
 

One sentence summary: Paleobiological data systems are highly diverse, widely used, 

immensely valuable, and are a relatively low-cost solution to sustain hundreds of years and 

billions of dollars of scientific discovery and building a climate-smart future. 
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Abstract 

The digital revolution has transformed paleontology through the development of 

open-access, community-driven databases that underpin some of the most impactful 

research in biodiversity, climate change, and extinction dynamics. These systems safeguard 

high-effort, volunteered data and have revealed major macroevolutionary patterns, including 

mass extinctions. However, of 118 paleontological and Earth science databases reviewed, 

95% had lifespans under 15 years, putting decades of investment at risk. As paleontological 

data infrastructures enter a third generation—marked by modular design, improved data 

provenance, and cross-platform integration—there is growing potential to support 

multi-scalar, interdisciplinary research across Earth and Life sciences. We advocate for 

strategies to enhance database longevity, including sustained funding models, stronger 

institutional support, and modular backend architectures that better link international 

community databases to each other and to fossil specimens. 
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1. Introduction 

The study of the history of life on Earth is inherently multidisciplinary and conducted at 

scales from local to global. This scientific inquiry draws from geology, biology, chemistry, 

archaeology, and mathematics, amongst others, to reconstruct ancient ecosystems, 

investigate the drivers of biodiversity, and forecast how life will respond to today’s changing 

environments (Dietl & Flessa, 2011; Dillon et al., 2022; Kiessling et al., 2023). The fossil 

record is essential for understanding biodiversity and Earth system processes operating at 

timescales beyond the 20th- and 21st-century window of instrumental observations and 

provides examples of past Earth system states with instructive analogies to the societally 

novel climates that are now emerging (Burke et al., 2018; Pandolfi et al., 2020). From their 

very beginning, paleontological databases (See Glossary) played pivotal roles in enabling 

the field to scale up from site-level studies to global-scale research, laying the groundwork 

for influential research such as identifying mass extinctions and their roles in macroevolution 

(Raup & Sepkoski, 1982) and the earliest evidence of climate-driven species range shifts 

and ecosystem transformations (Davis, 1976; Bernabo and Webb, 1977). The subsequent 

migration of paleontological databases to online platforms and data systems–encompassing 

the database, its system for community governance and data curation, and any associated 

software services– increased their accessibility and amplified their impact by enabling 

broader collaboration and reproducibility (Williams et al. 2018; Uhen et al. 2013). 

 

Today, openly accessible, community-run data systems function as collective repositories for 

scientific data and knowledge, providing the means for quantitative analyses of the history of 

life on Earth (Figure 1; Guo, 2017). These databases are invaluable for reconstructing 

ancient ecosystems (e.g., Cribb & Darroch, 2024), tracing evolutionary pathways (e.g., Alroy 

et al, 2008), studying climate- and human-driven eco-evolutionary dynamics at continental to 

global scales (Pandolfi et al. 2020, Mottl et al. 2021, Lang et al. 2023, Gordon et al. 2024), 

and predicting future biological and geological changes - or assessing the limits to 
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predictability in an increasingly novel world (e.g., Fitzpatrick et al. 2018; Stern & Gerya, 

2023). By integrating these paleontological databases with other open data systems, Earth 

system scientists can tackle increasingly complex, multifaceted questions that are top 

priorities in global change research (National Academies of Sciences, 2018; Wang et al., 

2021; Kiessling et al., 2023). 

 

Representing developers, leaders, curators, and users of 15 community-run paleontological 

databases (see Supplementary; Table 2), we examine the current data landscape to assess 

the volume, variety, and value of data held in community-curated, open access databases, 

the challenges faced by these databases, and the opportunities for sustainable growth and 

scientific discovery. Focussing on Earth Science and paleontological databases and 

systems, we examine diversity dynamics within our shared data landscape to build a 

roadmap toward sustainable funding, and provide recommendations for continued 

researcher, maintainer, developer, and funder investment.  

 

2. Paleontological data and databases: An Overview and History 

2.1. Key Concepts 

Paleontology aims to reconstruct the history of life across the broadest possible range of 

spatiotemporal scales and throughout the geological record (Figure 1). Here paleontology 

encompasses closely related fields including but not limited to paleobiology, biostratigraphy, 

and paleoecology. As our understanding of geological processes evolves, new scientific 

questions emerge, and our interpretation of the fossil record is updated. This, in turn, affects 

our understanding of the processes that we infer from it and drives new primary-data 

collection campaigns (e.g. fieldwork) and the reinterpretation and reanalysis of existing data. 

