
1 
 

 1 

 2 

Species Invasion in a Two-Dimensional Space with Irregularly Shaped Patches  3 

 4 

Ankur Jain* 5 

Mechanical and Aerospace Engineering Department 6 
University of Texas at Arlington, Arlington, TX, USA 7 

 8 

 9 
* – Corresponding Author: email: jaina@uta.edu; Ph: +1 (817) 272-9338 10 

500 W First St, Rm 211, Arlington, TX, USA 76019 11 
 12 

 13 

 14 

CRediT Authorship Contribution Statement  15 

Ankur Jain – Conceptualization, Methodology, Formal Analysis, Investigation, Data Curation, 16 

Visualization, Writing Original Draft, Review/Editing.   17 

mailto:jaina@uta.edu


2 
 

Abstract: 18 

Accounting for spatial heterogeneity in the evolution of a species population in a given space is of 19 

much importance in population ecology, epidemiology and related fields in biosciences. Past 20 

literature has presented such analysis in the presence of regions with distinct diffusion/growth 21 

properties, often referred to as patches. However, most of the past work is limited to one-22 

dimensional space, whereas in practice, population evolution occurs in two dimensions, and 23 

realistic patches may have irregular shapes. This work addresses this limitation by deriving an 24 

exact analytical solution for a linear diffusion-reaction population growth problem in two-25 

dimensional space containing an arbitrary number of irregularly shaped patches. The spatial 26 

variation in diffusion/growth coefficients is represented using Heaviside functions, and an exact 27 

expression for the transient coefficient functions in the series solution is derived. A threshold 28 

condition for establishment of the population at large time is derived. Results from this work are 29 

shown to reduce to well-known results for simpler problems under limiting conditions. Based on 30 

the technique, extinction and establishment regions in the parameter space are identified. A number 31 

of illustrative problems containing patches of irregular shapes, such as heart-shaped and leaf-32 

shaped patches are solved in order to demonstrate the versatility of the technique. This work 33 

contributes a novel mathematical tool for solving population dynamics problems in realistic 34 

conditions, including irregular patch shapes, with potential applications in a number of problems 35 

in ecology and epidemiology. 36 

Keywords: Population Dynamics; Population Ecology; Epidemiology; Diffusion-Reaction Partial 37 

Differential Equation. 38 

39 
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Nomenclature  40 

𝐿, 𝑊  Outer dimensions of the 2D Cartesian body 41 

𝑐  population density (m-2) 42 

𝐷  diffusion coefficient (m2s-1) 43 

𝐷̅  non-dimensional diffusion coefficient 44 

ℋ  Heaviside step function  45 

𝑁  number of terms 46 

ℕ  eigenfunction norm 47 

℘  total number of oasis/deadzone regions/patches 48 

℘𝑖𝑛  total number of initial population regions 49 

𝑟  growth coefficient (s-1) 50 

𝑟̅  non-dimensional growth coefficient 51 

𝑡  time (s) 52 

𝑥, 𝑦  Cartesian coordinates (m) 53 

𝑥1𝑝, 𝑥2𝑝 𝑥 direction lower and upper limits of 𝑝𝑡ℎ region (m) 54 

𝑦1𝑝, 𝑦2𝑝 𝑦 direction lower and upper limits of 𝑝𝑡ℎ region, both as functions of 𝑥 (m) 55 

𝜆, 𝜇  Spatial eigenfunctions 56 

Δ  determinant  57 

𝛿  Dirac delta function  58 

𝜙  Kronecker delta  59 

𝜉, 𝜂  Non-dimensional Cartesian coordinates 60 

𝜏  Non-dimensional time 61 

𝜉1𝑝, 𝜉2𝑝 non-dimensional 𝜉 direction lower and upper limits of 𝑝𝑡ℎ region 62 

𝜂1𝑝, 𝜂2𝑝 non-dimensional 𝜂 direction lower and upper limits of 𝑝𝑡ℎ region, both as functions 63 

of 𝜉 64 

Subscripts 65 

𝑖𝑛  initial 66 

𝑝  region number 67 

𝑡𝑜𝑡  total 68 

0  Background region outside the oasis/deadzone patches  69 
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1. Introduction  70 

Determining the spatiotemporal dynamics of population density of a species in a given 71 

space is an important problem in mathematical ecology [1-4], with applications in several practical 72 

scenarios such as spreading of invasive species [5], ecological preservation [6], harvesting [7] and 73 

resource planning [8]. The primary motivation of such analysis is often to determine, given the 74 

nature of diffusion, growth and other relevant processes, whether the species eventually establishes 75 

itself within the space or goes extinct. Such problems have been studied mathematically for a long 76 

time [9-13]. In general, the evolution of population density of a species in a given space may be 77 

driven by a combination of diffusion, growth – which may be either positive or negative – as well 78 

as advective effects. In addition, conditions at the boundaries of the space [14], aspect ratio of the 79 

space (if two-dimensional) [10], and the fragmentation of growth regions [4,14] also play 80 

important roles in determining establishment or extinction of the population. In addition to single 81 

species problems, there has also been long-standing interest in two-species problems such as 82 

predator-prey systems [15,16]. The literature on a variety of models for these phenomena and their 83 

interactions with each other has been well summarized in recent books [4,6]. 84 

The diffusion-reaction framework used to study such population dynamics problems also 85 

finds applications in other fields, such as epidemiology [1] and proliferation of cancer cells [17]. 86 

Additionally, several engineering processes such as stability of thermal systems [18], heat transfer 87 

in power electronic devices [19], contaminant transport [20] and drug delivery [21] are also 88 

governed by a similar set of equations. 89 

Spatiotemporal dynamics of population density is commonly modeled using the Kierstead-90 

Slobodkin-Skellam (KISS) diffusion-reaction model [9,10], which, for a simple homogeneous 91 

one-dimensional problem may be written as 92 
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𝜕𝑐

𝜕𝑡
= 𝐷

𝜕2𝑐

𝜕𝑥2
+ 𝐹(𝑐)  (1) 

where 𝑐(𝑥, 𝑡) is the population density distribution 𝐷 is the diffusion coefficient and 𝐹(𝑐) is the 93 

growth term. A variety of models for 𝐹(𝑐) have been used, including Malthusian growth, logistic 94 

growth and the Allee effect [6]. Asocial phenomena related to negative growth at low population 95 

density have also been studied [22]. Amongst these models, the linear Malthusian growth model 96 

𝐹(𝑐) = 𝑟𝑐, where 𝑟 is the growth coefficient, is of particular interest due to the resulting 97 

simplification in analysis and possibility of deriving an exact analytical solution. An additional 98 

convective term has also been considered in equation (1) for modeling advective transport, for 99 

example, that of insects due to wind [23]. In addition to such deterministic approaches, stochastic 100 

analysis of diffusion-reaction processes has been reported [24]. Numerical calculation of 101 

population growth has also been carried out in scenarios where exact analysis is difficult [25]. 102 

More recently, machine learning based analysis of diffusion-reaction processes has also been 103 

reported [26]. 104 

 A topic of specific interest in the mathematical study of population dynamics has been in 105 

understanding the effect of spatial heterogeneity [27]. Such heterogeneity may be in the form of 106 

discrete regions within the space, often referred to as patches [14,28,29] that have different 107 

diffusion and/or growth properties than the rest of the space. Discrete heterogeneity in the initial 108 

distribution of the population within the space also occurs commonly, for example, when the 109 

population is initially seeded only in specific regions.  Results related to single [29], two [30] or 110 

an arbitrary number of patches [14] in a one-dimensional space are available. The general 111 

technique to address such problems has been to derive expressions for population density 112 

distributions in each patch separately and determine series coefficients in order to satisfy interface 113 
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conditions between patches [14]. While the matching of population density and flux are the most 114 

common interface conditions, other formulations have also been used for modeling more advanced 115 

interactions between patches [15,30]. Through such analysis, the effect of number of patches, their 116 

locations and relative growth coefficients on population dynamics and eventual 117 

establishment/extinction has been studied [14,29].  118 

Most mathematical models for population dynamics in heterogeneous space are limited to 119 

one-dimensional geometry [14,28,29,30], where each patch represents a sub-section of the entire 120 

length of the space under consideration. While this simplifies analysis significantly, and helps 121 

understand the fundamentals of the problem, nevertheless, such one-dimensional representation 122 

may not be sufficiently accurate for practical problems where the population usually spreads over 123 

a two-dimensional space. In principle, the one-dimensional analysis summarized above is 124 

extendable to two-dimensional space by considering both sets of eigenvalues coming from two 125 

orthogonal directions, however, such an approach can only account for patches of specific shapes. 126 

