close to the border with Hungary, where it is known since 1994. However, a
real outburst of registered occurrences of the species came off in the period following 2017, with the
number  reaching  90.  Undoubtedly,  this  increase  may  also  be  at  least  partially  due  to  enhanced
inventory  efforts,  but  which  mostly  remain  undocumented.  Interestingly,  the  maximum  habitat
suitability score during the expansion period (0.717) is lower compared to the "static" period (0.972),
implying that the species, particularly within the present-day northern expanses of its home range, is
perhaps in some final stages of establishment, as suggested by the Michaelis-Menten model described
above. It might not have thoroughly explored or adapted to the full range of suitable habitats available
in the new region yet as it has in southern Spain, Near East and north Africa, areas regarded "native"
(Péricart, 2001). Over time, the predicted suitability might increase as the species expands its realized
niche and continues, though most likely at a slower pace, its northwards shift. The research team of O.
Nedvěd et al. (2023), highlighting the critical role of increasing temperatures, posits that the species'
expansion is expected to continue if the mild winters that have prevailed in central Europe in recent
years were to occur in more northern countries.

Fig.  3.  Habitat  suitability  (HS)
map  for  Oxycarenus  lavaterae  in
Ukraine  based  on  occurrences  for
the time period of  2017-2024 and
the  TerraClimate  dataset;  colours
show  potential  HS  ranging  from
high (red) to low (navy blue);  the
fuchsia-coloured  contour  line
represents  the  one  percentile
training presence logistic threshold;
yellow  circles  symbolize  point
occurrences.  Coordinate  reference
system:  Lambert  azimuthal  equal-
area projection.

Having processed the home range models and clipped them to the boundaries of Latvia and Ukraine,
the following step is to visualize the habitat suitability for the considered bug species, focusing on the
example of Ukraine, and identify the regions within Ukraine that are predicted to be most susceptible to
initial  invasion.  Next  we overlay  the species  occurrence points  within Ukraine  onto a  thresholded
suitability map. In the first place we considered to choose the minimum training presence threshold
(MTP), an approach preferred in modeling invasive species as the least stringent (Ouko et al., 2020;
Baici, Bowman, 2023). However, given that the MTP threshold yielded overly inclusive predictions
encompassing the entire country,  we opted instead for the one percentile training presence logistic
threshold  to  define  suitable  areas,  where  predicted  areas  with  values  below  0.12  were  deemed
unsuitable for O. lavaterae. The subsequent outcomes are displayed in Fig. 3.



A Chi-square test of homogeneity (or independence) was performed to compare the distribution of
actual  species  occurrences  with that  of  randomly generated presences.  The highly  significant  Chi-
square  statistic  (χ2=47.9,  p<0.05)  indicates  that  actual  species  occurrences  are  not  randomly
distributed.  Instead,  the  species  exhibits  a  strong  preference  or  aggregation  pattern  that  is  highly
unlikely to occur by chance.
The analysis above suggests that in terms of climate, best conditions in Ukraine for the invader are
predicted  to  occur  in  the  extreme  south-west  of  the  country  within  the  administrative  region  of
Transcarpathia (or Zakarpats'ka Oblast'), which borders Hungary, Slovakia and Romania from where
first records of O. lavaterae were made between 1995 and 2009. Other areas include the Precarpathian
region (primarily L'vivs'ka Oblast'),  Chernivets'ka Oblast',  regions in the north-west (Volyns'ka and
Rivnens'ka  oblasts),  oblasts  located  roughly  in  the  center  of  the  country  (Dnipropetrovs'ka,
Kirovohrads'ka, Poltavs'ka), and south-east (Zaporizs'ka, Donets'ka, Luhans'ka). Kyiv, the capital city,
is  too  in  this  list,  presumptively  due  to  the  phenomenon  known  as  the  urban  heat  island  effect
(Kokosha, 2024).

Fig.  4.  Current  habitat  suitability
(HS)  map  for  Oxycarenus
lavaterae  in  Ukraine  based  on
occurrences for the time period of
up  to  2025  and  the  KGClim
dataset; colours show potential HS
ranging  from  high  (red)  to  low
(navy  blue);  the  fuchsia-coloured
contour  line  represents  the  one
percentile training presence logistic
threshold; yellow circles symbolize
point  occurrences.  Coordinate
reference  system:  Lambert
azimuthal equal-area projection.