Examples include taxonomic reidentification of old fossils following new finds (Godfrey & 

Collareta, 2022), the re-dating of core samples and refinement of the geological time scale 

using newer and improved methods and data (e.g. Niebuhr & Wilmsen, 2023), 
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re-interpretation of the environmental/depositional context (e.g. Stiles et al, 2022), the 

incorporation of paleobiogeographic patterns into tectonic models (e.g. Torsvik et al., 2025), 

and the development of new analytical methods to quantify ecosystem rates of change (Mottl 

et al. 2021).  

 

 

Figure 1. Paleontological information in an Earth system context. From left to right, planetary or 

global-level information can be used to understand tectonic processes, climate and landscape 

evolution, and eco-evolutionary processes across timescales ranging to billions of years. Outcrop- or 

borehole-level data represent local- to regional-scale time series that can be used to reconstruct 

climate, geochronology (age), sea level fluctuations, and community dynamics. Finally, 

specimen-level data is the foundational unit in paleobiology for analyses of, e.g. taxonomy, biotic 

interactions, geochemistry, functional ecology, and taphonomic processes. 

 

Paleontologists work with two primary forms of data: ‘fundamental data’ and ‘processed 

data’. ‘Fundamental data’ are direct observations and sampling of the sedimentary record 

and fossil specimens within these sediments. Examples of fundamental data include 

geospatial locations, physical samples, multimedia recording, counts, and geochemical 

analysis. When these fundamental data are subject to further interpretation, such as through 

taxonomic study and analyses of morphology, preservation, and biotic associations, they are 

translated into processed data. For example within database structures, age controls (e.g. 
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radiocarbon dates) are fundamental data and age-depth models (used to estimate the age of 

different depths within a sediment core or stratigraphic profile)  are processed data and are 

frequently revised. Although fundamental and processed data exist on a continuum, 

whenever possible, paleontological databases should maintain the strongest links to the 

evidence and fundamental data. This foundation functions to provide evidence provenance 

and ensure against corollary risks when databases (e.g. Neptune Sandbox; NSB) are used 

as data sources for other, secondary databases (e.g. BioDeepTime; Smith et al, 2023a). 

2.2. Database development history 

2.2.1. The past: First-generation databases 

First-generation compilations of paleontological data focussed on the collation of processed 

data, such as the inferred temporal (i.e. stratigraphic) distribution of fossil taxa using 

harmonised taxonomic lists across sites, which are the minimum requirement for assessing 

the history of biodiversity (e.g. Phillips, 1860; Sepkoski, 1982 and the shifting distribution of 

taxa across space and time (Bernabo and Webb, 1981, Huntley and Birks, 1983). These 

were initially collated as physical repositories (e.g. the John Williams Index of 

Paleopalynology; Riding et al. 2012) or as offline digital entities (e.g. Sepkoski’s 

Compendium, Sepkoski, 2002, and the first version of the Neptune database; Lazarus, 

1994). These first-generation databases were often built either by individual scientists over 

their careers or within small research teams. 

2.2.2. The present: Second-generation data systems 

As the field advanced, paleontologists gained further understanding of the various factors 

that distort the structure of the fossil record (e.g., Raup, 1972), new research questions 

emerged (e.g., reconstruction of past biomes and terrestrial carbon sequestration; Prentice 

et al. 1993), and paleontologists developed new skills and methods in large-scale data 

analytics and quantitative methods to address emergent questions. This, in turn, led to new 
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efforts to reanalyze existing databases. For example, in deep-time biodiversity analytics, the 

field progressed from recording inferred first- and last-appearance dates of taxa as 

endpoints of their existence (Sepkoski 2002) to the recording of occurrences from the entire 

stratigraphic record of the taxa (e.g., Alroy et al, 2001, 2008). The second-generation data 

systems (e.g.,Neotoma; Williams et al 2018) incorporated storage of multiple kinds of 

fundamental data, including the geographic coordinates of fossil sites, taxon abundance and 

traits, depths in boreholes, and lithological characteristics, amongst others.  