For example, an extension of the 1D work described above to a two-dimensional Cartesian space 127 

only works if the patches are rectangular. However, it has been pointed out [6] that in practice, 128 

patches are not necessarily rectangular, and may have irregular shape. Accounting for the irregular 129 

shape of such regions/patches is an important need for mathematical modeling of realistic 130 

population dynamics processes. 131 

This work presents a mathematical technique for solving the linear diffusion-reaction 132 

equation in a two-dimensional space containing a number of irregularly shaped regions/patches, 133 

each with discrete diffusion and growth coefficients, as shown in Figure 1. The method is based 134 

on representing the spatial variation of diffusion and growth coefficients due to the two-135 

dimensional shape of patches using Heaviside functions. By doing so, an exact expression for the 136 
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transient coefficient functions in the series solution for the population density distribution is 137 

derived. An exact threshold condition to determine whether establishment of the population occurs 138 

or not is derived in terms of the determinant of a matrix. A number of example problems containing 139 

multiple patches of irregular two-dimensional shapes are solved to illustrate the versatility of the 140 

technique developed here. The next section defines the mathematical problem of interest, 141 

introduces the Heaviside functions based representation of spatial variation of diffusion/growth 142 

coefficients, and presents a technique for solving this problem. The main result related to a 143 

criterion for population establishment is presented in Section 3. A detailed discussion of key results 144 

based on the theoretical technique are presented in Section 4, followed by concluding remarks in 145 

Section 5. 146 

2. Methods 147 

2.1. Problem Definition and Non-Dimensionalization 148 

 This problem considered here involves spatiotemporal dynamics of population density of 149 

a species in a finite two-dimensional Cartesian space of size 𝐿 by 𝑊, as shown in Figure 1. In 150 

addition to diffusive transport, population growth occurs in an arbitrary number of irregularly-151 

shaped regions based on a linear Malthusian model [6]. A linear growth model simplifies analysis 152 

and provides an upper bound for the solution to the more general non-linear problem [6]. The 153 

boundaries of the two-dimensional Cartesian space are assumed to be hostile to the species, so that 154 

the species concentration at the boundaries always remains zero. The population is initially located 155 

only in specific discrete regions within the space. Based on a balance between the rate of increase 156 

in population due to growth, reduction due to hostile boundaries and spatial redistribution due to 157 

diffusion, the interest is in determining whether the population ultimately establishes itself in the 158 

two-dimensional space or goes extinct. 159 
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As shown in Figure 1, a key feature of the model presented here is that there may be ℘ 160 

irregularly shaped regions within the two-dimensional space, each with its own uniform diffusion 161 

and growth coefficients. The growth coefficient in the 𝑝𝑡ℎ region is denoted by 𝑟𝑝, whereas the 162 

growth coefficient outside these regions is denoted by 𝑟0. The growth coefficient may be positive, 163 

i.e., the region may be conducive to population growth (referred to as an oasis in this work), or 164 

may be negative, i.e., the region may be hostile to population growth (referred to as a deadzone in 165 

this work). Similarly, the diffusion coefficient within the 𝑝𝑡ℎ region is denoted by 𝐷𝑝 and outside 166 

the regions by 𝐷0. All diffusion and growth coefficients are assumed to be uniform within each 167 

region and invariant with population density, so that second-order effects such as the Allee effect 168 

that cause non-linearity are neglected. In addition, the diffusion coefficients are assumed to be 169 

isotropic, so that there is no preferred direction for diffusion. 170 

The arbitrary shape of the 𝑝𝑡ℎ oasis/deadzone region is mathematically defined by lower 171 

and upper bounds 𝑥1𝑝 and 𝑥2𝑝 in the 𝑥 direction and, further, by functions 𝑦1𝑝(𝑥) and 𝑦2𝑝(𝑥) that 172 

represent the lower and upper bounds of the shape in the 𝑦 direction, which are both, in general, 173 

functions of 𝑥. For example, for a circular-shaped oasis region center of radius 𝑅 and centered at 174 

(𝑥0, 𝑦0), 𝑥1𝑝 = 𝑥0 − 𝑅, 𝑥2𝑝 = 𝑥0 + 𝑅, 𝑦1𝑝(𝑥) = 𝑦0 − √𝑅2 − (𝑦 − 𝑦0)2 and 𝑦2𝑝(𝑥) = 𝑦0 +175 

√𝑅2 − (𝑥 − 𝑥0)2. Based on these geometrical definitions, the growth regions, as well as the 176 

regions of initial population may have nearly arbitrary non-Cartesian shapes within the Cartesian 177 

space.  178 

Further, the initial distribution of the population in the two-dimensional region is also 179 

assumed to be discrete in ℘𝑖𝑛 regions, where the 𝑝𝑡ℎ region has an initial population density of 180 

𝑐𝑖𝑛,𝑝 and, similar to the oasis/deadzone regions, is located between 𝑥1𝑖𝑛,𝑝 and 𝑥2𝑖𝑛,𝑝 in the 𝑥 181 
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direction and 𝑦1𝑖𝑛,𝑝(𝑥) and 𝑦2𝑖𝑛,𝑝(𝑥) in the 𝑦 direction. It is assumed that there is no population 182 

initially present outside these ℘𝑖𝑛 regions. In general, as shown in Figure 1, the ℘ oasis/deadzone 183 

regions and the ℘𝑖𝑛 regions of initial population distribution may be different from each other. 184 

Based on this problem definition above, the goal of this work is to mathematically 185 

formulate and solve a multi-region diffusion-reaction problem in order to determine the population 186 

density distribution as a function of space and time. Specifically, given the values of various 187 

geometrical, diffusion and growth parameters, it is of interest to determine how the species evolves 188 

over time, and whether there is establishment or extinction of the species at large time. 189 

Since each oasis/deadzone region has different values of the diffusion and growth 190 

parameters, therefore, the diffusion-reaction equation may be written for each region, along with 191 

interface conditions at the boundaries of each region. While such an approach has been reported 192 

for one-dimensional geometry [14,28,29], doing so in two-dimensional space, especially satisfying 193 

the interface conditions between regions and the background, is extremely difficult and 194 

cumbersome due to the arbitrary geometry of each region. As a simple example, satisfying 195 

interface conditions along the boundaries of a circular oasis region located inside a two-196 

dimensional rectangular space is mathematically very complicated. Instead, the technique used in 197 

this work writes the conservation equation and solves it for a single function 𝑐(𝑥, 𝑦, 𝑡) that 198 

represents the population density through the entire two-dimensional space, including all growth 199 

regions. Within this framework, the transient species conservation equation accounting for 200 

diffusion and growth may be written as   201 
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𝜕

𝜕𝑥
(𝐷(𝑥, 𝑦)

𝜕𝑐

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐷(𝑥, 𝑦)

𝜕𝑐

𝜕𝑦
) + 𝑟(𝑥, 𝑦) ∙ 𝑐 =

𝜕𝑐

𝜕𝑡
 

(0 < 𝑥 < 𝐿, 0 < 𝑦 < 𝑊, 𝑡 > 0)       

(2) 

where the spatial functions 𝐷(𝑥, 𝑦) and 𝑟(𝑥, 𝑦) must represent the discrete variation of the 202 

diffusion coefficient and growth coefficient, respectively, within the two-dimensional space. 203 

𝐷(𝑥, 𝑦) and 𝑟(𝑥, 𝑦) must be defined in order to correctly account for the distinct values of the 204 

diffusion and growth coefficients within each oasis/deadzone region (𝐷𝑝 and 𝑟𝑝, respectively, in 205 

the 𝑝𝑡ℎ region), as well as in the background outside the regions (𝐷0 and 𝑟0, respectively). This is 206 

accomplished by the use of the Heaviside step function as follows: 207 

𝐷(𝑥, 𝑦) = 𝐷0 + ∑(𝐷𝑝 − 𝐷0) (ℋ(𝑥 − 𝑥1𝑝) − ℋ(𝑥 − 𝑥2𝑝)) (ℋ(𝑦 − 𝑦1𝑝(𝑥))

℘

𝑝=1

− ℋ(𝑦 − 𝑦2𝑝(𝑥))) 

 (3) 

 Note that ℋ denotes the Heaviside step function [31], which represents a step change at a 208 

certain location, defined as ℋ(𝑥 − 𝑎) = 1 if 𝑥 > 𝑎, and 0 if 𝑥 < 𝑎. The definition of 𝐷(𝑥, 𝑦) 209 

provided by equation (3) makes use of the difference between two Heaviside functions in each 210 

direction, which effectively produces a top hat function. The product of the two top hat functions 211 

in equation (3) ensures, based on the definition of parameters 𝑥1𝑝, 𝑥2𝑝, 𝑦1𝑝(𝑥) and  𝑦2𝑝(𝑥) for 212 

each region, that 𝐷(𝑥, 𝑦) = 𝐷𝑝 inside the 𝑝𝑡ℎ region (i.e., when 𝑥1𝑝 < 𝑥 < 𝑥2𝑝 and 𝑦1𝑝(𝑥) < 𝑦 <213 

𝑦2𝑝(𝑥)) and 𝐷(𝑥, 𝑦) = 𝐷0 outside the oasis/deadzone regions. Similarly, the growth coefficient 214 

function may be expressed as  215 
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𝑟(𝑥, 𝑦) = 𝑟0 + ∑(𝑟𝑝 − 𝑟0) (ℋ(𝑥 − 𝑥1𝑝) − ℋ(𝑥 − 𝑥2𝑝)) (ℋ(𝑦 − 𝑦1𝑝(𝑥))

