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Abstract1

Aim: To provide practical guidance for ecologists on when to use standard spatial generalized linear2

mixed models (SGLMMs) versus Restricted Spatial Regression (RSR). We reframe the debate by3

arguing the choice depends on whether the total effect or direct effect of covariates will be more4

transferable across space.5

Innovation: Our study’s primary innovation is to introduce a causal framework to this de-6

bate. We distinguish between the SGLMM, which estimates the direct effect by controlling for7

unmeasured spatial confounders, and the RSR, which estimates the total effect by incorporating8

pathways through unmeasured spatial mediators. We also provide the first implementation of the9

RSR estimator in the widely-used tinyVAST R package.10

Main conclusions: The choice of model must be driven by the ecological goal and underly-11

ing assumptions. 1) The SGLMM is the appropriate tool for hypothesis testing and conditional12

“in-sample” prediction (interpolation), where it accounts for lower degrees of freedom due spatial13

autocorrelation. 2) The RSR estimator, despite its highly inflated Type I error, is superior for14

unconditional prediction (forecasting). This is particularly true when the unmeasured spatial pro-15

cess can be assumed to have a fixed (stationary) sample correlation with the covariates over space.16

The RSR estimator implicitly incorporates this confounding relationship, making it more effective17

for predicting total effects in a new, unobserved area where the spatial pattern of confounding is18

expected to persist. We recommend a two-step conceptual approach: use the SGLMM for robust19
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variable selection, then, if forecasting is the goal and the unmeasured process has a fixed correlation20

with covariates, use the RSR estimator for total effect predictions.21

keywords: spatial generalized linear mixed model, Gaussian Markov random field, climate22

forecast, species distribution model.23

Introduction24

Understanding the spatial distribution of species is fundamental to ecology. Species distributions are25

influenced by physical and environmental conditions, as well as ecological factors (e.g., competition,26

predation, dispersal) and evolutionary history (local adaptation), which in turn shape community27

dynamics [1]. Species distribution models (SDMs) are essential tools for linking environmental28

covariates to species abundance and distribution, providing critical insights for conservation plan-29

ning and management [2, 3]. However, ecologists using these models face two persistent challenges:30

spatial autocorrelation, where response values at nearby locations are correlated [4], and spatial31

confounding, where a covariate is collinear with the underlying spatial structure in the data [5].32

While often discussed separately, these issues are deeply intertwined and can compromise model33

inference [6, 7].34

To mitigate spatial autocorrelation, researchers have developed various statistical approaches,35

including spatial autoregressive (SAR) models and geostatistical models [8, 9]. More recently,36

Gaussian Markov Random Fields (GMRFs) have gained prominence in spatial ecology for their37

computational efficiency and flexibility in modeling spatial dependencies within both Bayesian and38

likelihood-based frameworks [10, 11]. GMRFs, particularly when integrated into frameworks such39

as Integrated Nested Laplace Approximation (INLA) and stochastic partial differential equations40

(SPDE), offer robust tools for approximating spatially structured processes in ecological models41

[12].42

The standard approach to managing spatial autocorrelation is to fit a spatial generalized linear43

mixed model (SGLMM), which includes a spatial random field to account for unexplained spatial44

patterns [13, 14, 15]. While this successfully addresses autocorrelation [16, 17], it creates a new45

dilemma. When a covariate is correlated with the spatial random effect, the model can struggle46

to partition their shared influence, often leading to biased estimates of the species-environment47
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relationships we aim to understand [18]. This has fueled a contentious debate. One proposed48

solution is Restricted Spatial Regression (RSR), an estimator designed to “deconfound” the model49

by ensuring the spatial random effect is orthogonal to the fixed-effect covariates [19, 20, 21, 22].50

However, RSR has faced significant criticism for its unreliable uncertainty estimates and highly51

inflated Type I error rates [23, 24, 22]. As a result, ecologists are left uncertain about which method52

is appropriate for common ecological goals, like mapping current distributions or forecasting future53

changes.54

We argue that this debate can be reframed to provide more clarity for ecological practitioners.55

The choice between an SGLMM and RSR is not a matter of which model is more statistically56

