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Wright2,3 Niels J. Dingemanse3,11, David F. Westneat3,12,5

1 Institute of Ecology and Evolution, University of Edinburgh, Charlotte Auerbach Road,6

Edinburgh, EH9 3FL, UK7

2 Department of Biology, Norwegian University of Science and Technology (NTNU), N-74918

Trondheim, Norway.9

3 Members of the SQuID working group10

4 Department of Mathematics & Statistics, Dalhousie University, Halifax, Nova Scotia, Canada11

5 Institut Maurice-Lamontagne, Fisheries and Oceans Canada, Mont-Joli, Quebec, Canada12

6 Direction pour la Science Ouverte (DipSO), INRAE, France13

7 Department of Biological Sciences; North Dakota State University, USA14

8 School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK15

9 Department of Evolution and Ecology, University of California Davis, Davis CA 95616 USA16
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Abstract24

1. Complex statistical methodology now allows a growing array of questions to be addressed25

in ecology and evolutionary biology. However, the particular question being addressed or26

the complex nature of the data collected often raise issues with how statistical models27

perform and potentially limit inference. Simulations provide a powerful approach to28

help empiricists understand the assumptions, limitations, and output of generalised29

linear mixed models (GLMMs), advance teaching of statistical modelling and design30

more informed studies around their usage.31

2. Datasets in ecology and evolutionary biology often have complex hierarchical structures,32

which create challenges in creating simulations. This problem is exacerbated by the33

current lack of flexible and reproducible tools that facilitate simulating complex data34

from a wide range of data structures.35

3. Here we present the squidSim R package, a flexible and logical program designed to36

accommodate many of the common data structures in ecology and evolutionary biology.37

The program can simulate from a wide diversity of models in a generalised linear mixed38

model (GLMM) framework, including data from Gaussian and non-Gaussian models,39

multi-response models, as well as spatial, temporal, genetic and phylogenetic effects.40

4. In addition to facilitating simulations for a wide range of models and data structures,41

squidSim R package provides a fully reproducible workflow and has established utility42

for teaching. We also provide a graphical user interface via the shinySim R package.43

Keywords: simulation, linear models, hierarchical models, random effects, genetic variation,44

pedigree, phylogeny, autocorrelation, multivariate, reproducibility45
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1 Introduction46

As computational power grows, the fields of ecology and evolutionary biology (E&E) are in-47

creasingly dominated by sophisticated statistical methods that can deal with the complex48

data structures that researchers frequently encounter. These complex data can be structured49

over space or time, include genetic or phylogenetic relatedness of individuals and species, or50

be hierarchically structured, with data varying at different hierarchical levels, such as hav-51

ing repeated measurements of individuals. Typically, researchers analyse these data within52

a (generalised) linear mixed model (GLMM) framework, and extensions thereof, which offer53

flexibility in dealing with missing data and unbalanced designs, non-independence, and the54

complex data structures that are common in E&E datasets (Kruuk, 2004; ?; O’Hara, 2009;55

?; ?; Nakagawa & Schielzeth, 2013; Dingemanse & Dochtermann, 2013). However, as statis-56

tical methods become more complex, we are faced with the challenge of understanding their57

assumptions and limitations and designing studies around their use.58

Monte Carlo simulations (hereafter simulations) provide a powerful approach to help em-59

piricists do this. Simulations provide a way of creating artificial datasets through randomly60

generating data from known underlying deterministic models and probability distributions that61

are structured to imitate real or hypothetical situations. These simulations have many ap-62

plications in E&E. First, simulations are a fundamental tool for statistical research, helping63

researchers understand and test new statistical methods (Morris et al., 2019; Lotterhos et al.,64

2022; DiRenzo et al., 2023). By simulating data under a known data-generating process,65

researchers can test whether a statistical tool is doing what they think, explore how models66

perform under different scenarios, assess what limitations they may have, and compare differ-67

ent statistical models to determine which predicts the focal process best (van Benthem et al.,68

2017; Westneat et al., 2020; Schielzeth et al., 2020). Importantly, because the true underlying69

values are known, there is an absolute benchmark with which to compare the results. Second,70

simulations are a fantastic and underused tool for teaching statistics (Allegue et al., 2017;71

Kéry & Schaub, 2012; Kéry & Royle, 2020). Simulating and then analysing datasets enables72
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students to see what assumptions are being made and better understand the output of sta-73

tistical models. They also allow educators to create datasets with known characteristics that74

can be used to demonstrate target principles to students. Third, simulations have an impor-75

tant and underappreciated role in study design and prospective design analysis. The sampling76

distributions of many parameters in complex statistical models are unknown and consequently77

simulations are required to assess metrics such as power, accuracy and bias (Martin et al.,78