 

In parallel, the leadership and development of these databases increasingly shifted from a 

few individual experts to community-governed data systems. For example, in Quaternary 

palynology, individual efforts to build databases and map continental-scale plant distributions 

for North America and Europe (Bernabo and Webb, 1981, Huntley and Birks 1983) 

expanded to continental-scale databases around the world, each with their own data leaders 

and stewards (Grimm et al. 2024). Multiple paleontological data systems incorporated 

well-developed community governance systems, such as leadership councils and experts 

charged with stewarding and curating specific kinds of data (Williams et al. 2018, Uhen et 

al., 2023). 

 

The data structures of current, second-generation databases vary significantly, reflecting 

their founding aims and user communities. As examples, the Paleobiology Database (PBDB) 

was originally developed to investigate Phanerozoic diversity change (Alroy, 2008), NOW 

(New and Old Worlds database of fossil mammals) focused on Cenozoic mammal 

macroevolution (Jernvall and Fortelius 2002), Neotoma was designed to study species range 

shifts during the Quaternary glacial-interglacial cycles across multiple taxonomic groups 

(Grimm et al., 2024), and the Geobiodiversity Database (GBDB) was specifically designed to 

handle high-resolution stratigraphic data by linking fossil occurrences to detailed geological 

sections (Fan et al., 2014). Others, like BioDeepTime (Smith et al., 2023a), aggregated and 

standardized time series data from other databases, while integration-focused platforms 
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such as Deep-Time Digital Earth facilitated the synthesis of massive, diverse datasets and 

data types across paleontology and geoscience (Wang et al., 2021).  

 

All these databases continue to grow in scope and incorporate new kinds of data. As new 

questions emerged and with the diversification and increased accessibility of data 

(Ross-Hellauer et al., 2022; Smith et al., 2023b), the range of scientific applications of these 

second-generation databases far surpass their original scope and yield input for thousands 

of scientific studies (Supplementary: ‘Database Use’). For example, PBDB occurrence data 

have been used for climatic modelling (Marcilly et al, 2021), landscape evolution (Fernandes 

et al, 2019), and paleogeographic models (Cao et al, 2017, Torsvik et al., 2025). Similarly, 

NOW data have been used to study macroevolutionary expansion (Žliobaitė, 2024) and 

Neotoma for reconstructing past climates (Chevalier et al. 2020), constraining past land 

cover dynamics and the terrestrial carbon cycle (Blarquez et al. 2015), and documenting 

cross-continental species invasions (Alverson et al. 2021). The scientific utility and 

applications of these databases thus continue to grow and diversify, as do the databases 

themselves. 

  

2.3. The near future: From databases to third-generation data systems 

Paleontology is poised for its next transformative phase, in which second-generation 

databases will be better integrated with each other and with other components of the 

paleontological, Earth and life sciences data infrastructures (Fig. 3), to address more 

integrative, cross-disciplinary, and multi-scalar questions.The transition to the third 

generation systems is already begun with cross database integration a focus in 

backend-development, with improved efficiency offered by modular design waiting to be 

capitalised upon (Deng and Li, 2013; Kaufman et al 2018; Deng et al 2024). Examples of 

research topics that can be advanced through improved integration of paleontological data 
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within and across scientific disciplines are described in the Big Questions Project (Smith et 

al. 2025).  Representative questions include “How do external environmental drivers (e.g., 

plate tectonics, global temperature, sea level) influence the structure of biological systems at 

different spatiotemporal scales?”, ” How does the prevailing climate state experienced by 

species and communities influence their response to perturbation?” and “To what extent are 

the phases of events (e.g., collapse, recovery) during extinctions consistent across different 

biotic crises?” Addressing these integrative questions requires scalable, connected data that 

captures, for example, phenotypic variation among individuals in a population, in conjunction 

with high stratigraphic resolution, paleoenvironmental, and specimen-level information. 

These scientific needs demand further advances in how paleontological data are reported, 

structured, integrated, managed, and sustained. Cross-institutional aggregation of museum 

collection specimen information into iDigBio (Nelson & Paul 2019) and GBIF (Telenius, 2011) 

are excellent examples that are made available by biodiversity data standards, such as the 

Darwin Core (Wieczorek et al. 2012) and ABCDEFG (Petersen et al. 2018), featuring a 

growing scope of associated semi-structured metadata (Hardisty et al. 2022).  

 

The development of integrative platforms, such as Deep-Time Digital Earth (Wang et al. 

2021) and the continued growth of existing databases to support new data types such as 

ancient environmental DNA (Williams et al. 2023), are striking movements towards 

third-generation databases. Careers of an entire generation of scientists are now based on 

access to open, interoperable data (Koch et al. 2018; Li et al 2023). At the same time, new 

concerns have arisen about whether these databases encode and perpetuate past and 

present inequities and how best to reduce these inequities to truly fulfill the deeper mission 

of these databases to ensure democratized data access for all (Rolin 2015; Monarrez et al. 