“correct,” but rather a deliberate choice of the quantity the researcher aims to estimate (the “esti-57

mand”). This choice is critical because it determines the transferability of the estimated relationship58

(i.e., its ability to be applied to new locations or future time periods), which is a core challenge in59

predictive ecology. We propose that these models estimate two fundamentally different assumptions60

about system dynamics:61

• The SGLMM estimates the direct effect of a covariate. By partitioning variance between the62

measured covariate and the spatial random field, the SGLMM treats the spatial field as a63

statistical proxy for unmeasured, spatially-structured confounding variables. This approach64

aims to isolate the direct relationship between the covariate and the response, controlling for65

these unmeasured confounders.66

• The RSR estimates the total effect. By re-attributing variance from the spatial field back to67

the covariate, the RSR estimates the combined influence of the measured covariate and any68

unmeasured spatial processes that are correlated with it.69

These two approaches can be viewed as alternative structural causal models and visualized as70

directed acyclic graphs (Fig. 1). Importantly, these two DAGS can result in the same variance71

among variables, but they correspond to fundamentally different assumptions about how a change72

in a covariate X would affect the response Y . This distinction between describing correlations and73

predicting counterfactual responses has been acknowledged in recent ecological papers [25, 26, 27],74

but has not been discussed in the context of spatial autocorrelation.75
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Figure 1: Directed acyclic graphs representing two alternative assumptions regarding the relation-
ship between covariate X, response Y , and latent spatial variable Z, showing (left panel) that
estimating the direct effect using a spatial generalized linear mixed model corresponds to the direct
path (black arrow) X → Y while controlling for the path from confounder Z → Y (and ignores
the potential path from Z → X), while the total effect (right panel) corresponds to both the direct
effect as well as the indirect effect X → Z → Y mediated by Z.

This paper aims to provide a conceptual framework for ecologists to choose between SGLMM76

and RSR based on their scientific goal (e.g., hypothesis testing for direct effects vs. forecasting total77

effects) and their assumptions about the underlying ecological processes. Using simulations and a78

case study, we demonstrate which model estimates which quantity and provide practical guidance79

for navigating the complex trade-offs of spatial modeling. We also introduce a novel implementation80

of RSR in the widely used tinyVAST R package [28], making this technique more accessible to the81

ecological community.82

Methods83

In the following, we introduce a restricted spatial regression (RSR) estimator for slope parameters84

that relate the response of spatial generalized linear mixed model (SGLMM) to specified covariates.85

We then use simulation and case-study examples to compare the performance of four estimators:86

1. GLM : Including covariates without any spatial latent variables using a standard generalized87

linear model;88

2. SGLMM : Including covariates while also estimating a spatial GMRF to account for spatial89

autocorrelation;90

3. RSR-SGLMM : Including covariates and a spatial GMRF, while then transforming the esti-91

mated slopes to compute the RSR estimator;92
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4. SGLMM-selected : Starting with the SGLMM, we then perform backwards model selection93

by eliminating all covariates for which a two-sided Wald test indicates that the covariate is94

not significant at a p < 0.05 level;95

We include the SGLMM-selected because the SGLMM is expected to usefully identify covariates96

that are not statistically significant, such that model selection might improve performance relative97

to the SGLMM by serving as a simple form of regularization [29].98

99

We investigate the following questions:100

1. False discovery rates: When fitting “false” covariates that are not associated with the sim-101

ulated response, do these models identify false covariates as statistically significant at the102

intended Type-1 error rate, or do they instead have an elevated “false discovery rate”?103

2. Performance for slope estimates: Which model has the lowest bias or imprecision when104

estimating the slope for covariates?105

3. Conditional predictive performance: Which model has lowest predictive error when condi-106

tioning predictions upon both the estimated slope and GMRF values?107

4. Unconditional predictive performance: Which of the models has lowest predictive error when108

conditioning predictions only upon the estimated slope and ignoring the GMRF values?109