℘

𝑝=1

− ℋ(𝑦 − 𝑦2𝑝(𝑥))) 

 (4) 

 The boundary conditions associated with this problem are simply 𝑐 = 0 at 𝑥 = 0, 𝐿 and at 216 

𝑦 = 0, 𝑊. The initial condition associated with this problem may be written mathematically as 217 

𝑐 = 𝑐𝑖𝑛(𝑥, 𝑦) (𝑡 = 0)  (5) 

where the spatial function 𝑐𝑖𝑛(𝑥, 𝑦) must account for the discrete distribution of the initial 218 

population in the ℘𝑖𝑛 regions. Similar to the diffusion and growth coefficients, 𝑐𝑖𝑛(𝑥, 𝑦) may be 219 

expressed using Heaviside functions as follows: 220 

𝑐𝑖𝑛(𝑥, 𝑦) = ∑ 𝑐𝑖𝑛,𝑝 (ℋ(𝑥 − 𝑥1𝑖𝑛,𝑝) − ℋ(𝑥 − 𝑥2𝑖𝑛,𝑝)) (ℋ(𝑦 − 𝑦1𝑖𝑛,𝑝(𝑥))

℘𝑖𝑛

𝑝=1

− ℋ(𝑦 − 𝑦2𝑖𝑛,𝑝(𝑥))) 

 (6) 

This definition ensures that the initial population distribution is uniformly 𝑐𝑖𝑛,𝑝 inside the 221 

𝑝𝑡ℎ region in which the population is initially located, and is zero outside these regions. 222 

It is of interest to solve equation (2) based on the definitions of coefficient functions given 223 

by equations (3) and (4), and the initial condition given by equation (5), along with zero population 224 

boundary conditions. Due to the large number of variables and parameters involved in this general 225 

problem, it is helpful to carry out a non-dimensionalization of the problem first. The following 226 

non-dimensional parameters are introduced: 227 
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𝑐̅ =
𝑐

𝑐𝑟𝑒𝑓
;  𝜉 =

𝑥

𝐿
;  𝜂 =

𝑦

𝐿
;  𝜏 =

𝐷0𝑡

𝐿2
; 𝑊̅ =

𝑊

𝐿
; 𝜉1𝑝 =

𝑥1𝑝

𝐿
; 𝜉2𝑝 =

𝑥2𝑝

𝐿
; 𝜂1𝑝 =

𝑦1𝑝

𝐿
; 𝜂2𝑝

=
𝑦2𝑝

𝐿
; 𝐷̅𝑝 =

𝐷𝑝

𝐷0
;  𝑟̅𝑝 =

𝑟𝑝𝐿2

𝐷0
;  𝑟̅0 =

𝑟0𝐿2

𝐷0
;  𝑐𝑖̅𝑛,𝑝 =

𝑐𝑖𝑛,𝑝

𝑐𝑟𝑒𝑓
  

(7) 

where 𝑐𝑟𝑒𝑓 is a reference population density. In case of a single region initially populated region, 228 

its population density may be conveniently used as the reference population density.  229 

Based on this, the non-dimensional population density problem may be written as  230 

𝜕

𝜕𝜉
(𝐷̅(𝜉, 𝜂)

𝜕𝑐̅

𝜕𝜉
) +

𝜕

𝜕𝜂
(𝐷̅(𝜉, 𝜂)

𝜕𝑐̅

𝜕𝜂
) + 𝑟̅(𝜉, 𝜂) ∙ 𝑐̅ =

𝜕𝑐̅

𝜕𝜏
 

(0 < 𝜉 < 1, 0 < 𝜂 < 𝑊̅, 𝜏 > 0)       

(8) 

where 231 

𝐷̅(𝜉, 𝜂) = 1 + ∑(𝐷̅𝑝 − 1) (ℋ(𝜉 − 𝜉1𝑝) − ℋ(𝜉 − 𝜉2𝑝)) (ℋ(𝜂 − 𝜂1𝑝(𝜉))

℘

𝑝=1

− ℋ(𝜂 − 𝜂2𝑝(𝜉))) 

 (9) 

and similar equations for 𝑟̅(𝜉, 𝜂) and 𝑐𝑖̅𝑛(𝜉, 𝜂). 232 

2.2. Solution Methodology 233 

 In order to derive a solution for this general problem, the population density distribution 234 

𝑐̅(𝜉, 𝜂, 𝜏) is expressed as follows 235 
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𝑐̅(𝜉, 𝜂, 𝜏) = ∑ ∑ 𝐴𝑛𝑚(𝜏)𝑓𝑛(𝜉)𝑔𝑚(𝜂)

∞

𝑚=1

∞

𝑛=1

  (10) 

where 𝑓𝑛(𝜉) and 𝑔𝑚(𝜂) are eigenfunctions in the 𝜉 and 𝜂 directions, respectively. Based on the 236 

zero population boundary conditions assumed in this work, 𝑓𝑛(𝜉) = sin (𝜆𝑛𝜉) and 𝑔𝑚(𝜉) =237 

sin (𝜇𝑚𝜉), where 𝜆𝑛 = 𝑛𝜋 and 𝜇𝑚 = 𝑚𝜋/ 𝑊̅ are the eigenvalues.  238 

The coefficients 𝐴𝑛𝑚(𝜏) account for the changes in the population density distribution over 239 

time, and must be determined from equation (8) and the associated initial condition. In order to do 240 

so, equation (8) is differentiated by parts, resulting in  241 

𝐷̅ (
𝜕2𝑐̅

𝜕𝜉2
+

𝜕2𝑐̅

𝜕𝜂2
) +

𝜕𝐷̅

𝜕𝜂

𝜕𝑐̅

𝜕𝜂
+

𝜕𝐷̅

𝜕𝜉

𝜕𝑐̅

𝜕𝜉
+ 𝑟̅ ∙ 𝑐̅ =

𝜕𝑐̅

𝜕𝜏
 (11) 

 Further, using the series solution for the population density given by equation (10) into 242 

equation (11), the following equation may be derived: 243 

𝜕𝐷̅

𝜕𝜉
∑ ∑ 𝐴𝑛𝑚(𝜏)𝑓𝑛

′(𝜉)𝑔𝑚(𝜂)

∞

𝑚=1

∞

𝑛=1

− 𝐷̅ ∑ ∑ (𝜆𝑛
2 + 𝜇𝑚

2 )𝐴𝑛𝑚(𝜏)𝑓𝑛(𝜉)𝑔𝑚(𝜂)

∞

𝑚=1

∞

𝑛=1

+
𝜕𝐷̅

𝜕𝜂
∑ ∑ 𝐴𝑛𝑚(𝜏)𝑓𝑛(𝜉)𝑔𝑚

′ (𝜂)

∞

𝑚=1

∞

𝑛=1

+ 𝑟̅ ∑ ∑ 𝐴𝑛𝑚(𝜏)𝑓𝑛(𝜉)𝑔𝑚(𝜂)

∞

𝑚=1

∞

𝑛=1

= ∑ ∑ 𝐴𝑛𝑚
′ (𝜏)𝑓𝑛(𝜉)𝑔𝑚(𝜂)

∞

𝑚=1

∞

𝑛=1

 

(12) 

 From equation (9), the derivatives of 𝐷̅ appearing in equation (12) may be written as 244 

follows:  245 



14 
 

𝜕𝐷̅

𝜕𝜉
= ∑(𝐷̅𝑝 − 1) (𝛿(𝜉 − 𝜉1𝑝) − 𝛿(𝜉 − 𝜉2𝑝)) (ℋ(𝜂 − 𝜂1𝑝(𝜉)) − ℋ(𝜂 − 𝜂2𝑝(𝜉)))

℘

𝑝=1

+ ∑(𝐷̅𝑝 − 1) (ℋ(𝜉 − 𝜉1𝑝) − ℋ(𝜉 − 𝜉2𝑝)) (𝛿 (𝜂 − 𝜂2𝑝(𝑥)) 𝜂2𝑝
′ (𝜉)

℘

𝑝=1

− 𝛿 (𝜂 − 𝜂1𝑝(𝜉)) 𝜂1𝑝
′ (𝜉)) 

 (13) 

𝜕𝐷̅

𝜕𝜂
= ∑(𝐷̅𝑝 − 1) (ℋ(𝜉 − 𝜉1𝑝) − ℋ(𝜉 − 𝜉2𝑝)) (𝛿(𝜂 − 𝜂1𝑝(𝜉)) − 𝛿(𝜂 − 𝜂2𝑝(𝜉)))

℘

𝑝=1

 

 (14) 

Equations (13) and (14) use the following property of Heaviside functions: 
𝑑

𝑑𝑥
(ℋ(𝑥 −246 

𝑥∗)) = 𝛿(𝑥 − 𝑥∗), where 𝛿 is the Dirac delta function [31].  247 

Equation (12) is then multiplied by 𝑓𝑖(𝑥)𝑔𝑗(𝑦) for each 𝑖 = 1,2. . ∞  and 𝑗 = 1,2. . ∞, 248 

followed by integration over the entire region and some mathematical rearrangement. In particular, 249 

integrals involving Dirac delta functions are simplified using the following integral property of 250 