The following step in model development consisted in utilizing the entire occurrence dataset to project
current and potential future distributions under different climatic scenarios by employing the KGClim
dataset.  In  general,  this  is  a  widely  adopted  and  common approach in  ecological  niche  modeling
involving an array of environmental predictors. We modeled situations for the historic period of 1984-
2013  and  the  near-future  period,  including  scenarios  for   2020-2049  (2030s).  Optimal  model
complexity was achieved by applying invariably a regularization parameter of 1.0 and a combination of
four feature classes: linear, quadratic, product and hinge. The models showed reasonably high AUC and
CBI scores across the analyzed periods: historic (1984-2013) with 0.817±0.006 SD and 0.866±0.021
SD, and 2030s with 0.817±0.010 SD and 0.855±0.022 SD. Corresponding habitat suitability scores
based on the modeling exercises involving the whole home range and separately Latvia and Ukraine
are presented in Table 3. 
The  Chi-square  test  performed  in  this  case,  which  compared  the  distribution  of  actual  species
occurrences to that of randomly generated presences, yielded a lower though yet significant statistic
(χ2=4.8, p<0.05). This result indicates that actual species occurrences are not randomly distributed;
however, the observed preference or aggregation pattern is presumably weaker than that suggested by
the TerraClimate model.



While no trends in mean habitat suitability were apparent in the considered cases (p>0.05), Latvia was
an exception. However, even there, mean figures remained low (and are predicted to even diminish),
suggesting a minimal chance for O. lavaterae to become widespread, whereas in Ukraine the invasion
chances are above 50% higher. Due to the large similarity between current and future (2030) habitat
suitability maps for Ukraine, only the current situation is presented (Fig. 4).
Our  analysis  suggests  that  climatically,  optimal  conditions  for  the  invader  in  Ukraine  under  the
considered  model  are  expected  to  occur  in  low-ground  areas  of  Transcarpathia,  primarily  within
L'vivs'ka, Ivano-Frankivs'ka and Chernivets'ka oblasts in the west of the country. In the south suitable
areas are predicted to occur in Odesa Oblast' and Crimea.
Given the detailed insights from the Maxent models regarding the Lime Seed Bug's expansion and
projected optimal climatic conditions across Ukraine, a weighted (by the corresponding AUC) average
consensus  model  can  now  be  developed  to  synthesize  these  findings  into  a  more  robust  and
comprehensive predictive map (Fig. 5). As far as earlier applied thresholds yielded overly inclusive
predictions, we opted for the ten percentile training presence logistic threshold to define suitable areas,
where predicted areas with values below 0.04 were considered unsuitable for O. lavaterae.   

Fig.  5.  Current  consensus  habitat
suitability  (HS)  map  for
Oxycarenus  lavaterae  in  Ukraine;
colours show potential HS ranging
from high (red) to low (navy blue);
the  fuchsia-coloured  contour  line
represents  the  ten  percentile
training presence logistic threshold.
Coordinate  reference  system:
Lambert  azimuthal  equal-area
projection.

The weighted average consensus model allows for the ranking of Ukrainian regions (oblasts) by their
average  habitat  suitability  for  O.  lavaterae.  Regions  exhibiting  above-average  suitability,  listed  in
descending  order,  include:  L'vivs'ka,  Transcarpathia,  Chernivets'ka,  Volyns'ka,  Ternopil's'ka,  Ivano-
Frankivs'ka,  Crimea,  Rivnens'ka,  Dnipropetrovs'ka,  Khersons'ka,  Zaporizs'ka,  and  Odes'ka.  As
anticipated, the most favorable areas for the establishment of O. lavaterae are predominantly located in
western Ukraine. Conversely, the northeastern regions appear least suitable. While the highlands of the
Carpathians  and Crimea are excluded from favorable habitats,  it's  notable that  the majority  of the
country possesses the potential to support the bug's presence.

3.3. Importance of environmental factors
3.3.1.  TerraClimate models
The  ecological  presence  of  O.  lavaterae within  its  Afro-European  home  range  is  shaped  by  a
combination  of  environmental  variables.  By  analyzing  the  permutation  importance  of  individual
variables  used in  the modeling process,  we found that  the environmental  factors  derived from the
TerraClimate database contributing the most to the model showing the potential  distribution of the
species according to the time period between 2007 and 2016 were overwhelmingly represented by