5. Model selection: Does model selection affect the performance of the SGLMM estimator?110

We expect that conditional prediction will have lower predictive error than unconditional pre-111

diction within the spatial domain of data. However, we are also interested in the performance of112

unconditional prediction for two reasons:113

• Transferability among studies: Unconditional prediction corresponds to the component of the114

model that is easily “transferable” among studies. For example, ecologists reading a paper will115

often interpret the estimated value for the slope (e.g., by comparing it with other experimental116

or observational measurements), and may use the reported value for slope estimates to then117

parameterize a subsequent model. When used this way, readers will often ignore the estimated118
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GMRF values (which may not be reported, or only visualized on a map of model output), such119

that future uses of study results will correspond to unconditional prediction. This practice120

of interpreting regression slope parameters and ignoring GMRF estimates implicitly assumes121

that the covariate and GMRF are independent, so no information about the slope remains in122

the estimated GMRF.123

• Model projections: As a model is projected beyond the range of the data, a spatial GMRF124

will tend to revert to zero (or remain at its value at the geographic boundary). Therefore,125

when projecting models using end-of-century climate conditions or across a larger geographic126

domain, the model performance will revert to unconditional prediction.127

Spatial linear mixed model128

To begin, we first introduce the spatial generalized linear mixed model (SGLMM). This involves129

fitting response yi for each sample i ∈ {1, 2, ...I}, using j ∈ {1, 2, ..., J} covariates with values xij130

in matrix X, as well as the two-dimensional geographical coordinates si:131

yi ∼ f(µi, θ) (1)

g(µi) = Xiβ +Aiω (2)

ω ∼ MVN(0, σ2R) (3)

where f is the probability distribution with parameters θ, g is the link function, β is the estimated132

slope parameters, ω is the vector of spatial random effects with mean zero, spatial correlation R133

and pointwise variance σ2, and Ai projects from random effects to the location of data based on134

geographical coordinates (where A is an indicator matrix when applying an areal model, and an135

interpolation matrix when approximating a continuous spatial function). The spatial variable ω136

is included to represent spatial correlation arising from unmeasured processes (i.e., missing covari-137

ates or endogenous spatial patterns), and its inclusion is intended to ensure that residual errors138

(represented by f) are independent among samples i. After identifying maximum likelihood es-139

timates β̂ and empirical Bayes predictions ω̂, conditional prediction using the plug-in estimator140
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records µ̂i = g−1(Xiβ̂+Aiω̂) for each sample, and unconditional prediction defines µ̂′
i = g−1(Xiβ̂)141

while neglecting the impact of random effects Aiω̂. Finally, unconditional RSR prediction records142

µ̂∗
i = g−1(Xiβ

∗), where β̂∗ is the RSR estimator for slopes as we define in Section .143

This SGLMM results in “confounding” between the covariates X and the projected value of144

the spatial variable Aω. This confounding arises when any covariate j is correlated with the145

spatial variable, i.e.,
∑I

i=1(xijAiω) ̸= 0. In this case, the estimated value for the spatial random146

effect will “soak up” some portion of variation that would otherwise be attributed to slope βj .147

Conceptually, the SGLMM is “correcting for” the correlation between covariate and random effect148

that is expected purely by chance, given the estimated parameters controlling the estimated spatial149

correlation. Comparing the estimate β̂j from the SGLMM with the estimate β̂∗
j from a standard150

GLM (i.e., when fixing ω = 0), we see that β̂j from the SGLMM will approach β̂∗
j from the GLM151

as the spatial variation σ2 approaches zero. Alternatively, as σ2 increases, β̂j and β̂∗
j can diverge,152

and this divergence may even result in a change in the sign of the estimated slope [20].153

Restricted spatial regression154

To address the difference between GLM and SGLMM estimates of the slope, we next introduce the155

restricted spatial regression (RSR) estimator. To calculate the RSR, we first fit the SGLMM (Eq.156

1) and extract the maximum-likelihood estimate of slopes β̂ and the empirical Bayes estimate of157

the spatial random effect ω̂. We then calculate the RSR estimator β̂∗ by adjusting β̂ to add back158

in the portion of variation that was “soaked up” by the spatial random effect:159

β̂∗ = β̂ + (XTX)−1XTAω̂︸ ︷︷ ︸
regression of Aω on X

(4)

In this expression, (XTX)−1 is a J × J matrix representing the inverse-covariance of the random160

effects, and this can be inverted even for large sample sizes. Usefully, the RSR estimator (and161

associated standard errors) can be calculated post-hoc without any change in the structure of the162