Dirac delta functions related to a general function 𝐹(𝑥): ∫ 𝛿(𝑥 − 𝑥∗)𝐹(𝑥)𝑑𝑥
∞

−∞
= 𝐹(𝑥∗). This 251 

leads to the following set of linear ordinary differential equations 252 

ℕ𝑥,𝑖ℕ𝑦,𝑗𝐴𝑖𝑗
′ (𝜏) = ∑ ∑ (𝐼1𝑛𝑚𝑖𝑗 − (𝜆𝑛

2 + 𝜇𝑚
2 )𝐼2𝑛𝑚𝑖𝑗 + 𝐼3𝑛𝑚𝑖𝑗 + 𝐼4𝑛𝑚𝑖𝑗)𝐴𝑛𝑚(𝜏)

∞

𝑚=1

∞

𝑛=1

 (15) 

where 253 
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𝐼1𝑛𝑚𝑖𝑗 = ∑(𝐷̅𝑝 − 1) ∫ 𝑓𝑛
′(𝜉)𝑓𝑖(𝜉) [𝜂2𝑝

′ (𝜉)𝑔𝑚 (𝜂2𝑝(𝜉)) 𝑔𝑗 (𝜂2𝑝(𝜉))

𝜉2𝑝

𝜉1𝑝

℘

𝑝=1

− 𝜂1𝑝
′ (𝜉)𝑔𝑚(𝜂1𝑝(𝜉))𝑔𝑗(𝜂1𝑝(𝜉))] 𝑑𝜉 

(16) 

𝐼2𝑛𝑚𝑖𝑗 = 𝜙𝑛𝑖𝜙𝑚𝑗ℕ𝑥,𝑖ℕ𝑦,𝑗 + ∑(𝐷̅𝑝 − 1) ∫ 𝑓𝑛(𝜉)𝑓𝑖(𝜉) [ ∫ 𝑔𝑚(𝜂)𝑔𝑗(𝜂)𝑑𝜂

𝜂2𝑝(𝜉)

𝜂1𝑝(𝜉)

] 𝑑𝜉

𝜉2𝑝

𝜉1𝑝

℘

𝑝=1

 (17) 

𝐼3𝑛𝑚𝑖𝑗 = ∑(𝐷̅𝑝 − 1) ∫ 𝑓𝑛(𝜉)𝑓𝑖(𝜉) [𝑔𝑚
′ (𝜂1𝑝(𝜉))𝑔𝑗 (𝜂1𝑝(𝜉)) − 𝑔𝑚

′ (𝜂2𝑝(𝜉))𝑔𝑗 (𝜂2𝑝(𝜉))] 𝑑𝜉

𝜉2𝑝

𝜉1𝑝

℘

𝑝=1

 (18) 

𝐼4𝑛𝑚𝑖𝑗 = 𝑟̅0𝜙𝑛𝑖𝜙𝑚𝑗ℕ𝑥,𝑖ℕ𝑦,𝑗 + ∑(𝑟̅𝑝 − 𝑟̅0) ∫ 𝑓𝑛(𝜉)𝑓𝑖(𝜉) [ ∫ 𝑔𝑚(𝜂)𝑔𝑗(𝜂)𝑑𝜂

𝜂2𝑝(𝜉)

𝜂1𝑝(𝜉)

] 𝑑𝜉

𝜉2𝑝

𝜉1𝑝

℘

𝑝=1

 (19) 

where ℕ𝑥,𝑖 = 1/2 and ℕ𝑦,𝑗 = 𝑊̅/2 are the eigenfunction norms, and 𝜙𝑛𝑖 represents the Kronecker 254 

delta function, such that 𝜙𝑛𝑖 = 1 if 𝑛 = 𝑖 and 0 otherwise. 255 

 Note that for the case of zero population boundary conditions assumed in this work, the 256 

functions 𝑓𝑛(𝜉) and 𝑔𝑚(𝜂) are both straightforward sinusoidal functions, the integrals of which 257 

appearing in equations (16)-(19) may be easily determined. 258 

Equation (15) may be written compactly as a first-order matrix ordinary differential 259 

equation (ODE) as follows 260 

𝑨′(𝑡) = 𝑴𝑨(𝑡)  (20) 
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where the vector 𝑨(𝑡) comprises the functions 𝐴𝑖𝑗(𝑡), and the size of 𝑨(𝑡) depends on the number 261 

of terms in the infinite series considered for computation. The elements of matrix 𝑴 are defined 262 

by equations (15)-(19). A solution for this problem may be written as 263 

𝑨(𝑡) = 𝑨(0)exp(𝑴𝑡) (21) 

where 𝑨(0) is the initial value vector that contains the initial values of the coefficients, 𝐴𝑖𝑗(0), 264 

which may be obtained by multiplying the non-dimensional form of equation (6) by 𝑓𝑖(𝜉)𝑔𝑗(𝜂) 265 

for each 𝑖 = 1,2. . ∞  and 𝑗 = 1,2. . ∞, followed by integration over the entire region. This may be 266 

shown to result in 267 

𝐴𝑖𝑗(0) =
1

ℕ𝑥,𝑖ℕ𝑦,𝑗
∑ 𝑐𝑖̅𝑛,𝑝 ∫ 𝑓𝑛(𝜉) ( ∫ 𝑔𝑚(𝜂)𝑑𝜂

𝜂2𝑝(𝜉)

𝜂1𝑝(𝜉)

) 𝑑𝜉

𝜉2𝑝

𝜉1𝑝

℘𝑖𝑛

𝑝=1

 

  

(22) 

This completes the solution of the problem. In addition to the detailed population density 268 

distribution 𝑐̅(𝜉, 𝜂, 𝜏), a practical quantity of interest may be the total population in the space as a 269 

function of time. This quantity, denoted by 𝑐𝑡̅𝑜𝑡(𝜏), may be obtained easily by spatially integrating 270 

equation (10), which results in  271 

𝑐𝑡̅𝑜𝑡(𝜏) = ∑ ∑ 𝐴𝑛𝑚(𝜏)
1 − cos (𝜆𝑛)

𝜆𝑛

1 − cos (𝜇𝑚𝑊̅)

𝜇𝑚

∞

𝑚=1

∞

𝑛=1

  (23) 

𝑐𝑡̅𝑜𝑡(𝜏) may be tracked as a function of time to determine whether the population 272 

establishes itself, and if so, how long it takes to establish itself. 273 

Note that the expression for the transient population density distribution derived in this 274 

work is exact, since no approximations are made in the derivation of the solution. In particular, the 275 
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Heaviside functions based representation of discrete distributions of diffusion and growth 276 

coefficient is exact. The solution derived is an infinite series, as is the common case for most 277 

diffusion and diffusion-reaction problems in a finite domain.  278 

Note that the functions 𝜂1𝑝(𝜉) and 𝜂2𝑝(𝜉) play a key role in the solution of the problem. 279 

These functions represent the shape of the 𝑝𝑡ℎ oasis/deadzone region. These functions are known 280 

in advance through the known shape of each oasis/deadzone region. The derivatives of 𝜂1𝑝(𝜉) and 281 

𝜂2𝑝(𝜉) also appear in the solution and help account for the curvature of the shape of each 282 

oasis/deadzone region.  283 

3. Results 284 

A common goal of diffusion-reaction analysis of population growth problems is to 285 

determine whether the species will establish itself or go extinct [6]. In this case, the positive growth 286 

coefficient in the oasis regions as well as in regions outside the oases, if present, contributes 287 

towards growing the population and thus helping it establish itself. On the other hand, diffusion 288 

towards the zero population boundaries, as well as the negative growth coefficient in the deadzone 289 

regions, if present, both contribute towards extinction. Whether the species establishes itself or 290 

goes extinct depends on which of these opposing effects dominates over the other. From a 291 

mathematical perspective, whether the population density decays to zero (extinction) or increases 292 

exponentially (establishment) at large time depends on whether the coefficients 𝐴𝑛𝑚(𝜏) are 293 

bounded or not as 𝜏 → ∞. It is well known [32] that the elements of a matrix governed by a first-294 

order matrix differential such as (21) are bounded at large times if and only if all eigenvalues of 295 

the matrix 𝑴 have a negative real part. Therefore, a limiting condition for population establishment 296 

may be expressed in terms of at least one eigenvalue of the matrix 𝑴 becoming zero. Finally, since 297 
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the determinant of a matrix with a zero eigenvalue is zero, therefore, one may conclude that the 298 

threshold condition for establishment of the species at large time is given by the matrix 𝑴 having 299 

zero determinant. For example, as the growth coefficient 𝑟̅ is increased, the first value of 𝑟̅ at which 300 

the determinant of 𝑴 becomes zero is the threshold value, beyond which, population establishment 301 

will occur, and below which, the population will go extinct at large times. Note that this result only 302 

predicts establishment at large times, and does not necessarily address how long it takes to 303 

establish. However, this can be easily done by plotting the total population in the space, given by 304 

equation (23), as a function of time. 305 

4. Discussion 306 

Since the solution for the population density distribution is obtained in the form of an 307 

infinite series, it is first important to determine the minimum number of terms needed to be 308 

considered for reasonable accuracy. It is found that the use of 15 terms results in reasonable 309 

convergence, in that the predicted population density does not change appreciably (within 1%) by 310 

further increase in the number of terms. Eigenfunction based series solution typically need a larger 311 

number of terms to small times. In the present problem, the focus is on predicting population 312 

density at large times, and, therefore, the number of terms to be considered is not as stringent. All 313 

results discussed in this section are computed with 15 terms in the series solution, for which, the 314 

integrals appearing in equation (16)-(19) are computed in less than 15 seconds on a standard 315 

desktop computer. The computational cost can potentially be reduced with further computational 316 

optimization, which has not been carried out here. 317 

4.1. Comparison with Past Work for Special Case of Homogeneous Space 318 
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 It is of interest to examine the nature of the results obtained here for a special case that has 319 

been presented in the past. Specifically, the present work accounts for discrete regions with growth 320 

coefficients and diffusion coefficients that may be different from the rest of the two-dimensional 321 

space, represented non-dimensionally by 𝑟̅𝑝 and 𝐷̅𝑝, respectively. The special case of a 322 

homogeneous two-dimensional space has been solved in the past [6,10], and the minimum value 323 

of the growth coefficient needed for species establishment has been shown to be given by  𝑟̅𝑚𝑖𝑛 =324 