2022, Raja et al. 2022).  

 

Paleontological databases are also changing to help advance the new data standards that 

have emerged in the open sciences. FAIR data principles (Findability, Accessibility, 
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Interoperability, and Reusability; Jacobsen et al., 2020) have rapidly become a cornerstone 

of open-data policy, guiding how data should be shared, structured, accessed, and reused. 

The TRUST principles (Transparency, Responsibility, User focus, Sustainability, and 

Technology; Lin et al., 2020) provide best-practice guidance for how digital repositories can 

establish long-lasting relations of trust with their user communities. Complementing the FAIR 

principles, the CARE Principles for Indigenous Data Governance (Collective benefit, 

Authority to control, Responsibility, and Ethics; Carroll et al. 2020, Jennings et al. 2025) 

encourage open data movements to prioritise co-design with Indigenous Peoples and 

collective benefits. With increasing community awareness and utilization, improved data 

standards are beginning to be applied to paleontological data. FAIR and TRUST principles 

are currently being implemented by the paleo-community, and CARE principles are starting 

to gain traction (Dunne et al., 2025). Despite growing awareness and discussion of these 

principles, their implementation remains uneven among research institutions, publication 

protocols, or funding application frameworks and more work is needed to align the principles 

and their implementation. Finally, community governance by scientific experts of 

paleontological data is particularly critical for both TRUST and reproducibility, because of the 

many steps involved to make precise and accurate inferences about past biodiversity 

dynamics from fossil data (Boldgiv et al. 2025). By supporting those who create and curate 

palaeontological data to govern its use, more effective, context-sensitive strategies can be 

developed to address issues of access, provenance, and data equity (e.g., Lendermer et al, 

2020; Wang et al, 2021; Sterner et al, 2023; Hurst et al, 2025). 

3. Landscape Survey: The Current State of Paleodata 

3.1. Data collection and analysis 

An online meta-analysis of available paleo- and Earth science databases was conducted 

using search terms in multiple languages (Supplementary Table 4). Between November 
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2024 and March 2025, academic journals, data repositories (e.g. Zenodo, Dryad), reference 

lists, and aggregators (Google Scholar, Web of Science) were searched for records of 

relevant Community-run and Open Access databases. Community-run databases were 

required to not be attached to a state governing body including state-funded museums or 

geological survey, and are considered Open Access by the requirement of having the data 

free for general use. The period of activity was identified by the first publication of the 

database in the peer-reviewed scientific literature and its endpoint was identified through the 

last update to the web service, data repository, and/or latest published article. Of the 171 

paleontological and Earth systems databases that were identified, 118 were tagged as Open 

Access and community-run. Using these 118 databases, we analysed their extinction rates, 

origination rates, and diversity dynamics using 'divDyn' (Kocsis et al., 2019; Figure 2). The 

per capita extinction and origination rates were analyzed using a rolling mean of year-to-year 

database activity, whilst the sampled-in-bin diversity used an extended decadal time series 

to account for boundary conditions. 

  

We also assessed the replacement value of the data stored in three databases 

(Paleobiology Database (PBDB), GeoBiodiversity Database (GBDB), Neotoma 

Paleoecology Database (Neotoma). These three were selected based on their longevity and 

the access provided by the database maintainers to their 2024–2025 records (see 

Supplementary). The replacement value of the individual sample records (data measured on 

a fossil specimen or other physical sample) and collection records (sites; a group of fossil 

occurrences that are geographically and stratigraphically connected) were calculated in 

USD. Following the valuation procedure of Thomer et al. (2025), conservative sample and 

collection values were determined by calculating the cost of data replacement, including 

sample preparation and analysis, fieldwork, labor ($150 per sample record; $3000 per 

collection record). These values represent an estimated average across occurrence, core, 

and time-series data amongst others. It should be noted that some records may be  
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cheaper or far more expensive than these estimates depending on collection procedures 

and analysis. The valuation also assumes that the sites that host the published data are still 

accessible, i.e. not destroyed by human land-use or natural processes such as earthquakes. 

The data from inaccessible locations are therefore irreplaceable and priceless.  