SGLMM. The associated standard error for β̂∗ is calculated using the generalized delta method.163

Similarly, the interpolated value of random effects Aω must be adjusted to also correct for this164

change:165
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Aω̂∗ = Aω̂ −X (XTX)−1XTAω̂︸ ︷︷ ︸
regression of Aω on X

(5)

This equation makes clear that the predicted value µ̂i remains the same whether using the original166

or RSR estimator for the slopes and random effects, i.e., Xβ̂ +Aω̂ = Xβ̂∗ +Aω̂∗ (see Supporting167

Information S1 for further discussion).168

The principle behind this algebraic adjustment can be understood by considering the underlying169

structure of a spatial process, as illustrated conceptually in fig. 2. A spatial process, like a GMRF,170

can be thought of as being composed of many underlying spatial patterns, or “basis functions,”171

at different scales. The formula in Equation 4 is mathematically equivalent to projecting these172

basis functions to be orthogonal to the covariates, thereby removing their shared correlation by173

design. While the RSR estimator is calculated directly without explicitly constructing these basis174

functions, the figure provides the statistical intuition for how it achieves deconfounding.175

Simulation experiment176

To explore the performance of the GLM and spatial SGLMM with the RSR estimator, we conduct177

a simulation experiment with 9 scenarios and 50 replicates per scenario. To do this, we generated178

one “true” covariate with a known, non-zero effect on the response variable, alongside a varying179

number of “false” covariates with no true effect. Scenarios are formed from a 3 × 3 = 9 factorial180

design across three sample sizes (N = {50, 100, 200}) and a three numbers of “false covariates”181

(K = {1, 3, 5}). The false covariates allow us to determine whether models identify them as182

statistically significant above the intended Type-1 error (“false discovery”) rate of p = 0.05, such183

that a model with elevated false-discovery rate will identify a false covariate as significant in more184

than 5% of simulation replicates. The “true” covariate allows us to assess bias in parameter185

estimates and accuracy in prediction (RMSE). Models are fitted using tinyVAST [28] release 1.2.0 in186

the R statistical environment (R-Core-2025), which estimates parameters using gradients computed187

using Template Model Builder [30] while implementing the Laplace approximation to marginalize188

across the distribution for random effects [31].189

Within each simulation replicate, we simulate data over a 1×1 square spatial domain, where N190
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samples occur at random locations that arise from a Poisson disk process. Given these N sampling191

locations, we then approximate a Matérn correlation function using the SPDE method [10], i.e.,192

defining a finite-element mesh (FEM) that has vertices at each each sampling location as well as193

additional interior and boundary vertices. We then calculate the inverse-covariance (precision) of194

the Gaussian Markov random field that results from approximating spatial diffusion using local195

stiffness of the FEM:196

Q = τ2
(
κ4M0 + 2κ2M1 +M0

)
(6)

where κ represents the decorrelation rate and τ controls the variance of the forcing spatial process197

prior to diffusion. We then use this precision matrix to simulate one “true” covariate z that198

is associated with a linear predictor, K “false covariates” wk that are not associated with the199

linear predictor, and one spatial latent variable ω that represents residual autocorrelation. We also200

including normally distributed measurement errors in each recorded sample:201

yi ∼Normal(µi, σ
2
y) (7)

µi =zi + ωi (8)

All spatial terms (“true” covariate, false covariates, and latent variable) are simulated indepen-202

dently (i.e., have an expected correlation of zero), although their simulated values will end up being203

correlated based only on chance. When their simulated values are correlated within the domain,204

this then results in confounding among model terms. This design allows for a direct test of each205

model’s ability to either control for this confounding (the SGLMM) or absorb it into the fixed effect206

estimate (the RSR). In particular, we specify κ = 3.67 (i.e., the distance with a 10% correlation207

is 0.75), τ = 0.384 (i.e., each covariate and residual variable has a pointwise standard deviation of208

0.2), and σy = 0.2. For each replicate, we record the simulated data y as well as the true density209

µ.210

We then fit these simulated data using the GLM and SGLMM (Eq. 1) while including211