𝜆1
2 + 𝜇1

2 = 𝜋2(1 + 𝑊̅−2). It is of interest to examine whether the present work is consistent with 325 

this result for this special case, i.e., whether setting the parameter values in the present work to 326 

mimic a homogeneous space leads to the result reported in past work. Specifically, in the present 327 

framework, the entire two-dimensional region becomes homogeneous when 𝑟̅𝑝 = 𝐷̅𝑝 = 1, i.e., 328 

each oasis/deadzone has the same growth coefficient and the same diffusion coefficient as the rest 329 

of the space. In order to examine the results from this work in this limit, Figure 2 plots 𝑟̅𝑚𝑖𝑛, the 330 

minimum value of the growth coefficient needed for population establishment in a problem with 331 

a single circular oasis as a function of 𝑟̅1, the ratio of growth coefficient in the oasis and the 332 

background, while keeping 𝐷̅1 = 1.0 and 𝑊̅ = 1.5. 𝑟̅1 = 1.0 corresponds to the special case of a 333 

homogeneous space, for which, based on past work, 𝑟̅𝑚𝑖𝑛 = 14.256 for the assumed value of 𝑊̅. 334 

Using these results in Section 2, the minimum value of the growth coefficient is determined as a 335 

function of 𝑟̅1 by obtaining the value at which the determinant first becomes zero. Figure 2 336 

considers both 𝑟̅1 < 1 and 𝑟̅1 > 1 regimes, and shows that in both cases, as 𝑟̅1 approaches a value 337 

of one, the minimum growth coefficient needed for population establishment approaches the 338 

expected of 14.256 based on past work. This shows that the present work is consistent with 339 

predictions from past work for the special case of a homogeneous two-dimensional space. 340 
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 It may also be shown mathematically that the present work reduces to past results when 341 

the two-dimensional space becomes homogeneous, i.e., when 𝑟̅𝑝 = 𝐷̅𝑝 = 1. In such a case, 342 

equations (16)-(19) show that 𝐼1𝑛𝑚𝑖𝑗 = 𝐼3𝑛𝑚𝑖𝑗 = 0, 𝐼2𝑛𝑚𝑖𝑗 = 𝜙𝑛𝑖𝜙𝑚𝑗ℕ𝑥,𝑖ℕ𝑦,𝑗 and 𝐼4𝑛𝑚𝑖𝑗 =343 

𝑟̅0𝜙𝑛𝑖𝜙𝑚𝑗ℕ𝑥,𝑖ℕ𝑦,𝑗. This implies that matrix 𝑴 is a diagonal matrix, and the differential equation 344 

for the coefficients may be written simply as 𝐴𝑖𝑗
′ (𝜏) = (𝑟̅0 − 𝜆𝑖

2 − 𝜇𝑗
2)ℕ𝑥,𝑖ℕ𝑦,𝑗𝐴𝑖𝑗(𝜏). A 345 

straightforward solution for this uncoupled ODE is 𝐴𝑖𝑗(𝜏) = 𝐴𝑖𝑗(0)exp ((𝑟̅0 − 𝜆𝑖
2 −346 

𝜇𝑗
2)ℕ𝑥,𝑖ℕ𝑦,𝑗𝜏). This expression, as well as resulting condition for population establishment, 347 

𝑟̅0,𝑚𝑖𝑛 = 𝜆1
2 + 𝜇1

2  is identical to previously reported work on a homogeneous two-dimensional 348 

space. This shows that the general model presented in this work, which is capable of accounting 349 

for multiple oasis/deadzone regions of arbitrary shape, correctly reduces to the well-known result 350 

pertaining to a homogeneous space when the oasis/deadzone regions are taken to have the same 351 

growth/diffusion properties as the rest of the space.  352 

4.2. Determinant as an indicator of establishment or extinction 353 

A key result discussed in sections 2 and 3 is that a zero value of the determinant of the 354 

matrix 𝑴 defined by equation (15)-(19) indicates change from extinction to establishment. In 355 

general, the value of the determinant, and, therefore, the criterion for species establishment 356 

depends on the growth coefficients 𝑟̅0 and 𝑟̅𝑝, diffusion coefficients 𝐷̅𝑝, aspect ratio 𝑊̅, and the 357 

shapes of oasis regions represented by 𝜉1𝑝, 𝜉2𝑝, 𝜂1𝑝(𝜉) and 𝜂2𝑝(𝜉) for 𝑝 = 1,2, . . ℘. Notably, the 358 

shape and size of the initial population regions does not influence eventual establishment or 359 

extinction of the species. 360 
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In order to illustrate this result in the context of the growth coefficient, a representative 361 

problem with two oasis regions and one initial population region is considered. The first oasis is a 362 

circle of non-dimensional radius 0.2 centered at (0.7,0.7) and the second oasis is an ellipse 363 

centered at (0.5,1.2), with major and minor axes values of  2𝑎 = 0.6 and 2𝑏 = 0.4 along the 𝑥 364 

and 𝑦 directions, respectively. The initial population is located in a rectangle of dimensions 0.2 365 

and 0.4 in the the 𝑥 and 𝑦 directions, respectively, and centered at (0.3,0.4). Other problem 366 

parameters are 𝐷̅1 = 𝐷̅2 = 1.5, 𝑟̅0 = 5, 𝑊̅ = 1.5. For this problem, the determinant of the matrix 367 

𝑴 is computed as a function of 𝑟̅, the growth coefficient in both oasis regions. Figure 3 shows that 368 

the determinant has a negative value at small 𝑟̅. As expected from the discussion in section 3, the 369 

determinant curve rises upwards as 𝑟̅ increases, and eventually crosses the 𝑟̅ axis at around 𝑟̅ =370 

34. This shows that 𝑟̅ = 34 is the threshold for species establishment. If the growth coefficient in 371 

the oasis regions is lower than this value, the effect of diffusion to the hostile boundaries dominates 372 

over species growth in the oasis regions, resulting in species extinction at large times. In contrast, 373 

when 𝑟̅ > 34, the rate of population growth in the oasis regions is strong enough to overcome 374 

population loss and lead to eventual establishment of the population. Computing the determinant 375 

of the matrix 𝑴 is, therefore, a straightforward method for predicting the establishment vs. 376 

extinction characteristics of the problem. Such prediction of establishment-vs-extinction is 377 

otherwise not straightforward to do, especially considering the complicated geometry of the 378 

problem, including the non-Cartesian shapes of the oasis regions. Based on the discussion in 379 

Section 2, oasis regions of any other shapes may also be accounted for in the theoretical model 380 

developed here. 381 

While not plotted here beyond 𝑟̅ = 50, the determinant plot is not necessarily monotonic, 382 

and may change directions to cross the 𝑟̅ axis again. However, for the purposes for predicting the 383 
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threshold for population establishment, only the first root of the determinant curve is of interest 384 

because, if the population is shown to establish at a certain value of 𝑟̅, then, clearly, it will establish 385 

itself for larger values of 𝑟̅ as well. 386 

Similar determinant curves as functions of other parameters may also be computed in order 387 

to determine the extinction vs. establishment threshold vis-à-vis other parameters, such as 388 

diffusion coefficients and sizes of oasis regions. For example, keeping other parameters constant, 389 

computing the determinant as a function of oasis size can help determine the minimum oasis size 390 

needed for the population to establish itself. 391 

In order to further confirm the extinction vs. establishment prediction based on the value 392 

of the determinant, the total population in the region 𝑐𝑡̅𝑜𝑡, defined by equation (23), is plotted as a 393 

function of time in Figure 4. Curves are presented for two values of 𝑟̅ below and two values of 𝑟̅ 394 

above the predicted threshold of 𝑟̅ = 34 for establishment. Figure 4 clearly shows that 𝑟̅ = 10 and  395 