 

Research effort, storage, maintenance, curation, and expertise were not calculated, resulting 

in conservative values that do not cover the entire cost to replace the extant data nor do they 

cover the significant costs in labour, server hosting, and infrastructure development that go 

into setting up and sustaining databases. Further the results do not cover the article 

processing costs to publish a scientific paper (mean $2300 USD; Pinfield et al. 2016) nor the 

value of papers published (estimated at over $5000 USD per item; Rousseau et al. 2021).  

 

Table 1. The value of the samples and collections (sites) stored within three active paleo-databases in 
USD. Conservative value estimates are taken from the valuation framework of Thomer et al. (2025) 
and do not include collection and curation labour, storage, development, maintenance, and 
institutional overhead, which are collectively more than double the presented estimates. The original 
valuation of Neotoma in Thomer et al. (2025) has been expanded to include the Paleobiology 
Database (PBDB) and Geobiodiversity database (GBDB). Samples refer to individual records, for 
example species occurrence in the PBDB. A collection refers to a grouping of samples for example in a 
geographical site such as an outcrop in GBDB, or field location in Neotoma.  
 

DB Samples 
(n) 

Collections 
(n) 

Sample Value 
($) 

Collections 
Value ($) 

Total ($USD) 

PBDB 1,653,699 240,405 248,054,850 721,215,000   

GBDB 580,049 217,969 87,007,350 653,907,000   

Neotoma 12,281,094 25,168 1,842,164,100 75,504,000   

   2,177,226,300 1,450,626,000 
 

 $3,627,852,300 

 

 

3.2. Historical trends 
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Based on our web search, database origination rates peaked in the 1970s and 1990s, with a 

tertiary peak in the 2010s (Figure 2). Nearly 50% of our corpus of databases (n =118) 

became inactive within just five years, and fewer than 15% survived a full decade. Only a 

rare 5% remained active for over 15 years (Figure 2). This five-year timing coincides with the 

standard funding program of many large research grants, e.g. through the European 

Research Council or the National Science Foundation of the United States of America. This 

means that, after 5 years, up to 65% of value-added data effort, representing years of data 

aggregation, data harmonization and cleaning, technical development, and scientific labour, 

is left unmaintained and sometimes inaccessible.  

 

Figure 2. Diversity dynamics of 118 community-developed paleontological databases (DB) from the 

1970s to 2024. A. The range-through richness of databases by year, B. The origination rate of DBs 

through time, indicating areas of peak activity for novel DB development between 1995 and 2005. C. 

Diversity of DBs as a function of years active (i.e. database survivorship) showing the loss of >80% of 
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DB diversity by 10 years of activity. D. The rolling mean per capita extinction rate of DBs as a function 

of years active since inception with peaks at 5, 15, and 25 years of activity.  

 

Though some database development efforts are intended for short-term use and do not 

assume database longevity, the loss of these databases is not just a scientific concern, it 

also represents a significant economic waste (Figure 2; Table 1). The cost of allowing 

valuable data infrastructure to degrade is not theoretical but quantifiable and substantial. The 

best-case scenario for at-risk databases is integration with larger data systems, an example 

being the current integration of 34 constituent databases into Neotoma. Neotoma was 

launched in 2007 and maintains constituent databases that date back to the 1980s. The data 

protected and expanded by Neotoma was recently estimated to cost over $1.5 billion USD to 

replace (Thomer et al., 2025). This cost estimate is conservative, because it only 

represented data-replacement costs and did not account for estimates of time saved through 

ready data access and the cost of replacing software services. Despite this high valuation 

and proven utility to the community (e.g. Mottl et al. 2021, Adeleye et al. 2023, Li et al. 2023; 

Gordon et al. 2024), even long-lasting success stories such as Neotoma are at risk due to 

reliance on grant-based funding.  

4. Towards the Third Generation of paleontological databases 

We present here a series of actionable recommendations to address the existing structural 

and community challenges within the paleontological and Earth science data landscape 

(Table 2). To address data fragmentation and redundancy in databasing effort, the immediate 

priority is to maximize the value of existing services while laying the groundwork for 

long-term solutions.  