2011; Dingemanse & Dochtermann, 2013; Kain et al., 2015; Pick et al., 2023a). Finally, sim-79

ulations can be used to aid statistical inference, including posterior predictive checks (Gelman80

& Hill, 2007), parametric bootstrapping (Stoffel et al., 2017), and creation of null models and81

distributions (e.g. ?Ihle et al., 2019; Pick et al., 2023b,a). Simulations are therefore a key tool82

by which researchers can better assess statistical methodology, increase analytical robustness,83

and guide study design. However, in our experience simulations are a massively underused tool84

in most fields, including E&E, and are even uncommon in methodological studies (DiRenzo85

et al., 2023).86

In theory, simulating data is simple. All commonly used programming languages in E&E87

(e.g. R, Python, Julia) provide built-in functions that allow for (pseudo-)random data simu-88

lation (e.g. the rnorm(), rpois() and rbinom() functions in R). This functionality allows89

you to iteratively build simulations of varying complexity. So why are simulations not more90

widespread in E&E? There are several barriers to their uptake. First, our own experience shows91

that many researchers find the idea of simulations intimidating and overly time-consuming.92

Although there are many basic functions for simple simulations, data in E&E often have a93

level of complexity that can be challenging to implement in simulations. As discussed above,94

researchers typically have structured data (hierarchical, genetic, phylogenetic, temporal, spa-95

tial), and it may be unclear how to practically incorporate this complexity into a simulation.96

Consequently, considerable coding experience may be required to simulate such data. Given97

the number of existing simulation studies across fields, we might presume that there exists a98

lot of code on which to base new simulations. This, however, highlights our second problem:99

simulations are often coded from scratch by experienced coders, likely in an idiosyncratic way100
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according to their particular coding style. The code is typically not produced with transferabil-101

ity or education in mind, and is often written to optimise simulations for a particular question.102

Furthermore, code is rarely provided with the corresponding publication (Culina et al., 2020;103

Kimmel et al., 2023; Kellner et al., 2025) and, when it is, it often either does not run or104

is badly documented (Kellner et al., 2025). This general lack of clarity and standardisation105

means that code is often difficult for others to understand and adapt. These two problems106

are compounded by the lack of easily accessible tools. As we discuss below, there are few107

software packages available to simulate complex data, and those that are available are either108

specialised for a particular task (e.g. power analysis for a particular statistical model), and/or109

do not have the flexibility to incorporate the different kinds of data structures commonly found110

in E&E. Furthermore, these tools are often not utilised in simulation studies, which makes111

linking available code on simulations to these tools difficult. Whilst the focus of the researcher112

should be on the parameterisation of the simulations, much of the struggle of creating sim-113

ulations rests on an individual’s ability to create their simulations from scratch or decipher114

inaccessible code. We believe that a simple, flexible framework for implementing simulations,115

that emphasises the statistical model and parameters of the simulation rather than coding116

ability, will help remove this barrier to this important methodology.117

Here we present squidSim, an R package that can flexibly produce a extensive array of118

simulations based on the structure of a GLMM. As starting with simulations can seem119

like a daunting task, squidSim is designed to facilitate that transition and focus atten-120

tion on the data structure and parameters needed for simulation, rather than program-121

ming knowledge. Inputting a large number of parameters for a complex simulation in-122

evitably leads to convoluted code, often requiring troubleshooting for misplaced or miss-123

ing brackets and commas. To aid with this, we also provide a GUI interface (contained in124

the shinySim R package https://github.com/squidgroup/shinySim), which provides a125

user-friendly way to generate the R code required to simulate with squidSim, again taking126

the focus off coding and placing it on the parameters of the simulation. The squidSim127

R package also comes with a large amount of documentation and extensive worked exam-128
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ples (https://squidgroup.org/squidSim_vignette/index.html). Although the focus129

of these tools is largely on those starting with simulation, we believe that squidSim also130

provides a useful tool for experienced programmers. A major motivation for the squidSim131

package is to provide a consistent framework for simulations, which can be interpreted by132

many people rather than having to decipher someone’s personal code. It has therefore been133

constructed with reproducibility in mind. Not only does it use a consistent syntax, but also the134

squidSim object produced from a simulation contains all the information used to parameterise135

the simulation and therefore to reproduce its results.136

2 The squidSim R package137

The squidSim R package is designed to simulate data from any GLMM structure (i.e. if138

you can analyse data in this framework, in theory you can simulate data from it). As well139

as accommodating a hierarchical data structure, squidSim allows the simulation of uni- and140

multi-response data with genetic and phylogenetic effects, temporal and spatial variation, and141

from Gaussian, Poisson and binomial distributions (including several link functions). Following142

from the ethos of the original squid R package (Allegue et al., 2017), squidSim allows143