𝑟̅ = 30 result in steady reduction in population over time, leading to extinction. In contrast, when  396 

𝑟̅ = 50 or  𝑟̅ = 60, the population grows exponentially with time. In both cases, there is a 397 

significant time period initially, during which, there is no appreciable rise in population. This is 398 

attributed to the time taken for a significant amount of population to diffuse from the initial 399 

population region to the two oasis regions, before growth in the oasis regions begins to cause 400 

establishment of the species. 401 

Further illustration of the evolution of the population distribution over time and its 402 

dependence on 𝑟̅ is presented in Figure 5, in which, colorplots of the population density distribution 403 

are presented at four different times. Two cases – 𝑟̅ = 10 (expected to cause extinction) and 𝑟̅ =404 

60 (expected to cause establishment) – are considered. The 𝑟̅ = 10 colorplots are characterized by 405 
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a continuous reduction in population density with time, despite a shift of the peak of the population 406 

density from the initial region towards the two oasis regions as time passes. Mathematically, 𝑟̅ 407 

represents the ratio of growth and diffusion terms, and, with 𝑟̅ = 10, the rate of growth in the oasis 408 

regions is simply not sufficient to sustain the population and overcome boundary losses. 409 

Eventually, at large times, the small amount of species still surviving is located predominantly at 410 

the center of the domain, as far away as possible from the hostile boundaries. 411 

In contrast, the evolution of population colorplots for the 𝑟̅ = 60 case is markedly different. 412 

Colorplots presented in Figure 5 clearly show the population diffusing, first towards the circular 413 

oasis, which is closer to the initial population region, followed by diffusion towards the elliptical 414 

oasis at later times. At small times, there is actually a reduction in the maximum population density 415 

due to diffusion of the initially dense population into a larger space. This dilution, however, is 416 

eventually overcome by aggressive growth in the oasis regions due to the relatively large value of 417 

𝑟̅, leading to establishment of the population. At 𝜏 = 0.28, Figure 5 shows that the population is 418 

concentrated mainly in the circular oasis, with a secondary concentration in the elliptical oasis. 419 

Even though both oasis regions have the same growth coefficient, greater concentration in the 420 

circular oasis is simply due to its closer proximity to the initial population region. 421 

Finally, it is also of interest to track the population density at specific locations within the 422 

space as functions of time. This is presented in Figure 6, which plots 𝑐̅ at the centers of the circular 423 

oasis and the initial population region as functions of time. Curves are presented for 𝑟̅ = 10 and 424 

𝑟̅ = 60 in Figures 6(a) and 6(b), respectively. The 𝑟̅ = 10 curves show that population density at 425 

the center of the initial region decreases monotonically as the initial population diffuses out of the 426 

initial region and does not grow sufficiently in the oasis region due to the relatively low value of 427 

𝑟̅. The population density at the center of the circular oasis increases for some time, as it receives 428 
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population diffusing out of the initial region, However, such growth is not sustained for long due 429 

to the stronger impact of diffusion and boundary loss compared to growth. Eventually, the 430 

population density in the circular oasis also approaches extinction at large time. These observations 431 

are consistent with other plots presented earlier in this section.  432 

In contrast, as shown in Figure 6(b), when 𝑟̅ = 60, population density at the center of the 433 

circular oasis continues to rise with time. While the growth is somewhat linear at small times, 434 

eventually, as the population establishes itself firmly, the growth becomes much stronger. 435 

Population density at the center of the initial population region exhibits an interesting bowl-shaped 436 

curve. The initial reduction in population density is mainly due to diffusion away from the initial 437 

population region. Slowly, as growth in the oasis regions becomes more and more dominant, a 438 

plateau region occurs, where diffusion away from the initial region is balanced by increase in 439 

population due to growth in the oasis regions and subsequent diffusion back into the initial 440 

population region. Due to the large value of 𝑟̅ in this case, population growth in the oasis regions 441 

becomes more and more aggressive, and eventually, population density at both points shown in 442 

Figure 6(b) begins to increase exponentially. 443 

4.3. Establishment-vs-Extinction Regimes 444 

 It is of much interest to identify regions in the parameter space whether establishment or 445 

extinction will occur at large times. For any given oasis region, its size and growth coefficient both 446 

contribute towards population establishment. In order to examine the relationship between these 447 

parameters and to identify establishment and extinction regions in the 2D parameter space defined 448 

by these parameters, the minimum value of 𝑟̅ needed for population establishment is determined 449 

as a function of the radius of a circular oasis located at the center of a square-shaped space. The 450 

initial population is assumed to be present uniformly throughout the two-dimensional space. For 451 
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each oasis radius, determinant of the matrix 𝑴 is calculated for multiple values of 𝑟̅, and the 452 

threshold value of 𝑟̅ to ensure establishment is determined by examining where the determinant 453 

becomes zero. The resulting plot is presented in Figure 7. As expected, the larger the oasis radius, 454 

the smaller is the value of 𝑟̅ needed for population establishment. Regions under and above the 455 

curve represent the extinction and establishment regimes, respectively. The relationship between 456 

𝑟̅ and oasis radius is not linear, however. Figure 7 shows that the requirement for 𝑟̅ becomes quite 457 

steep in the small size limit, indicating that small oasis regions must have particularly large growth 458 

coefficients in order to ensure species establishment. In the other extreme, as the oasis size 459 

becomes very large and approaches the size of the region itself, the growth coefficient needed for 460 

establishment is no longer as sensitive to oasis size. In other words, once the oasis is sufficiently 461 

large, making it even larger does not significantly reduce the growth coefficient required for 462 

establishment. 463 

 While Figure 7 specifically addresses the interaction between oasis size and growth 464 

coefficient, relationships between other problem parameters, such as diffusion coefficient versus 465 

growth coefficient may also be examined similarly by determining extinction and establishment 466 

regions in the parameter space, based on the determinant approach for finding the threshold 467 

between extinction and establishment. 468 

4.4. Illustrative Problems with Complicated Oasis and Initial Population Region Geometries 469 

 A key feature of the theoretical technique developed in this work lies in its capability to 470 

account for irregular shapes of oasis/deadzone regions that need not match the Cartesian nature of 471 

the two-dimensional space itself. The definition of the outer boundary of each region in terms of 472 

𝜉1𝑝 and 𝜉2𝑝 in the 𝜉 direction, and 𝜂1𝑝(𝜉) and 𝜂2𝑝(𝜉) in the 𝜂 direction makes it possible to 473 



26 
 

consider a variety of possible shapes of each region, such as a circle or even other more 474 

complicated shapes. Two example problems are solved in order to illustrate this capability. 475 

 First, a problem is considered with a single oasis shaped like a heart. For a rectangular 476 

initial distribution of the population between 𝜉 = 0.05 and 𝜉 = 0.95, and between 𝜂 = 0.05 and 477 

𝜂 = 0.95, Figure 8 plots the resulting population density distribution colormaps at multiple times. 478 

Other problem parameters are 𝐷̅1 = 0.5, 𝑟̅1 = 40, 𝑟̅0 = 0, 𝑊̅ = 1. An outline of the shape of the 479 

oasis is shown using dashed lines. Figure 8(a) shows that the population begins to concentrate in 480 

the heart-shaped oasis even at very early times. The shape of the population density is close to the 481 

shape of the heart itself in Figures 8(a) and 8(b). As time passes, the population distribution 482 

becomes more and more concentrated in regions away from the boundary due to the hostile nature 483 

of the boundary, and, specifically, the population density in the heart-shaped oasis continues to 484 

grow. On the overall, in this case, the growth phenomenon in the oasis dominates over population 485 

loss due to diffusion to hostile boundaries, and the population density is found to grow over time, 486 

while remaining concentrated within the oasis region. Note that the contours in the population 487 

colormap closely match the shape of the oasis at early times, but no longer at large times, due to 488 

the diffusive nature of population transport. 489 

 As another illustration, a problem is considered in which the population is initially placed 490 

in four leaf-shaped regions, while a circular oasis is also present. The locations and shapes of the 491 

initial regions and the oasis are shown in Figure 9 using dotted and dashed lines, respectively. Note 492 

that the oasis intersects partly with two of the leaf-shaped regions. Starting with a uniform initial 493 

population distribution in the leaf-shaped regions, the goal is to determine the population density 494 

colorplots at future times, and whether the population establishes itself or goes extinct. With 𝐷̅1 =495 

1.5, 𝑟̅1 = 40, 𝑟̅0 = 5, 𝑊̅ = 1 and a uniform initial population distribution in the leaf-shaped 496 
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regions, Figure 9 presents population distribution colorplots at multiple times for this problem. 497 