4.1. Modular, interoperable data system 
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The scientific community and governing bodies (e.g. funders) must move away from the 

current trend of creating databases that are not interoperable. Instead, they must move 

toward those designed for integration, to break the cycle of effort and loss. While broader 

challenges around data infrastructure are often shaped by political and institutional forces 

beyond the control of individual researchers, the scientific community can take meaningful 

action through improved data practices (Deng et al, 2020; Ramachandran et al., 2021; 

Ross-Hellauer et al., 2022; Dunne et al., 2025). Examples like Neotoma, NOW, and the 

PBDB, which have remained active for over 15 years and continue to serve global 

communities across disciplines, demonstrate the efficacy and resilience of collaborative 

stewardship. However, databases and other resources like the Biodiversity Heritage Library 

(https://www.biodiversitylibrary.org/), are vulnerable to ‘extinction’, such as through 

cyberattacks, but more commonly due to funding termination. For example, recent attacks 

on the Museum für Naturkunde Berlin cyber infrastructure resulted in the loss of community 

access to Neptune Sandbox Berlin database (NSB). The NSB was intermittently funded (16 

funded years since 1990) and maintained by an individual expert (see Supplementary, 

Curator Review),  held hundreds of thousands of marine plankton microfossil species from 

hundreds of deep-sea ocean drilling sections, an invaluable resource that contributed to 

other databases including BioDeepTime (Smith et al. 2023a) Microtax (Huber et al. 2016), 

the GBDB (Fan et al. 2014), Triton (Fenton et al. 2021) amongst others. Through this attack, 

not only was a key resource for microfossil taxonomists, evolutionary (paleo)biologists, and 

paleoceanographers impacted, but the data provenance of the dependent databases has 

become compromised. The lack of funding and dedicated technical support resulted in a lack 

of failsafes at the museum. Instead, through community activity, external versions of the 

NSB, e.g., held through Zenodo (Renaudie et al. 2023) are contributing to database 

recovery, further highlighting the value of community contributions to sustaining data 

resources.  
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By prioritising interoperability, modularity, and long-term integration, we can build a resilient 

and pluralistic community of data systems that safeguard multiple dimensions of value of 

scientific data and ensure its continued relevance to scientists, external stakeholders and the 

general public (Sterner et al, 2023; Majeed and Hwang, 2024). To this end, we recommend 

the transition to a decentralised modular data network (Figure 3), where core components 

like those responsible for taxonomy, stratigraphy, and specimen provenance are built with a 

flexible scope. This would function, at first, following a movement from the fragmented and 

uncoordinated data landscape (Figure 3A) to pooled, pluralistic frameworks (Figure 3B; 

Sterner et al 2023). Pluralistic approaches to data pooling maintain domain independence 

and flexibility, permitting field-specific misalignment (e.g. the unit differences in terminology 

and grouping seen between core-based micropaleontology and global macrofossil 

biogeography in terms of spatial and temporal binning). Modules within this system serve as 

interlocking elements, offering researchers the basis to develop extension structures 

required to answer novel scientific questions within a broader, connected data landscape 

(Figure 3B). For example, to develop a novel database to answer questions about fossil 

biotic interactions (e.g. BITE; Huntley et al. 2023), a new data structure is required, 

developed specifically to tie a biotic interaction and the organisms to a rock-specimen. 

However outside of this novel database element, core elements such as taxonomy, 

stratigraphy, and geography could be downloaded from pro forma modules from the 

idealised framework (Figure 3B), meaning the only new element to be constructed is the one 

that specifically captures biotic interaction data. This approach saves time on database 

construction, ensures interoperability, and safeguards against database loss. The suggested 

solution mimics the general tendency of corporations that move from large monolithic 

applications to microservices to meet demands of scalability and a fast development cycle 

(Ponce et al., 2019l Majed and Hwang, 2024), and is particularly suited to scientific research 

that is globally distributed in nature (Deng and Li 2013; Kaufman et al, 2018; Deng et al 

2024). 
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To realize their full potential, databases must, whenever possible, maintain direct links to 

physical specimens and samples (e.g. through the International Generic Sample Numbers, 

[https://ev.igsn.org/]), users (e.g. persistent identifier through ORCID [https://orcid.org/]), 

usage (e.g. DATACITE for DOI mining [https://datacite.org/]), and improve linkages to other 

databases (see Section 2.3). Museums, research institutes, and public collections are a 

foundation of this system, providing crucial metadata that ties scientific conclusions to 

real-world evidence (see Johnson and Owens, 2023; Boldgiv et al. 2025). Increasing 

connection to specimen evidence provides the most powerful opportunity to ensure that 

digital records remain verifiable, reproducible, and scientifically robust (Schriml et al 2020). 