the simulation of an idealised population and then provides functions to sample from this144

population. As well as being able to simulate data, the package can therefore be used to145

create realistic sampling schemes, and so explore the potential biases created by this sampling146

and design appropriately powered sampling schemes.147

squidSim joins several other existing R packages that perform simulations. These packages148

are generally limited in their scope (i.e. the range of model structures they accommodate) or149

focused on a particular usage (Table 1), particularly power analysis. Although this is useful,150

simulations can be used for many additional tasks (e.g. estimating sampling distributions, bias,151

precision, etc.). squidSim is specifically designed to flexibly simulate ecologically realistic152

datasets, and although the package itself does not conduct power analyses, these (and other153

such analyses) can be easily coded using the output (examples of which are provided in the154
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vignette; https://squidgroup.org/squidSim_vignette/9-power.html).155

The squidSim package can be installed from github using the devtool package, and loaded156

in R157

devtools :: install_github("squidgroup/squidSim")158

library(squidSim)159

In the following sections, we discuss in more detail the process of creating or inputting a data160

structure, specifying parameters and simulating data, and sampling from those data.161

3 Data Structure162

To simulate complex, structured data, you need to have a structure that describes the organi-163

sation of the data. In simple models, this data structure is just represented by the sample size,164

for example, in a simple linear model with predictors that vary at the level of the observations.165

More complex data structures in squidSim are expressed as a data.frame (or matrix), with166

all the grouping factors and their levels/IDs, as we would see in a typical dataset, for example167

the IDs of different individuals, locations, or sexes. IDs from this data structure data.frame168

can also be used to link to more complex data structure information, such as pedigrees, phy-169

logenies, spatial correlation matrices or other covariance matrices, which can also be input170

(see section 4.3).171

With the squidSim package, the user can either make use of any existing data structure they172

have access to, or create data structures themselves. For example, the make structure()173

function creates simple nested and crossed hierarchical data structures (Figure 1). Importantly,174

make structure() only produces balanced data structures which are often not realistic for175

real world datasets, but sampling functions can be used to make them unbalanced, as outlined176

in Section 5.177
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Table 1: Comparison of different simulation R packages.

Function squidSim squid1 faux2 SIMR3 PAMM4

Data Structure
Generate balanced structure ✓ ✓ ✓ ✗ ✓

Generate unbalanced structure ✓ ✗ ✓ ✗ ✗

Generate hierarchical structure ✓ ✓ ✓ ✗ ✓

Import existing data structure ✓ ✗ ✓ ✓ ✓

Accommodate multiple hierarchical levels ✓ ✓a ✓ ✓ ✗

Simulations
Imports known predictors ✓ ✗ ✓ ✓ ✓

Simulates predictors ✓ ✓b ✓ ✗ ✓c

Predictors at multiple hierarchical levels ✓ ✗ ✗ ✗ ✗

Hierarchical (Random intercepts and slopes) ✓ ✓ ✓ ✓ ✓

Non-Gaussian ✓ ✗ ✓ ✓ ✗

Multivariate ✓ ✓d ✗ ✗ ✗

Phylogenetic effects ✓ ✗ ✗ ✗ ✗

Genetic effects ✓ ✗ ✗ ✗ ✗

Temporal and spatial autocorrelation ✓ ✗ ✗ ✗ ✗

Sampling
Missing data ✓ ✗ ✓ ✗ ✗

Survival ✓ ✗ ✗ ✗ ✗

Nested ✓ ✓ ✗ ✓ ✓

Temporal ✓ ✓ ✗ ✗ ✗

Additional Functionality
Exports data ✓ ✓ ✓ ✓ ✗

In built power analysis ✗ ✗ ✗ ✓e ✓e

Simulate from an existing analysis model ✗ ✗ ✗ ✓e ✓e

Specify custom model equation ✓ ✗ ✗ ✗ ✗

1 Allegue et al. 2017; 2DeBruine 2023; 3 Green & MacLeod 2016;
4Martin et al. 2011
amax two levels; bmax two predictors; cmax one predictors;
dmax two responses; e only from lme4
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make_structure(
structure = "year(3) + individual(3)",
repeat_obs = 2

)

make_structure(
structure = "year(3)/individual(3)",
repeat_obs = 2

)

a)  Crossed

b)  Nested

Figure 1: Examples of balanced data structure generation in squidSim using the make structure() function.
a) shows a crossed data structure, in which each of the 3 individuals is present in each of the 3 years. b) shows
a nested data structure, in which three different individuals are present in each of three years (i.e. individual
nested within years). In both examples, there are two observations for each combination.
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4 Simulating Data178