These plots show the population to be concentrated in the leaf-shaped regions initially and starting 498 

to diffuse outwards at early times. Between Figure 9(a) and 9(b), the peak population density 499 

actually reduces due to diffusion of the initially concentrated population density over a greater 500 

area. As time passes, Figure 9 shows a build up of population in the circular oasis, as expected due 501 

to the positive value of 𝑟̅1 = 40. At large times, the population is mainly concentrated in and 502 

around the circular oasis, and the peak concentration continues to increase, indicating 503 

establishment and exponential growth of the total population over time.  504 

 Figures 8 and 9 illustrate the capability of the exact theoretical technique developed here 505 

to analytically determine the population dynamics, while accurately accounting for complicated 506 

geometries of the oasis/deadzone regions as well as the initial population distribution. Note that 507 

the theoretical model is an exact analytical treatment of this problem and does not require spatial 508 

or temporal discretization commonly needed for numerical simulations.  509 

4.5. Oasis and Deadzone Regions 510 

 The theoretical treatment presented in this work accounts for both positive and negative 511 

growth coefficients. 𝑟̅ > 0 indicates growth in the region, referred to as an oasis in this work. 512 

Conversely, 𝑟̅ < 0 inhibits growth and results in reduction in population, referred to as a deadzone 513 

in this work. It is of interest to examine the population dynamics in a scenario where both oasis 514 

and deadzone regions are present. In such a scenario, it is unclear whether the oasis or the deadzone 515 

dominates, leading to either establishment or extinction of the population. A representative 516 

problem with an oasis and a deadzone region is considered. Both regions are circular in shape, 517 

with the same radius of 0.15. The centers of the oasis and deadzone are located at (0.20,0.50) and 518 

 (0.80,0.50), respectively. The values of the growth coefficient are  𝑟̅1 = 100 for the oasis and 519 



28 
 

 𝑟̅2 = −100 for the deadzone. The diffusion coefficient for the oasis and deadzone regions relative 520 

to the rest of the space is  𝐷̅1 = 1.5. The initial population region is a rectangle of size  0.2 by  0.2, 521 

located at the center of the two-dimensional space. For this problem, the population density 522 

distribution is computed as a function of time based on the theoretical model presented in Section 523 

2. Results are presented in Figure 10 in terms of population density colormaps at four different 524 

times. The locations of the oasis and deadzone regions, as well as the initial population region are 525 

indicated in each colorplots. Figure 10(a) shows that at early times, the population diffuses 526 

outwards from the initial region in all directions. However, as time passes, there is preferential 527 

migration of population towards the oasis region, and away from the deadzone region. Comparing 528 

Figures 10(a) and 10(b), the peak population density reduces, which is because of diffusion of the 529 

initially concentrated population into a larger space. As time passes, the effect of growth in the 530 

oasis and annihilation in the deadzone can be clearly seen in Figures 10(b)-10(d). Specifically, the 531 

population density in the oasis continues to rise with time, whereas there is hardly any population 532 

remaining in the deadzone region at large times. On the overall, despite the same magnitude of the 533 

growth coefficient in the oasis and deadzone regions and despite their symmetric locations, the 534 

population on the overall is able to establish itself. The reason for the dominance of the oasis region 535 

over the deadzone is that the impact of the deadzone is spatially restricted and self-limiting – once 536 

the population density in the deadzone region is sufficiently small, it can no longer reduce the 537 

population density much, particularly in regions far away from the deadzone. In contrast, the oasis 538 

region is able to continue to grow the population, which then diffuses out of the oasis. As the 539 

population density in the oasis region grows, so does its rate of further growth. Figure 10 clearly 540 

shows the overall preference of the population to grow in and around the oasis, while avoiding the 541 

deadzone and region around the deadzone. 542 
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 In order to further understand the nature of interaction between the oasis and deadzone 543 

regions, the total population in the space is plotted as a function of time in Figure 11. Curves are 544 

presented for the baseline case studied in Figure 10, for which, the growth coefficient are  𝑟̅1 =545 

100 for the oasis and  𝑟̅2 = −100 for the deadzone. Two other cases are also considered – 𝑟̅1 =546 

100  and 𝑟̅2 = −200, which considers an even stronger deadzone compared to the baseline, and 547 

𝑟̅1 = 50  and 𝑟̅2 = −100, which considers a weaker oasis than the baseline. Figure 11 shows 548 

exponential population growth for the baseline case, which is consistent with the population 549 

density colormaps presented in Figure 10. Making the deadzone even stronger at 𝑟̅2 = −200 is 550 

found to result in only minor reduction in the population curve, which nevertheless grows 551 

exponentially, and leads to population establishment. In contrast, Figure 11 also shows that 552 

reducing the oasis growth coefficient to 𝑟̅1 = 50 dramatically changes the population dynamics, 553 

leading to extinction. This shows that the population dynamics in this problem is strongly 554 

dependent on the growth coefficient of the oasis, whereas the impact of the deadzone is relatively 555 

much weaker.  556 

4.6. Impact of oasis diffusion coefficient 557 

The diffusion coefficient is also an important parameter that governs the dynamics of 558 

population growth in this problem. While the diffusion coefficient of the region outside the oasis 559 

and deadzone regions, 𝐷0, is used for non-dimensionalization, the diffusion coefficient of the oasis 560 

and deadzone regions is represented non-dimensionally by 𝐷̅𝑝, the ratio of the diffusion coefficient 561 

of the 𝑝𝑡ℎ region and the background. 𝐷̅𝑝 > 1 and 𝐷̅𝑝 < 1 represent scenarios where species 562 

diffusion within the oasis occurs faster or slower, respectively, than outside. 563 
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Since 𝐷̅𝑝 governs how well population diffusion occurs within the oasis region, therefore, 564 

it is of interest to determine the impact of 𝐷̅𝑝 on whether population establishment or extinction 565 

occurs. In order to do so, a specific problem comprising a single circular oasis region of radius 566 

0.15 centered at (0.3,0.5) is considered. The population is located initially in a square region, as 567 

shown in the inset in Figure 12. As the population density distribution evolves, Figure 12 plots the 568 

total population as a function of time for multiple values of 𝐷̅1. This analysis is presented for two 569 

different values of the growth coefficient 𝑟̅1 = 40 and 𝑟̅1 = 10 in Figures 12(a) and 12(b), 570 

respectively. Figure 12(a) shows that small values of 𝐷̅1 result in exponential population growth 571 

and rapid establishment. This is mainly because small diffusion coefficient within the oasis 572 

prevents the population from exiting the oasis and facilitates even greater growth by keeping the 573 

species concentration in the oasis high. As 𝐷̅1 is increased, Figure 12(a) shows that population 574 

growth first slows down (for the 𝐷̅1 = 0.15 case), and then stops completely (for the 𝐷̅1 = 0.5 and 575 

𝐷̅1 = 2.0 cases), leading to extinction when 𝐷̅1 is relatively large. Note that even when species 576 

establishment occurs (for the 𝐷̅1 = 0.1 and 𝐷̅1 = 0.15 cases), the exponential growth of population 577 

is preceded by a small dip in population over a considerable time. This is mainly attributed to 578 

species loss at the hostile boundaries before sufficient population has diffused to the oasis. As a 579 

result, the growth effect of the oasis takes some time to begin to dominate. Until then, the total 580 

population does not rise rapidly and even drops somewhat. 581 

The dynamics of population growth are markedly different when the growth coefficient of 582 

the oasis is relatively low, 𝑟̅1 = 10, as shown in Figure 12(b). Here, the growth effect due to the 583 

oasis is not sufficiently large to overcome population loss due to diffusion to hostile boundaries. 584 

In this regime, the population growth dynamics are not very sensitive to the value of 𝐷̅1. Even 585 

when 𝐷̅1 is quite small, the total population goes extinct, because, even though the species is 586 
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sufficiently retained within the oasis due to low 𝐷̅1, the growth coefficient is too small to counteract 587 

population loss due to diffusion and hostile boundaries. Therefore, in this case, extinction occurs 588 

for each value of the diffusion coefficient considered. 589 

5. Conclusions 590 

 This work extends the state-of-the-art in the mathematical analysis of population dynamics 591 

and establishment/extinction of a population. Compared to the existing literature, the main 592 

contribution of this work lies in accounting for irregular shapes of growth regions in a two-593 

dimensional space. Most of the past work assumes Cartesian patches within a Cartesian space, 594 

whereas the present work makes it possible to account for growth in realistic but irregular shapes 595 

and predict whether population establishment or extinction occurs as a result.  596 