temperature-  and  energy-related  features.  Namely,  minimum  (46.4%)  and  maximum  (25.6%)
temperatures, and DSR at the surface (20.9%) were significant factors; annual precipitation made only
a  minor  contribution  (7.1%).  The  jackknife  test  of  variable  importance  too  clearly  stressed  the
importance of minimum temperatures. 
Following  the  species'  rapid  expansion,  temperature-  and  energy-related  features  remained  highly
significant, collectively contributing 86.3% to permutation importance. This period, however, saw a
reordering of their individual influence. Specifically, maximum temperatures and DSR at the surface
became  more  prominent,  both  almost  equally  increasing  their  contributions  to  38.1%  and  37%,
respectively. Conversely, the importance of minimum temperatures was reduced to 13.8%, and annual
precipitation  made just  a  slightly  larger  contribution at  11.2%. Correspondingly,  the  jackknife  test
indicated that the maximum temperature factor appears to have the most useful information by itself,
whereas DSR appears to have the most information that isn't present in the other variables.
To further explore the impact of these environmental factors, we employed a SHAP framework (see
section 2.5).  For the time period 2007-2016 the minimum temperature factor upheld its significance,
even increasing it up to 56.0%. Analysis of the corresponding SHAP dependence plot reveals that the
impact  of  minimum  temperatures  on  the  model's  predictions  follows  an  inverted  U-shape  curve.
Habitat suitability shows a climbing trend as minimum temperatures increase, reaching a peak between
the mean annual figures of approximately 12 to 13 degrees Celsius. Beyond this span, SHAP values
quickly drop to zero and turn into negative figures, indicating a steep decline in habitat suitability as
minimum  temperatures  become  excessively  high.  This  illustrates  how  both  extremely  low  and
extremely  high  minimum  temperatures  are  detrimental,  highlighting  an  optimal  range  for  this
environmental factor. In theory, a positive effect (i.e.,  SHAP values >0) on the model’s predictions
occurs between 10.6 and 17.5  degrees Celsius. While the model's predictions show a  positive linear
correlation with minimum temperatures (Pearson's coefficient = 0.68, p <0.05) – suggesting generally
better habitat suitability at locations with higher minimum temperatures – the SHAP analysis reveals a
more nuanced, non-linear relationship: both extremely low and extremely high minimum temperatures
are detrimental to habitat suitability, thus effectively captures the complexities of the environmental
drivers beyond simple linear associations. This intricate relationship with temperature is directly tied to
insect physiology as far as lower temperatures decrease metabolic activity, lead to reduced movement,
feeding, and other physiological processes (Cossins, Bowler, 1987; Irlich et al., 2009; Lalouette et al.,
2012). In this respect winter conditions, particularly the coldest months of December, January, and
February, are decisive for mean annual minimum temperatures in Europe (Copernicus Global Climate
Highlights Report, 2024). Conversely, higher temperatures increase metabolic rate and activity up to a
certain point (Kingsolver et al., 2015). However, exceeding the optimal range, as seen in the SHAP
analysis, leads to the worsening of habitat suitability. In that context there is a certain similarity with
the Linden bug, Pyrrhocoris apterus, where winter warming was found to have a strong negative effect
on overwinter survival (Rozsypal, 2024). Therefore, both excessively low temperatures, which slow
down vital  processes,  and  excessively  high  temperatures,  which  are  likely  to  cause  physiological
damage, contribute to the observed decline in habitat suitability outside the optimal range.
For an exploration of the role of environmental factors in tailoring the model for the 2017-2024 period
we repeatedly employed the SHAP framework. Contrary to the permutation importance pointed out in
the Maxent model, SHAP showed the dominating significance of DSR (45.2%), with the maximum
temperature factor (24.8%) ranking second. This insight from SHAP likely provides a more refined
picture of individual factor contributions. In light of this, DSR requires our special attention. Similar to
the relationship observed with 'maximum temperature', the SHAP dependence plot for DSR reveals an
inverted U-shaped relationship with the model's predictions, reaching a peak mean annual value of
around 125 W/m2, which falls within a moderate range of 114-160 W/m², typical for mid-latitudes of
Europe (e.g.,  Germany, France,  Poland, Ukraine). This emphasized role of DSR in shaping habitat
suitability is particularly critical when considering the rapid northward spread of the lime seed bug