X = (z,wi, ...,wk) as the matrix of covariates. After estimation, we record GLM prediction,212
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the conditional and unconditional prediction from the SGLMM (µ̂i and µ̂′
i) as well as the uncondi-213

tional RSR prediction (µ̂∗
i ). We also record the GLM, SGLMM and RSR estimators for the slopes214

(β̂ and β̂∗), and extract the standard error for both estimators calculated using the generalized215

delta method from the Hessian matrix. Finally, we also fit the GLM including X as covariates216

without any spatial latent variable, and record estimated slopes and predictions.217

To evaluate performance, we:218

• compare µ̂i, µ̂
′
i and µ̂∗

i with the true value µ, and calculate root-mean-squared error;219

• compare β̂ and β̂∗ with the known values (βz = 1 and βw = 0);220

• identify whether the estimated slope is statistically significant for both the true covariate221

βz and the false covariates βw, calculating significance with a two-sided Wald test using the222

estimated standard error for each slope.223

Case study demonstration224

We also demonstrate model performance by fitting the GLM and SGLMM to bottom trawl samples225

of numerical abundance for seafloor-associated species in the eastern and northern Bering Sea:226

Walleye pollock (Gadus chalcogrammus), tanner crab (Chionoecetes bairdi) and Pacific cod (Gadus227

macrocephalus). We specifically fit a log-linked Tweedie distribution, using a quadratic response228

to bottom temperature, and also including year as a factor (i.e., a separate intercept for each229

year). We use samples from 1982-2019, and there are approximately 330-380 samples in the eastern230

Bering Sea in each year as well as an additional 150-300 samples in the northern Bering Sea in231

a smaller subset of years. We specifically record the partial effect of temperature for each model232

(with confidence intervals obtained by sampling from the sparse joint precision of fixed and random233

effects). We then compare this temperature effect across models, to demonstrate the real-world234

differences that arise between GLM, SGLMM, and RSR estimators.235

10



Results236

Performance estimating covariates237

The simulation experiment revealed critical differences in how the models handle hypothesis testing238

and parameter estimation (Figure 3). For the three null covariates (False 1, False 2 and False 3),239

the SGLMM approach maintained Type I error rates near the nominal 5% level, making it a240

reliable tool for hypothesis testing. the GLM and RSR-SGLMM showed dramatically elevated false241

discovery rates, exceeding 50% (Figure 3 A). This confirms that RSR is unsuitable for determining242

the statistical significance of a covariate.243

When estimating the “true” covariate effect (real covariate with β = 1), the results illustrate244

the fundamental difference between the estimators. As shown in Figure 3 B, the SGLMM provides245

a less biased estimate of the “true” direct effect parameter. The RSR-SGLMM estimate, however,246

is predictably biased away from the true direct effect. This occurs because our simulation design247

intentionally introduced confounding between the covariate and the spatial field; the RSR estimator248

correctly estimates the total effect by absorbing this confounding, which is by definition different249

from the direct effect parameter we simulated.250

0.1 Conditional prediction251

For conditional prediction (i.e., predictions based upon covariates and spatial random effects), the252

SGLMM and RSR-SGLMM performed identically (as expected), and this was very similar to the253

performance of the SGLMM-selected, with median RMSE values clustered around 0.08 (Figure 3 C).254

The SGLMM, RSR-SGLMM, and SGLMM-selected methods showed comparable performance with255

overlapping interquartile ranges. Notably, the GLM approach was excluded from this comparison256

as it lacks spatial random effects and therefore cannot provide conditional predictions that account257

for spatial autocorrelation. The similar performance across spatial methods suggests that the258

underlying spatial structure is being captured equivalently, regardless of the estimator used.259

0.2 Unconditional prediction260

The evaluation of unconditional prediction (predicting the response from covariate effects alone)261

highlights the practical consequences of estimating a direct versus a total effect (Figure 4). The262
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GLM and RSR-SGLMM achieved identical and superior performance, with the lowest mean RMSE263

values across all scenarios (ranging from 0.201 at n=50 to 0.188 at n=200). In contrast, the SGLMM264

and SGLMM-selected consistently showed higher RMSE. All methods showed improvement with265

increasing sample size, with GLM and RSR-SGLMM demonstrating the most substantial reduc-266

tion in RMSE (0.013 units from n=50 to n=200). When examining the effect of false covariates,267