The theoretical model developed here may be easily extended to account for a mixed 597 

boundary condition instead of the zero population boundary condition assumed here. In such a 598 

case, the eigenfunctions 𝑓𝑛(𝜉) and 𝑔𝑚(𝜂) are given by a linear combination of sine and cosine 599 

functions instead of a purely sinusoidal function, in accordance with the mixed boundary 600 

condition. Further, extension to account for advective transport of population, as may be the case 601 

for inspect populations [23], is also straightforward.  602 

While developed in this work in the context of population dynamics, the theoretical 603 

technique may also find applications in other related problems such as the proliferation of cancer 604 

cells. 605 

 606 

 607 
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List of Figures 689 

Figure 1. Schematic of the two-dimensional spatiotemporal population growth problem with 690 

irregularly-shaped regions that encourage (oasis) and discourage (deadzone) growth, as well as 691 

irregularly-shaped regions of the initial population. The shape of each region is mathematically 692 

described by lower and upper bounds 𝑥1 and 𝑥2, respectively, in the 𝑥 direction, and lower and 693 

upper bounds 𝑦1(𝑥) and 𝑦2(𝑥).  694 

Figure 2. Minimum value of the growth coefficient 𝑟̅0,𝑚𝑖𝑛 needed for population establishment as 695 

a function of 𝑟̅1, the ratio of growth coefficients inside and outside the oasis for a single circular 696 

oasis problem. The 𝑟̅1 = 1 limit, corresponding to a homogeneous space problem, is indicated by 697 

a vertical dashed line. The expected value of 𝑟̅0,𝑚𝑖𝑛 based on past work [6,10] is also indicated by 698 

a horizontal dashed line. Problem parameters are 𝐷̅1 = 1.0 and 𝑊̅ = 1.5. The oasis of radius 0.2 699 

is centered at 𝜉 = 0.7 and  𝜂 = 0.7. 700 

Figure 3. Determinant of matrix 𝑴 as a function of 𝑟̅ for a problem with circular and elliptical 701 

shaped oases, and a square shaped region of initial population, as specified in Section 4.2. Problem 702 

parameters are 𝐷̅1 = 𝐷̅2 = 1.5, 𝑟̅0 = 5, 𝑊̅ = 1.5. Both oases are assumed to have the same growth 703 

coefficient 𝑟̅. Inset schematic shows the geometry, where the oases are depicted with dashed lines, 704 

and the initial population region is depicted with dotted lines.  705 

Figure 4. Total population as a function of time for four different values of 𝑟̅ for the problem 706 

considered in Figure 3, showing species extinction for 𝑟̅ = 10 and  𝑟̅ = 30, and species 707 

establishment for  𝑟̅ = 50 and  𝑟̅ = 60. 708 

Figure 5. Colorplots of population density distribution at four different times for (a) 𝑟̅ = 10 and 709 

(a) 𝑟̅ = 60 for the problem considered in Figure 3.  710 

Figure 6. Population density at the centers of the first oasis and the initial population region as 711 

functions of time for (a) 𝑟̅ = 10 and (b) 𝑟̅ = 60 for the problem considered in Figure 3. 712 
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Figure 7. Extinction and establishment regimes in the parametric space of oasis radius and reaction 713 

coefficient for a problem with a single circular oasis at the center of a square region. The initial 714 

population is located uniformly throughout the square. Problem parameters are 𝐷̅1 = 1.5 and 𝑊̅ =715 

1.0. 716 

Figure 8. Species establishment for an oasis with complicated geometry: Colormaps of population 717 

density distribution at multiple times for a problem with a heart-shaped oasis. Problem parameters 718 

are 𝐷̅1 = 0.5, 𝑟̅1 = 40, 𝑟̅0 = 0, 𝑊̅ = 1. The initial population density is distributed uniformly in 719 

the square region bounded by 𝜉 = 0.05 and 𝜉 = 0.95, and by 𝜂 = 0.05 and 𝜂 = 0.95. The oasis 720 

is shown using dashed lines. 721 

Figure 9. Species establishment for a leaf-shaped initial population distribution and a circular 722 

oasis: Colormaps of population density distribution at multiple times. Problem parameters are 723 

𝐷̅1 = 0.5, 𝑟̅1 = 40, 𝑊̅ = 1.  The oasis and regions of initial population distribution are shown 724 

using dashed and dotted lines, respectively.  725 

Figure 10. Population dynamics for a problem with one oasis and one deadzone: Population density 726 

distribution at four different times. The oasis and regions of initial population distribution are 727 

shown using dashed and dotted lines, respectively. The left circle is an oasis, while the right circle 728 

is a deadzone. Problem parameters are  𝑟̅1 = 100, 𝑟̅2 = −100, 𝐷̅1 = 𝐷̅2 = 1.5, 𝑟̅0 = 0, 𝑊̅ = 1.5. 729 

The oasis and regions of initial population distribution are shown using dashed and dotted lines, 730 

respectively. 731 

Figure 11. Effect of relative strengths of oasis and deadzone coefficients in the problem considered 732 

in Figure 10: Total population as a function of time for three different pairs (𝑟̅1, 𝑟̅2). 733 

Figure 12. Effect of oasis diffusion coefficient: Total population in the domain as a function of 734 

time for four different values of 𝐷̅1 for a problem with a single circular oasis region. (a) 𝑟̅1 = 40, 735 

(b) 𝑟̅1 = 10.  Inset schematic shows the geometry, where the oasis is depicted with dashed lines, 736 

and the initial population region is depicted with dotted lines. Problem parameters are 𝑟̅0 = 0, 𝑊̅ =737 

1.0.  738 
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Figure 1. Schematic of the two-dimensional spatiotemporal population growth problem with irregularly-shaped regions that encourage 

(oasis) and discourage (deadzone) growth, as well as irregularly-shaped regions of the initial population. The shape of each region is 

mathematically described by lower and upper bounds 𝑥1 and 𝑥2, respectively, in the 𝑥 direction, and lower and upper bounds 𝑦1(𝑥) 

and 𝑦2(𝑥).  
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Figure 2. Minimum value of the growth coefficient 𝑟̅0,𝑚𝑖𝑛 needed for population establishment as a function of 𝑟̅1, the ratio of growth 

coefficients inside and outside the oasis for a single circular oasis problem. The 𝑟̅1 = 1 limit, corresponding to a homogeneous space 

problem, is indicated by a vertical dashed line. The expected value of 𝑟̅0,𝑚𝑖𝑛 based on past work [6,10] is also indicated by a horizontal 

dashed line. Problem parameters are 𝐷̅1 = 1.0 and 𝑊̅ = 1.5. The oasis of radius 0.2 is centered at 𝜉 = 0.7 and  𝜂 = 0.7.  
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Figure 3. Determinant of matrix 𝑴 as a function of 𝑟̅ for a problem with circular and elliptical shaped oases, and a square shaped 

region of initial population, as specified in Section 4.2. Problem parameters are 𝐷̅1 = 𝐷̅2 = 1.5, 𝑟̅0 = 5, 𝑊̅ = 1.5. Both oases are 

assumed to have the same growth coefficient 𝑟̅. Inset schematic shows the geometry, where the oases are depicted with dashed lines, 

and the initial population region is depicted with dotted lines. 
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Figure 4. Total population as a function of time for four different values of 𝑟̅ for the problem considered in Figure 3, showing species 

extinction for 𝑟̅ = 10 and  𝑟̅ = 30, and species establishment for  𝑟̅ = 50 and  𝑟̅ = 60. 
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Figure 5. Colorplots of population density distribution at four different times for (a) 𝑟̅ = 10 and (a) 𝑟̅ = 60 for the problem considered 

in Figure 3. 
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Figure 6. Population density at the centers of the first oasis and the initial population region as functions of time for (a) 𝑟̅ = 10 and (b) 

𝑟̅ = 60 for the problem considered in Figure 3. 
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Figure 7. Extinction and establishment regimes in the parametric space of oasis radius and reaction coefficient for a problem with a 

single circular oasis at the center of a square region. The initial population is located uniformly throughout the square. Problem 

parameters are 𝐷̅1 = 1.5 and 𝑊̅ = 1.0. 
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Figure 8. Species establishment for an oasis with complicated geometry: Colormaps of population density distribution at multiple 

times for a problem with a heart-shaped oasis. Problem parameters are 𝐷̅1 = 0.5, 𝑟̅1 = 40, 𝑟̅0 = 0, 𝑊̅ = 1. The initial population 

density is distributed uniformly in the square region bounded by 𝜉 = 0.05 and 𝜉 = 0.95, and by 𝜂 = 0.05 and 𝜂 = 0.95. The oasis is 

shown using dashed lines. 
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Figure 9. Species establishment for a leaf-shaped initial population distribution and a circular oasis: Colormaps of population density 

distribution at multiple times. Problem parameters are 𝐷̅1 = 0.5, 𝑟̅1 = 40, 𝑊̅ = 1.  The oasis and regions of initial population 

distribution are shown using dashed and dotted lines, respectively. 
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Figure 10. Population dynamics for a problem with one oasis and one deadzone: Population density distribution at four different times. 

The oasis and regions of initial population distribution are shown using dashed and dotted lines, respectively. The left circle is an 

oasis, while the right circle is a deadzone. Problem parameters are  𝑟̅1 = 100, 𝑟̅2 = −100, 𝐷̅1 = 𝐷̅2 = 1.5, 𝑟̅0 = 0, 𝑊̅ = 1.5. The oasis 

and regions of initial population distribution are shown using dashed and dotted lines, respectively.  
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Figure 11. Effect of relative strengths of oasis and deadzone coefficients in the problem considered in Figure 10: Total population as a 

function of time for three different pairs (𝑟̅1, 𝑟̅2). 
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Figure 12. Effect of oasis diffusion coefficient: Total population in the domain as a function of time for four different values of 𝐷̅1 for 

a problem with a single circular oasis region. (a) 𝑟̅1 = 40, (b) 𝑟̅1 = 10.  Inset schematic shows the geometry, where the oasis is 

depicted with dashed lines, and the initial population region is depicted with dotted lines. Problem parameters are 𝑟̅0 = 0, 𝑊̅ = 1.0. 

 

 