across Europe. Originating from the south, this invasive insect has shown a remarkable expansion into
mid-latitudinal  regions,  and recently even further  north,  a  phenomenon that  could be  triggered  by
increasing  DSR.  While  rising  winter  temperatures  are  a  well-documented  factor  facilitating  the
overwintering survival of many thermophilic insects (Bale, Hayward, 2010; Robinet, Roques, 2010;
Chen et al., 2011; Halsch et al., 2021), the availability of sufficient solar radiation during colder months
perhaps plays an even more vital role. O. lavaterae adults are known to form large, dense aggregations
on  tree  trunks,  especially  on  the  sun-exposed  south  or  southwest  sides  of  lime  trees,  as  a  key
overwintering strategy (Bunescu et al., 2023; Ilea et al., 2023; Domagała,  2024). In these exposed
microhabitats, direct DSR provides crucial thermal benefits, allowing the bugs to bask and elevate their
body temperatures above ambient air temperatures, thereby mitigating the physiological stress of cold
and reducing winter mortality. 
This understanding sets the stage for two key observations. First, regression analysis reveals that in
regions  like  Germany,  heavily  invaded  by  O.  lavaterae, DSR has  increased  at  a  faster  rate  than
maximum temperatures (p < 0.05). For this purpose we employed a linear regression model with an
interaction term using the lm() function in the R statistical environment (R Core Team, 2020). The
model allowed us to assess both the individual effects of year and data type, as well as their interaction,
to  determine  if  the  rate  of  change  over  time  differed  significantly  between  DSR  and  maximum
temperature. Second, this rise in DSR, roughly coinciding with the northward expansion of the lime
seed bug, is likely driven by a decrease in air pollution leading to clearer skies. This is a very important
and complex topic, often referred to as "global dimming" or "brightening" (Wild, 2010; 2012). From
about the 1950s to the 1980s, many industrialized regions experienced a phenomenon known as "global
dimming," where the amount of DSR reaching the Earth's surface significantly decreased. This was
largely attributed to a rapid increase in anthropogenic aerosol emissions (especially sulfates) during that
period.  But  since  the  1990s,  many  regions  (particularly  in  Europe  and  North  America)  have
experienced a reversal, known as "global brightening." This is primarily due to successful air pollution
control policies that have significantly reduced the emission of reflective aerosols. As these aerosols are
removed from the  atmosphere,  more  DSR is  able  to  reach  the  Earth's  surface,  directly  impacting
microclimates  (Yuan  et  al.,  2021)  and  expectedly  affecting  insects  that  rely  on  solar  basking  for
thermoregulation (like O. lavaterae). Notably, our breakpoint analysis also aligns with this observation.
The increasing trends in DSR in newly colonized by the bug regions could therefore be a significant,
yet  often  underestimated,  driver  of  this  species'  successful  northward  range  expansion  and
overwintering  capacity,  enabling  it  to  survive  cold  winters  where  it  was  previously  restricted  by
freezing  temperatures  and  limited  solar  energy  availability.  Its  developed  basking  behavior  now
effectively  taps  into  this  crucial  solar  energy  source,  overcoming  a  key  previous  limitation.
Interestingly,  a  comparable  pattern  is  evident  in  wild  populations  of  the  linden  bug,  Pyrrhocoris
apterus,  however  for  this  particular  species  winter  basking  behavior  has  been  found  to  be  rare
(Rozsypal, 2024). 

3.3.1.  KGClim models
Using permutation importance, our analysis of environmental factors for the years 1988-2017 from the
KGClim database showed that  temperature of  the  coldest  month (27.4%) and annual  precipitation
(18.1%) were the most influential in predicting the species' distribution. Together, these two factors
explained almost half of the model's variation. The jackknife test stressed exclusively the importance of
temperature-related factors: the annual mean temperature and temperature of the warmest month. The
significant contribution of the coldest month's temperature in this case mirrors and underscores the
importance of the minimum temperature factor disclosed in the earlier Terraclimate model analysis.
Indeed, even though the species is capable of tolerating cold snaps reaching -10°C, prolonged exposure
to winter temperatures below -15°C presents a severe threat, potentially wiping out as much as 99% of
the hibernating population (Kalushkov et al., 2007; Nedvěd et al., 2014).