GLM and RSR-SGLMM again showed identical performance improvements as the number of false268

covariates increased from 1 to 5 (RMSE decreasing from 0.203 to 0.182), while SGLMM showed269

modest improvement (from 0.213 to 0.202) and SGLMM-selected remained relatively stable across270

the range of false covariates.271

Case study examples272

The application of the three modeling approaches to the groundfish data of the Eastern Bering273

Sea revealed substantial differences in the estimated temperature-density relationships between274

species (Figure 5). A consistent pattern emerged whereby the Restricted Spatial Regression (RSR-275

SGLMM) model produced temperature response curves similar to the non-spatial GLM, while the276

standard spatial SGLMM often yielded markedly different estimates.277

For adult Pollock, both the GLM and RSR-SGLMM identified a thermal optimum between278

2–3 , while the SGLMM predicted a slightly warmer peak at 4 . A similar pattern was observed279

for adult Pacific Cod, where the GLM and RSR-SGLMM indicated peak densities around 3 ,280

whereas the SGLMM placed the optimum at 4 . In the case of Tanner crab, the models produced281

more divergent results. The GLM and RSR-SGLMM estimated a single optimum between 3–4 ,282

whereas the SGLMM suggested highest densities in much colder waters below 0 , and a decline283

with increasing temperatures.284

Discussion285

Spatial confounding presents a critical challenge in ecology, where the collinearity between environ-286

mental covariates and unmodeled spatial processes (e.g., population diffusion), can distort model287

inference and predictions. Our study compared GLMs, spatial GLMMs, and the RSR estimator,288

and reframed the debate around a critical, often-overlooked question: what is the ecological quan-289
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tity of interest? We argue the choice between SGLMM and RSR cannot be decided based on the290

fit to data, but instead is based on an explicit choice between estimating a covariate’s direct effect291

versus its total effect. This choice must be guided by the scientific goal and explicit assumptions292

about the nature of unmeasured spatial processes.293

The spatial random field in an SGLMM is a proxy for real, unmeasured ecological processes294

(e.g., latent variables and individual movement) that are spatially structured [10, 11] . The central295

issue is how to interpret the collinearity between these unmeasured processes and a measured296

covariate. This collinearity can arise from an unmeasured process being a confounders (a common297

cause of both the measured covariate and the response) or mediators (a variable on the causal298

pathway between the covariate and the response). The SGLMM estimates the effect of a covariate299

after correcting for the correlation expected to occur by chance, effectively treating the spatial field300

as a confounder to be controlled for [32, 33]. By partialing out this shared variance, the SGLMM301

estimates the direct effect. This makes the SGLMM suitable for hypothesis testing and estimating302

standard errors due to its reliable control over Type I error. In contrast, the RSR approach is303

designed to estimate the total effect (the full influence of a covariate) as if no spatial term were304

present, while still accounting for spatial autocorrelation in the residuals [19, 20]. It achieves this305

by re-attributing the shared variance back to the covariate, thereby treating the spatial field as a306

mediator whose influence should be included.307

For unconditional prediction (predicting the response from covariate effects alone) or model308

transferability, the RSR estimator is often a more appropriate tool, particularly if the relationship309

between latent variable and covariate is fixed (stationary) [17, 18]. This is especially relevant for310

climate-related covariates, where many spatial processes (e.g., local adaptations, biotic interactions,311

habitat modifications) may be consequences rather than causes of climatic conditions. However,312

the utility of RSR for transferability hinges on the critical assumption that the relationship between313

the covariate and these mediating processes remains stationary across the space or time to which314

the model is being transferred [34]. If a local mediating process in the training data (e.g., a specific315

prey species or biotic interaction) is absent or behaves differently in the new context, the total effect316

estimated by RSR will likely not be transferable. Therefore, RSR is most appropriate when there317

is strong ecological evidence that mediating processes are both stable and generalizable across the318

intended domain of application.319
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This distinction is not merely a statistical nuance; it can lead to profoundly different ecological320

conclusions. As demonstrated in our case study, the inferred temperature responses for key marine321

species like Tanner crab varied considerably, with the SGLMM estimating higher density at low322

temperatures (¡ 0 ) while the RSR, similar to a simple GLM, estimated a higher densities at temper-323

ature around 3–4 . Such discrepancies directly impact our understanding of species’ fundamental324

niches and can yield conflicting forecasts for distribution shifts under climate change [18].325