The heart of the squidSim R package is the simulate population() function, which sim-179

ulates data from a given data structure. Importantly, all underlying data are simulated from180

multivariate normal distributions, which aligns with the assumptions of typical GLMMs (note181

this is on the latent scale for non-Gaussian GLMMs, see section 4.3). To simulate data,182

users provide the simulate population() function with a data structure (either a sam-183

ple size, given to the n argument, or a data.frame containing a hierarchical data structure184

given to the data structure argument), a list of parameters (parameters argument), and185

various other optional arguments that facilitate more complex simulations. In many scenar-186

ios, researchers will want to simulate many datasets under the same parameter sets. This187

can be easily achieved by specifying the number of datasets in the n pop argument. The188

simulate population() function generates a squidSim object, which stores the simulated189

datasets, as well as all the information about the simulation (see Reproducibility section be-190

low). The get population data() can then return the simulated data from the squidSim191

object, alongside the data structure.192

4.1 Basic functionality193

The key to using simulate population() is matching the parameters list with a model194

equation. To demonstrate this, we will take the example of a linear mixed model:195

yijk = β0 + xiβx +wjβw + uk + β3x1,ix2,i + ϵijk

xi ∼ N (µx, Σx)

wj ∼ N (µw, Σw)

uk ∼ N (0, σ2
u)

ϵij ∼ N (0, σ2
ϵ ) .
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Here, the response variable (y) is a function of the intercept (β0), some observation-level196

predictors (xi; note that bold symbols are used to represent vectors) scaled by a vector of197

regression slopes βx, some predictors (w) that vary at level j (e.g. among individuals) scaled198

by a vector of regression slopes βw, some ‘random’ effects (u) varying at level k (e.g. among199

years), an interaction between two observation level effects (x1x2), and some residual variation200

(ϵ). xi, wj, uk and ϵi are all drawn from multivariate normal distributions, with means µx,201

µw, and 0 and variance covariance matrices Σx, Σw, σ
2
u and σ2

ϵ , respectively.202

The parameters are specified as a set of nested lists, with a component for each of these parts203

of the equation as we show in Figure 2. The intercept (β0) is provided as a single number204

(red area of Figure 2), or a vector of intercepts for a multi-response model (see Multivariate205

section below). The residual variance (σ2
ϵ ) parameter (vcov; the yellow area at the bottom206

of Figure 2) must always be specified; this parameter will also be a single number (unless207

there are multiple response variables). Observation-level predictors (x) can be simulated208

by adding an observation component to the parameters list (dark blue area in Figure 2).209

These predictors are simulated from a multivariate normal distribution using inputted mean210

and vcov parameters, the latter providing the variance-covariance matrix of the predictors211

(Σx). To generate the response, these predictors are scaled by the beta parameters (i.e. the212

regression slopes), and added together to create the response. The mean, vcov and beta213

parameters do not have to be specified, and have sensible default values (mean=0, vcov=I214

and beta=1, where I is an identity matrix). In Figure 2, we have specified vcov as a vector215

rather than a matrix; simulate population() interprets this to be the variances (i.e. the216

diagonal of the variance-covariance matrix), and assumes the respective covariances are 0. If217

we have no complex data structure (i.e. everything varied at the level of the observation, with218

no wj or uk in the above equation), we could specify a single sample size in the argument219

n, rather than inputting a data.frame to the data structure argument. We have also220

added the names argument to the individual and observation lists, resulting in the simulated221

variables having those names.222
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intercept=0,

sims <- simulate_population(
data_structure=ds,
parameters=list(

observation=list(
names=c("rain","temperature"),
mean=c(0,0),
vcov=c(1,1),
beta=c(0.5,-0.2)

),

interactions=list(
names="rain:temperature”,
beta=0.5

),

individual=list(
names="body_size",
mean=c(0),
vcov=c(1),
beta=c(0.7)

),

year = list(
vcov = 0.2

),

residual=list(
vcov=1

)

)
)

𝑦!"# =	

𝛽$
+
𝒙!𝜷𝒙

+

𝛽&𝑤"

+
𝑢#

+
𝛽''𝑥(!𝑥)!

+
𝜀!	

𝒙!	~	𝑁(𝝁𝒙, Σ')

𝑤"	~	𝑁(𝜇&, 𝜎&))

𝑢#	~	𝑁(0, 𝜎*))

𝜀!	~	𝑁(0, 𝜎+))

Response =

Intercept
+

Observation level 
predictors

+

Individual level
predictors

+
Year 

‘random effects’
+

Interactions

+
Residuals

ds <- make_structure(
structure = "year(20)/individual(30)",
repeat_obs = 2

)

Figure 2: Demonstration of the modular structure of the simulate population() function in squidSim.
The figure shows the link between the verbal model, the model equation and the squidSim code, with the
different colours showing how the different components map onto each other.