For our exploration of how the KGClim environmental factors shaped the model for the current period,
we consistently used the SHAP framework focusing on the top five most important. SHAP revealed
that temperatures of the warmest and coldest month were clearly the dominant factors, accounting each
for 33.8 and 31.5% of the average absolute impact on the model's predictions.
The  SHAP dependence  plot  shows that  the  impact  of  temperatures  of  the  warmest  month  on  the
model's predictions forms a seen before inverted U-shaped curve, suggesting that there's a more or less
ideal range of warmest month temperatures for the habitat suitability, with values too low or too high
being  less  favorable.  Specifically,  habitat  suitability  tends  to  increase  as  these  temperatures  rise,
peaking roughly between 17 and 21 degrees Celsius. For temperatures of the coldest month, the SHAP
dependence plot reveals a varying impact as temperatures increase. The graph sharply rises from -3.7
degrees Celsius, flattening out around 0 degrees. However, the impact then shows a steady increase
again  from  7.5  degrees,  continuing  up  to  15.6  degrees.  Interestingly,  the  cease  of  coordinated
movement in  O. lavaterae occurs at around -3.2 to -3.4°C (i.e., close to our -3.7°C), indicating the
critical thermal minima (CTmin) for the species (Käfer et al., 2020). We believe this finding effectively
bridges statistical modeling (SHAP) with biological reality.
As for the future, permutation importance once more indicated the significant role of coldest month
temperatures (26.2%) and of the precipitation of the wettest month in the warmest half-year (25.2%),
together explaining more than half of the model's variation. Differently, however, temperature-related
factors – the annual  mean temperature and the temperature of the coldest month – were  exclusively
emphasized by  the  jackknife  test.  Revisiting  the  SHAP  analysis,  the  results  highlighted  the
temperatures  of  the  coldest  and warmest  months  as  the  dominant  drivers,  contributing  33.9% and
33.2%  respectively  (together,  over  two-thirds)  to  the  average  absolute  impact  on  the  model's
predictions. Notably, this mirrors the dominant factors observed for the current period, suggesting a
fundamental  and  robust  influence  of  these  climatic  variables.  The  fact  that  both  the  permutation
importance and SHAP analysis consistently highlight these temperature-related factors implies that the
underlying relationships within our models are strong and stable across different scenarios or methods
of assessment and they are likely identifying the most impactful levers in the system. Even as average
temperatures rise, an organism's survival or success might still be primarily determined by the absolute
coldest temperature it experiences, or the highest temperature it can tolerate. These extremes act as
physiological "bottlenecks" or "tipping points", and their relative importance for a species' fate will
probably remain in place even as the overall climate shifts (Field et al., 2012).

4. Conclusions
A comprehensive analysis of the Lime Seed Bug, O. lavaterae, reveals its significant range expansion
across  Europe,  with  an  examination  of  both  past  observations  and  future  projections.  Optimized
Maxent models, utilizing time-series occurrence data from 2007 to 2024 and various environmental
factors, clarify the drivers behind this spread. A "rapid expansion" phase, notably commencing in 2017,
marks a key period in the species' distribution dynamics.
O. lavaterae demonstrates a dual expansion pattern, moving towards both the equator and northwards,
but the northward shift has occurred at a considerably faster rate. This expansion is closely tied to
critical environmental factors, with minimum temperatures, maximum temperatures, and downward
shortwave radiation (DSR) at the surface exerting overwhelming influence on habitat suitability. DSR,
a key driver, appears to be a significant, yet often underestimated, factor facilitating the successful
northward range expansion and enhanced overwintering capacity of the bug. This is partly due to the
species' developed basking behavior, allowing it to leverage increased DSR – likely a consequence of
reduced air pollution and "global brightening" since the 1990s – for thermoregulation during colder
months. This effectively overcomes a crucial prior limitation of freezing temperatures and limited solar
energy availability.



Statistical  modeling,  including  SHAP  framework  analysis,  integrates  with  biological  realities,
demonstrating how temperature extremes and DSR function as critical physiological "bottlenecks" for
O. lavaterae. 
A weighted  average  consensus  model  effectively  ranks  Ukrainian  oblasts  by  their  average  habitat
suitability for O. lavaterae. Regions with above-average suitability are primarily concentrated in the
west, while northeastern regions and the highlands of the Carpathians and Crimea are less suitable,
however the model indicates that most of Ukraine has the potential to support the Lime Seed Bug's
presence. In contrast, Maxent models for Latvia show minimal invasion chances for the species.
Overall, this comprehensive analysis not only advances understanding of insect range dynamics in a
changing climate but also provides critical insights for proactive biodiversity conservation and targeted
pest  management  strategies  amidst  ongoing  environmental  shifts  and  varying  regional  impacts  of
climate change and air quality improvements. Furthermore, the methodologies and findings presented
here are capable of facilitating citizen science efforts for ongoing monitoring,  empowering broader
participation  in  tracking species'  responses  to  environmental  change.  Continued exploration  of  the
nuanced interplay of these climatic and anthropogenic factors will be vital to refine predictive models
and inform adaptive management approaches.
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