It is important to note that although we recommend RSR for unconditional prediction, its326

inflated Type-I error rate makes it unsuitable for variable selection or formal hypothesis testing.327

Our results, which align with recent statistical literature [35, 23, 24], confirm that using RSR to328

decide whether a covariate has a “significant” effect would lead to an unacceptably high rate of329

false discoveries.330

331

We therefore recommend a three-step conceptual approach for practitioners:332

1. State the ecological goal and assumptions. First, determine whether the research question333

requires estimating a direct effect (controlling for confounders) or a total effect (including334

mediators).335

2. Use the standard SGLMM for hypothesis testing and variable selection. Its reliable con-336

trol over Type I error makes it the only appropriate tool to test whether a covariate has a337

meaningful association with the response after accounting for spatial structure.338

3. If the goal is forecasting, use the RSR-SGLMM to estimate the total effect magnitude. For339

covariates identified as important in the first step, and assuming the unmeasured spatial340

processes are stable mediators, the RSR can then be used to estimate the full, transferable341

slope for use in unconditional predictions or long-term forecasting.342

Distinguishing between confounders and mediators requires ecological reasoning and a priori343

knowledge of the system to justify their assumptions about the underlying causal structure, often344

using tools like Directed Acyclic Graphs (DAGs) to make these assumptions explicit [27, 26, 36].345

When uncertainty exists about these causal relationships, a sensitivity analysis using both the346

SGLMM and RSR approaches can help assess the robustness of conclusions to different assumptions347
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about unmeasured spatial processes.348

Our findings open important avenues for future research. While we hypothesize that RSR’s349

superior unconditional predictive performance will translate to more accurate long-term forecasting,350

this remains to be fully tested. References [18] and [37] demonstrated the utility of the RSR351

estimator for correctly partitioning effects in joint species distribution models, but empirical tests352

of long-term forecasting accuracy are still needed. Studies using long-term ecological monitoring353

data could conduct leave-future-out cross-validation experiments (retrospective skill testing), where354

the model model is fitted to an early period and the predicted species distributions decades later355

is then evaluated [38].356

In conclusion, this study provides clear guidance on the trade-offs between standard and re-357

stricted spatial regression in spatial modeling. The RSR estimator is the preferred tool when the358

goal is unconditional prediction and the relationship between latent variable and covariates is sta-359

tionary, such that the total effect is transferable across space or time. For conditional prediction,360

such as mapping a species’ current distribution, a standard SGLMM provides a more statistically361

conservative approach due to its better control of false discoveries. By implementing the RSR362

estimator in the widely used tinyVAST R package, we have made this powerful technique more ac-363

cessible to the ecological community, facilitating more nuanced and targeted applications of spatial364

modeling to address pressing questions in conservation and management.365
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Figure 2: A conceptual illustration of the Restricted Spatial Regression (RSR) principle. A) A
simulated covariate is shown across a generic one-dimensional spatial domain (e.g., latitude or
distance along a transect). B) A spatial process like a GMRF is composed of many underlying
spatial patterns, or “basis functions,” at different scales; four representative examples are shown.
By chance, some of these basis functions will be correlated with the covariate (note the non-zero
correlation, r). The total confounding in a model is the cumulative effect of these chance correlations
across all basis functions. C) The RSR procedure is mathematically equivalent to projecting these
basis functions into a space where they are orthogonal to (uncorrelated with) the covariate.
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Figure 3: Performance comparison of spatial modeling approaches across simulation scenarios (n
= 200 simulations). A): Type I error rates for three false discovery scenarios, with the red dashed
line indicating the nominal 5% significance level. B): Distribution of parameter estimates across
models, showing bias and variance in covariate effect estimation. C): Root Mean Square Error
(RMSE) for latent field estimation, demonstrating spatial prediction accuracy. D): RMSE compar-
ison when using GMRF basis functions, showing relative performance of each approach for spatial
structure recovery. Models compared include: Covariate Only (purple), SGLMM (blue), RSR-
SGLMM (green), and SGLMM-selected (yellow).
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Figure 4: RMSE performance (lower is better) for latent field estimation across varying numbers
of false covariates and sample sizes. Root Mean Square Error (RMSE) for predicting the latent
spatial field is shown across three scenarios with different numbers of false covariates (columns: 1,
3, and 5 false covariates) and three sample sizes (rows: n = 50, 100, and 200). Models compared
include: GLM (purple), SGLMM (blue), RSRSGLMM (green), and SGLMMselected (yellow).