If there is a data structure, predictors can then be simulated at each hierarchical level that223

exists in the data structure. For example, a researcher might collect multiple measures per224

individual, and so some predictors (w) vary at the level of the individual (j), for example,225

body size, whereas other predictors (x) might vary at the level of the observation (i), for226

example the weather during a focal measurement. For each hierarchical level, an additional227

list in the parameter list code is specified, with the name exactly matching the corresponding228

column name in the data structure (e.g. variation in body size among individuals in the pink229

area in Figure 2). If a data structure is specified, then n is no longer needed, and is taken to230

be the number of rows in the data structure.231

Random effects are simulated in a similar way. From the perspective of simulating data,232
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there is no distinction between simulating random effects and simulating a predictor varying233

at a particular hierarchical level, as random effects are essentially just unobserved predictors,234

which your analysis model is estimating. Thus, they have the same general format (purple235

area in Figure 2). These random effects (u) can be simulated simply by specifying only the236

vcov parameter; the beta and mean parameters will default to 1 and 0, respectively. This is237

consistent with how random effects are typically described in E&E.238

All the components of the parameters list (intercept, observation, and those linked to the data239

structure; intercept and year in Figure 2) are additive. Multiplicative elements can be specified240

as interactions between predictors, by adding an interactions list to the parameters list241

(light blue in Figure 2). Quadratic effects can be added in a similar way (a quadratic is just242

an interaction between a trait and itself).243
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Box 1: Worked Example - Random Regression
In evolutionary ecology, we are often interested in how a relationship varies across some
hierarchical level, for example, when studying whether phenotypic plasticity varies among
individuals (‘IxE’) or among genotypes (‘GxE’). Typically, such questions are modelled using
a random regression (i.e. random slopes) model. Random slopes represent an interaction
between variables at different hierarchical levels. In a statistical model, one of these variables
(the random slopes) is an unobserved variable (e.g. some property of the individual), which
the model estimates (for which there is no ’main effect’, which is why beta=0 for the slope
variable in Figure B1). When simulating data, there is no distinction between observed
and unobserved variables, and so we code both variables in a similar way. Here, we take
the example of among-individual variation in the aggressiveness of female Ural owls (Strix
uralensis) in response to the change in prey density (∆ prey) between subsequent years,
shown in Kontiainen et al. 2009. In this study, the authors found an overall positive effect of
∆ prey (0.13; when the predictor was scaled to have zero mean and unit variance), variation
among individual intercepts (σ2

u1=1.3) and also among individual slopes (σ2
u2=0.17), with a

correlation between intercepts and slopes of 0.45. In Figure B1, we use these parameters as
the basis for our simulation. This simulated data could be used for many purposes, including
a power analysis for future studies or an assessment of model performance.

𝑦!"# =	𝛽$ + 𝛽%𝑥! +	𝑢&"	+	𝛽%𝑥&!𝑢'" +	𝜀! 	
𝑥! 	~	𝑁 𝜇%, 𝜎%'
𝒖𝒋	~	𝑁(𝟎, Σ))
𝜀! 	~	𝑁(0, 𝜎*')

b)

a)

c)

intercept=0,

sims <- simulate_population(
seed= 1015,
data_structure=ds,
response_name="aggression",
parameters=list(

observation=list(
names="delta_prey",
beta=0.13

),

interactions=list(
names="delta_prey:ind_slopes”,
beta=1

),

individual=list(
names=c("ind_intercepts","ind_slopes"),
vcov=matrix(c(1.3,0.45,0.45,0.17),nrow=2),
beta=c(1, 0)

),

residual=list(
vcov=2

)
)

)
sim_data <- get_population_data(sims)
head(sim_data)

d)

Figure B1: Simulating random slopes data using squidSim. We start with the model equation a) which we
translate into squidSim code b) and input the parameter values (see text in Box 1). We then view the output
c) and plot simulated data d).

244
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4.2 Simulating multiple responses245

Researchers may want to generate structured data with multiple response variables. This kind246

of data is common in quantitative genetics when investigating genetic correlations between247

multiple traits (Kruuk, 2004), and in behavioural ecology when considering covariance in248

behavioural traits among and within individuals (Dingemanse & Dochtermann, 2013). In249

such cases, we can simulate from a multi-response (or multivariate) model:250

yij = β0 + xiBx + uj + ϵij

xi ∼ N (µx, Σx)

uj ∼ N (0, Σu)