Strengthening the connections between physical specimens and their digital representations 

will support the long-term sustainability of databases, facilitate interdisciplinary research, and 

enable the next generation of large-scale paleontological analyses (DeMiguel et al., 2021; 

McManimon & Natala, 2021; Deng and Li, 2013). By reinforcing these links, we can ensure 

that databases remain powerful tools for discovery while upholding scientific transparency 

and rigor. 

 

Developing Application Programming Interfaces (APIs), which enable one software program 

to request services or data from another without needing to know the internal workings of the 

other system, that adhere to Open Science standards is crucial for ensuring seamless 

exchange of information between data systems, regardless of their underlying technologies. 

Additionally, employing data harmonization tools (Grenié et al., 2023) can streamline the 

integration process by automatically reconciling differences in data formats, units of 

measurement, and terminologies. For example, the fossilpoll workflow (Flantua et al, 2023; 

hope-uib-bio.github.io/FOSSILPOL-website/en/index.html) pulls data from Neotoma, 

harmonizes the age-depth models, and builds harmonized taxonomic names lists. These 

workflows create opportunities to distribute effort and have scientists outside the database 

leaders/curators add value while still provenancing back to the databases. Further, such 

tools can leverage machine learning algorithms to identify and merge duplicate records, 
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standardize taxonomic names, and align stratigraphic information, potentially reducing the 

manual effort required for data integration. Similar to data stewardship practices within 

Neotoma (Grimm et al, 2018), these automated processes need to undergo expert validation 

to ensure accuracy and reliability. As a general rule, because of the complexity of fossil data 

and the implicit knowledge often embedded within paleontological datasets, we recommend 

that analytical and curatorial workflows employ human-in-the-loop approaches, rather than 

fully automated systems to avoid ‘garbage in-garbage out’ situations and the influence of 

programmer biases (Bircan and Özbilgin, 2025). 

 

4.2. Financial support 

This perspective by developers and maintainers showcases the vast and diverse 

opportunities offered by well-curated and long-lasting paleontological data systems. At the 

same time, we highlight the risks and challenges facing fundamental data resources in 

paleontology and elsewhere (Thomer et al. 2025), as well as the strategies needed to secure 

their future for the benefit of all science (Smith et al, 2023b, 2025). In this context, using 

paleontological data as an example, we propose a path forward for sustainable 

development, funding, and stewardship to safeguard community-built scientific data systems 

for future generations. Whilst we focus here on open digital resources for the 

democratization of science, the investment in such resources must come with better linkages 

to, and explicit support for, museums and physical repositories (Allmon et al., 2018; Marshall 

et al., 2018; McManimon & Natala, 2021; Dunne et al., 2025). 

 
Databases have been developed and maintained through a combination of funding and 

unfunded volunteer/service work (Thomer et al, 2025). The persistence of these databases 

through all this financial precarity is a testament to their importance and the work of many 

scientists to keep them going. Investing in sustainable, modular data infrastructure not only 

enhances the longevity, accessibility, and utility of scientific data, but also protects the 
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immense financial and intellectual investment already made. Funding is essential for 

ensuring that community-curated data continue to inform cutting-edge science well into the 

future.  

 

 

 

 

 

 

 Table 2. A roadmap to sustainable funding 

Action Description 

Embed sustainability 
from inception 

Design databases with modular architecture and interoperability 
in mind. This enables future integration into broader 
infrastructures and reduces redundancy, lowering long-term 
maintenance costs 

Establish core 
infrastructure grants 

Advocate for dedicated infrastructure funding schemes, distinct 
from research project grants, that support long-term 
maintenance, technical upgrades, and data curation 

Develop cross-sector 
partnerships 

Collaborate with museums, universities, government agencies, 
and industry partners to co-invest in shared data resources 

Quantify and 
communicate value 

Systematically assess the scientific and economic value of 
databases, as done for Neotoma (~$1.5 billion USD), to 
demonstrate return on investment and attract strategic funding 

Adopt attribution 
standards 

Promote data citation, DOI assignment, and recognition 
mechanisms to incentivise community data contributions and 
support funding applications that highlight demonstrable use 

Foster community 
governance 

Create steering bodies or consortiums to coordinate long-term 
strategy, technical development, and funding pipelines across 
institutions and borders 

 

Besides optimizing the use of already acquired funding, long-term sustainability hinges on 

moving beyond short-term, project-driven funding models (Tables 2 and 3). Advocating for 
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policy support at institutional, national, and international levels is required to create an 

enabling environment for these systems to thrive. Network-level integration provides a 

means to ensure continued relevance, usability, and return on investment beyond the end of 

a research project’s funding cycle (Thomer et al, 2025).  