Figure 5: Temperature response curves for three marine species from the Bering Sea. Predicted
log density responses to bottom temperature () for Adult Pollock, Tanner Crab, and Adult Pacific
cod using three modeling approaches: GLM (purple), SGLMM (blue), and RSR-SGLMM (yellow).
Relative density scaled to max = 1.
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1 Supporting Information S1

1.1 RSR adjustment for random-effect coefficients

In the main text, we present the estimators:

β̂∗ = β̂ + (XTX)−1XTAω̂ (1)

and:

Aω̂∗ = Aω̂ −X(XTX)−1XTAω̂ (2)

where g−1(µ) = Xβ∗ approximates the GLM estimator and g−1(µ) = Xβ∗ + (Aω)∗ is equivalent

to the SGLMM estimator.

However, the analyst might instead seek to calculate the adjusted value for random effects ω′

themselves. In this case, Eq. 5 can be approximated as:

ω̂′ = ω̂ − δ′ (3)

δ′ = Z(ZTZ)−1ZT ω̂ (4)

where Z = ATX. This approximation is exact when A is an indicator matrix (i.e., using an areal

model, or the FEM for the SPDE method has a vertex for each sample location), because ATA

is then a diagonal matrix of 1s and 0s, with 1s corresponding to vertices at sample locations and

0 otherwise. We use ω̂′ to indicate that it is a different (lower-resolution) estimator for the RSR

adjustment ω̂∗. Similarly, the lower-resolution RSR estimator is updated as:

β̂′ = β̂ + (XTX)−1XTAω̂′ (5)

1



This then allows us to identify the pair of vectors {β̂′, ω̂′} that are adjusted to be decorrelated at

a shared scale. However, identifying this pair requires working on the lower resolution implied by

interpolation matrix A.

1.2 Projecting beyond data

When projecting beyond the range of data, an analyst might then seek an estimator that uses

conditional prediction “near the data”, and unconditional-RSR prediction “away from the data”,

while using the estimated distribution of random effects (i.e., the precision matrix Q) to bridge

between the two estimators. For example, this arises when applying the RSR estimator to a

spatio-temporal model, when the analyst might want to use conditional prediction during years

with available data, the unconditional-RSR prediction when projecting far into the future (such

that data are uninformative about random effects), and bridging between them for short-term

projections (years immediately following the most recent data).

To express this formally, we augment our previous notation by defining random effects within

the range of fitted data ωA and covariatesXA, and then additional random effects ωB and covariates

XB beyond the range of the data. We use RSR-adjusted covariates β̂′ for both sets of prediction, and

the RSR-adjusted random effects ω̂′
A within the range of data, such that we obtain the conditional

predictions within this range. However, we must decide how to bridge the RSR-correction δ′A

beyond the data to calculate the RSR adjustment δ′B beyond the range of data. We further define

the joint precision:

Q =

QAA QAB

QBA QBB

 (6)

where QAA is the precision within the data (among ωA), QBB is the precision beyond the data (for

ωB), and QAB is the cross-precision.

We then envision calculating the RSR adjustment for ωB using the conditional krigging formula:

2



δ′B = Q−1
BBQBAδ

′
A (7)

ω̂′
B = ω̂B − δ′B (8)

where this RSR adjustment δ′B will naturally revert towards zero well beyond the range of data. We

recommend further research testing the application of the RSR estimator when bridging between

conditional and RSR-unconditional predictors in spatio-temporal forecasts.
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