ϵij ∼ N (0, Σϵ) ,

where yij is a vector of responses of length q for observation ij, β0 is a vector of intercepts of251

length q (number of responses), Bx is a p ∗ q matrix of βs (where p is number of predictors)252

relating each predictor to each response, and Σu and Σϵ are q∗q variance-covariance matrices253

for the among-group (e.g. individual) effects and residuals across the different responses. We254

show how this relates to squidSim code in Figure 2.255

4.3 Additional Functionality256

Many more complex data structures in E&E are characterised by correlations between ob-257

servations, such as genetic and phylogenetic effects, and spatial and temporal autocorre-258

lations. These data structures can often be captured by a correlation matrix at a spe-259

cific hierarchical level. Generally, data can be simulated from any such correlated data260

structure using squidSim, by passing a covariance matrix to the cov str argument of261

simulate population(). We discuss a few specific examples here.262

Following on from the original squid R package (Allegue et al., 2017), squidSim allows differ-263

ent temporal structures to be simulated, such as linear and cyclical environmental effects (out-264
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intercept=c(5,10),

sims <- simulate_population(
data_structure=ds,
n_response = 2,
parameters=list(

observation=list(
names=c("rain","temperature"),
beta= matrix(c(0.5, 0, 0, -0.2),

byrow=TRUE,ncol=2)
),

individual = list(
vcov = matrix(c(0.5,0.25,0.25,1),nrow=2)

),

residual=list(
vcov= matrix(c(0.5,0.25,0.25,1),nrow=2)

)

)
)

𝒚𝒊𝒋𝒌 =	

𝜷𝟎
+
𝒙𝒊𝐵𝒙

+
𝒖𝒌

+
𝜺𝒊	

𝒙&	~	𝑁(𝟎, 𝐼)

𝒖𝒌	~	𝑁(𝟎, Σ')

𝜺𝒊	~	𝑁(0, Σ()

Responses =

Intercept
+

Observation level 
predictors

+
Individual 

‘random effects’
+

Residuals

ds <- make_structure(
structure = "individual(100)",
repeat_obs = 4

)

Figure 2: Demonstration of simulating multi-response data with the simulate population() function in
squidSim. The figure shows the link between the verbal model, the model equation and the squidSim code,
with the different colours showing how the different components map onto each other. Here we simulated
two response variables, with two observation level predictors, each with an effect on one response variable.

lined at https://squidgroup.org/squidSim_vignette/6-temporal-and-spatial-effects.265

html). Temporal and spatial auto-correlation can be simulated by inputting spatial/temporal266

correlation matrices to the cov str argument of simulate population(). These correla-267

tion matrices can be generated from existing temporal or spatial data using, for example, the268

corClasses functions in the nlme R package (Pinheiro & Bates, 2025).269

squidSim utilises the functionality of the MCMCglmm R package (??) to simulate additive270

genetic and phylogenetic effects (assuming Brownian motion). The simplest way to simulate271

additive genetic effects is to provide the pedigree argument in simulate population()272

with a list, including a three-column pedigree (individual, dam, sire) and a vector identifying273

which grouping factor(s) in the data structure this links to. This generates additive genetic274

effects, with a covariance structure determined by the relatedness between individuals, de-275

scribed by the relatedness matrix. Researchers increasingly use genomic data to generate276

genomic relatedness matrices (GRMs). squidSim can also simulate additive genetic effects277

using these, by passing a GRM to the cov str argument in simulate population(). Sim-278
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ilarly, non-additive genetic variance, such as dominance variance, can be simulated by passing279

the relevant matrix to the cov str argument. Dominance and epistasis matrices can be280

generated using the nadiv R package (Wolak, 2012). Phylogenetic effects can be simi-281

larly simulated by passing a phylogeny (as a phylo object) to the phylogeny argument of282

simulate population().283

To generate non-Gaussian data, such as survival, sex ratio, reproductive success, and counts284

of organisms or behaviours, simulate population() can simulate from Binomial (specifi-285

cally Bernoulli) and Poisson distributions, alongside providing different link functions (log and286

inverse for Poisson, and logit, probit and complementary log-log (cloglog) for binomial). These287

can be specified with the family and link arguments, respectively, to simulate population().288

It is important to note that the data is simulated as multivariate normal on the latent scale,289

and so the parameters relate to this latent scale and not the observed scale (i.e. not to the290

counts or proportions directly). In this way, the simulation matches the output of a GLMM. For291

a good guide to GLMMs and transforming across scales, see de Villemereuil et al. (2018); ?.292

To aid interpretation, we also provide two functions that help transform distributions between293

normal and log scales (lat2exp() and exp2lat()), and show examples of transformation294

across several scales in the vignette (https://squidgroup.org/squidSim_vignette/1.295

6-nonGaussian.html). Simulating non-Gaussian data is demonstrated in the example in296

Box 2.297

squidSim can also be used to generate data with an observation process, such as species298

occupancy/abundance or mark-recapture data by simulating two response variables, one for299

the process of interest, (e.g., whether a species is present), and one for the observation process300

(e.g., whether a species is observed conditional on being present). The responses can then be301

easily combined (typically through multiplication) to get the ‘observed’ data. In this way, a302

researcher can build a complex structure for both processes. A simple version of this can also303

be produced using the sampling functions (see Section 5 below, and demonstration in Box 2).304

Many datasets have more complex model equations than the default structure of simulate population()305
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allows (i.e. something more complex than a strictly additive model). We therefore have an ad-306

ditional model argument in simulate population(), that allows the custom specification of307

a model equation. One example of this has already been used in a simulation study on mater-308

nal genetic effects (Pick et al., 2024), which requires more complex indexing than squidSim309

allows by default (https://squidgroup.org/squidSim_vignette/4.4-IGE.html).310

5 Sampling311

After simulating the data, a researcher may want to derive certain observed data structures,312

or vary the data structure in a systematic way (e.g. to explore different study designs or313

to investigate the effect of different sample sizes). Sampling in squidSim is different from314

simply inputting different data structures. The output of simulate population() retains315

the original simulated full dataset(s), as well as the sampled ones, meaning that the effects of316

down-sampling or missing data can be investigated, relative to the full dataset. When sampling317

functions are used, the sampled data can be returned using the get sample data() function.318

Currently, squidSim allows for four different sampling designs. ‘Nested’ sampling allows the319

user to specify a range of different sample sizes across different nested hierarchical levels.320

‘Temporal’ sampling allows the user to specify different sampling schemes through time.321

‘Missing’ sampling allows the user to generate the 3 different missing data types: Missing322

Completely at Random (MCAR), Missing at Random (MAR) and Missing Not at Random323

(MNAR), through the specification of an equation that controls missingness. This sampling324

can also be used to get stochastic unbalanced data structures - i.e. to insert uncertainty325

into the data structure, which could mimic different types of uncertainty due to how data326

are collected in the field. Finally, ‘Survival’ sampling subsets survival data for the period an327

individual is alive (i.e. censors observations after an individual has died). This can used for328

the generation of data for survival analysis.329
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Box 2: Worked Example - Mark-Recapture data
Here, we present a more advanced example combining many features of squidSim. Mark-
recapture data are common in conservation and population ecology, and are often charac-
terised by two underlying Bernoulli processes; the probability that an individual survived and,
conditional on that, the probability of observing them (e.g. recapture). In the squidSim

framework, this process can be simulated using a Bernoulli multi-response model, with a
response variable for survival and another for observation. This allows users to simulate pre-
dictor variables, random effects, etc., for each process. Here, we use the example in Kéry &
Schaub (2012, chapter 7) of mark-recapture data in little owls (Athene Noctua). We assume
a mean survival of 0.65 and a negative effect of winter severity on the latent scale of -0.3.
The winter severity index is standardized (mean = 0, variance = 1). We simulate additional
temporal variation not explained by winter severity, with a variance of 0.2, and a recapture
probability of 0.4. To create a realistic mark-recapture dataset, we used survival sampling to
restrict observations to when an individual was alive. The data were then subset for when
individuals were observed. Such simulated data could be used for many purposes, for example
assessing potential biases introduced by imperfect detection.

330
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Box 2 continued

intercept=c(qlogis(0.65),qlogis(0.4)),

ds <- make_structure(paste0( 
"birth_year(10)/individual(10) + age(20)"))
ds$year <- ds$age + ds$birth_year

sim_dat<-simulate_population(
seed=2056,
data_structure = ds,
n_response=2,
response_names = c("survival","recapture"),
parameters = list(

individual=list(
names="winter",
beta=matrix(c(-0.3,0), ncol=2))

),

residual=list(
vcov=c(0,0)

)
),

sample_type='survival',
sample_param=list(
y = "survival",
ID = "individual",
age ="age",
death=0,
all=TRUE)

)
dat<-get_sample_data(sim_dat)
head(dat)

𝑝! 	~	𝐵𝑒𝑟𝑛 𝜓
𝑦!"	~	𝐵𝑒𝑟𝑛(𝜙!")

𝑙𝑜𝑔𝑖𝑡(𝜙!") = 	𝛽# + 𝛽$𝑥"
𝑥"	~	𝑁 𝜇$, 𝜎$%

b)

a)

c)

d)

e)
family= "binomial",
link="logit",

Figure B2: Simulating Mark-recapture data using squidSim. In this example, we started with the model
equation a) which we translated into squidSim code b) and inputted the parameter values (see text in Box
1). This generated the data, part of which are shown in c) and the whole data set is plotted in d & e. In d),
grey points show points where an individual was alive, red points show when an individual was captured, and
red lines show the period over which an individual was known to be alive. e) shows the simulated negative
relationship between winter weather and survival

331

6 Reproducibility332

A major motivation for squidSim is to increase the generalisability and reproducibility of simu-333

lations. As shown above, squidSim can simulate many different kinds of data in standardised334

manner using the simulate population(), where the parameterisation relates directly back335

to the model equation.336
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Running the simulate population() generates a squidSim object. This object contains337

both the simulated data and all the information that was used for the simulation. This means338

that it is easy to retrieve the parameters used for the simulated data set. Furthermore, using an339

additional argument (seed), we can set a seed (given starting point) for the (pseudo)random340

number generators, which means that the simulation can be exactly replicated (as shown in341

Boxes 1 and 2). If a seed is not set, a random seed is chosen and set internally automatically,342

and saved with the output allowing exact duplication of the simulated dataset if so desired.343

7 The shinySim R package344

Another major aim for squidSim is to aid researchers in focussing on the model equations345

and the parameters of a simulation, rather than the intricacies of coding the simulation.346

To this end we have further created the shinySim R package with a graphical user in-347

terface to help users generate code for simulate population() (https://github.com/348

squidgroup/shinySim). A user inputs a data structure to shinySim and then can add ele-349

ments to the model based on this data structure. The app generates the model equation, shows350

a breakdown of the variance in the response variable explained by each hierarchical level and351

predictor variable, and creates the code for the parameter block of simulate population().352

Currently, the shinySim app has less functionality compared with the full range of models that353

squidSim can produce and covers the models outlined in the ’Basic Functionality’ section,354

but we are constantly updating this with more functionality. Regardless, shinySim provides a355

good way to get started with simulations, with less focus on coding, and will provide a useful356

teaching tool.357

8 squidSim as a teaching tool358

squidSim can be used in several ways to enhance statistics teaching across a wide variety359

of teaching settings. The SQuID group has employed simulations as a teaching aid in 14360

21

https://github.com/squidgroup/shinySim
https://github.com/squidgroup/shinySim
https://github.com/squidgroup/shinySim


Figure 3: The shinySim interface

statistics workshops with diverse attendees worldwide, specifically using squidSim in ten.361

These workshops were designed to teach students that statistical models are a way to represent362

hypotheses about specific biological processes. In the workshops, we taught linear mixed363

models and simulation simultaneously. Use of simulations allow us to cycle through model364

equations, generating the data, graphical representations of the data, statistical models and365

outputs. As squidSim has an intuitive structure that mirrors statistical equations, students366

see the same concepts in multiple ways, and learn how model outputs reflect the parameters367

they have used to generate the data.368

A second use of simulated data in our workshops was to create practicals where students369

either simulate data or were provided with a simulated dataset, and then were challenged370

to understand what happens when their analysis models were misspecified. This is probably371

always the case with real data and using simulated data can focus attention on specific types of372

problems and their solutions. squidSim has allowed us and students to easily create complex373

datasets that allow targeted lessons to be learned, such as the impact of different sampling374

designs, or leaving predictors out of a model. These practicals helped students gain a richer375

and more intuitive understanding of what different components of the models are doing.376
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A final application of squidSim has been to challenge students to simulate data from their377

own study systems, perhaps as a prelude to assessing sample sizes needed to address their378

own research questions. One major benefit of this is that abstract notions of the statistical379

models the students have been learning about immediately gain more traction when linked to380

their own system. The students also gain experience thinking about statistics in the context of381

their own research question. Hierarchical models have many moving parts, and simulating data382

along with retrieving parameter values when the system is their own leads to deeper intuition383

about how models behave under different conditions and what factors may be limiting their384

interpretation of their models.385

9 Conclusions386

In summary, we have shown that squidSim can simulate a variety of data structures and387

types to address an array of useful problems encountered in E&E. It has flexibility, yet is388

intuitive in structure, and the addition of the shinySim interface makes doing many types389

of simulations easier for beginners. A key element is that the coding is standardised and390

reproducible. We therefore believe that squidSim provides a valuable tool for researchers of391

all levels of familiarity with simulations and a helpful teaching resource.392
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Nakagawa, S., Réale, D., Schielzeth, H. & Westneat, D.F. (2017) Statistical Quantification420

of Individual Differences (SQuID): an educational and statistical tool for understanding421

24

https://github.com/squidgroup/squidSim_manuscript
https://github.com/squidgroup/squidSim_manuscript
https://github.com/squidgroup/squidSim_manuscript


multilevel phenotypic data in linear mixed models. Methods in Ecology and Evolution, 8,422

257–267. https://dx.doi.org/10.1111/2041-210X.12659.423

Culina, A., Berg, I.v.d., Evans, S. & Sánchez-Tójar, A. (2020) Low availability424
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