 

Engaging policymakers and funding agencies in discussions about the importance of Earth 

science and paleontological community data networks can help secure the necessary 

support and resources (e.g., the USA’s Geoscience Congressional Visit days). Core 

infrastructure funding, akin to utilities for the scientific community, should be secured through 

national and international bodies, ensuring that databases are treated as essential research 

infrastructure (e.g., the German NFDI initiative [nfdi.de] with NFDI for Earth [nfdi4earth.de] 

the Chinese National Natural Science Fund Key Basic Research Infrastructure program, 

[nsfc.gov.cn/english/site_1/funding/E1/2024/06-12/364.html], which support geo-data 

infrastructure). Within our proposed funding roadmap (Table 2), we recommend 

demonstrating the economic, societal, and scientific value of open data through 

public–private partnerships and cost–benefit analyses, approaches already proven effective 

in initiatives like Neotoma. Ultimately, we wish to see the establishment of a dedicated 

international non-profit organization, akin to CERN, to be responsible for the financial 

sustainability of the geological data landscape. 

 

4.3. Community governance and goals 

We propose a phased, community-guided transition toward a sustainable, specimen-based, 

and explicitly modular data infrastructure—one that is grounded in the principles of FAIR, 

CARE, and TRUST, and ensures proper attribution (Lin et al., 2020; Carroll et al., 2020; 

Jacobsen et al., 2020; Jennings et al., 2023). As artificial intelligence, large-scale web 

scraping, and automated data aggregation become increasingly common tools, the 

paleontological community must actively shape how its openly accessible data are 

structured, cited, and reused. A modular and well-governed framework will allow us to 
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respond nimbly to these technological developments while preserving the integrity and 

provenance of our data. Central to this vision is strong, inclusive community 

governance—led by the researchers, data stewards, and institutions who know the data and 

needs of the researchers best. By harmonising efforts and redistributing responsibilities 

through open consultation, we can build an equitable and future-ready infrastructure that 

supports both innovation and accountability in paleoscience. 

 

 

Table 3. Recommendations for the sustainable development of community-developed data resources 

and the related benefits derived from their implementation. Where the benefits are Rigor and 

Reliability (1), Ability to address new Questions (2), Faster and more Inclusive Dissemination of 

Knowledge (3), Broader Participation in Research (4), Effective use of Resources (5), Improved 

Performance Research Tasks (6) and Open Publication for Public Benefit (7; see supplementary Table 

3 for expansion and descriptions). 

 
Recommendation Details Benefits 

A Incentivise data 
contributions 

Create systems (and a scientific culture) for increased 
acknowledgement, attribution, and citation for data 
contributions. 

4, 5, 6 

B Establish a 
framework for data 
integration 

Develop a standardized framework for integrating diverse 
Earth System databases, ensuring interoperability and data 
quality transparency. 

1, 2, 5, 6 

C Secure 
sustainable funding 

Advocate for dedicated funding streams to support the 
development, maintenance, and enhancement of modular 
data systems. 
  

All 

D Promote Open 
Science practices 

Encourage the adoption of open science practices, 
including open data, Open Access publications, and 
collaborative research initiatives. 
  

All 

E Invest in 
technology and 
innovation 

Leverage technological advancements to enhance data 
integration, analysis, and visualization capabilities. 

1, 2, 6 
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F Build and foster 
global 
collaborations 

International collaborations and partnerships create a 
comprehensive and diverse global network of 
paleontological data. 
  

2, 4, 6 

G Ensure ethical 
and legal 
compliance 

Addressing ethical and legal considerations, including data 
privacy, security, and intellectual property rights, ensures 
responsible data management and sharing. 

1, 4, 6, 7 

H Advocate for 
policy support 

Advocating for policy support at institutional, national, and 
international levels is required to create an enabling 
environment for these systems to thrive. 

All 

 

 

Promising steps are already underway. Initiatives like the ARC Centre of Excellence for 

Australian Biodiversity and Heritage (CABAH; epicaustralia.org.au) exemplify how 

community-led, transdisciplinary frameworks can successfully balance Indigenous 

knowledge systems, biodiversity and paleodiversity data, and open infrastructure. In 2023 

CABAH produced 127 journal articles and welcomed over 60,000 attendees to their public 

programs and events. CABAH’s approach is collaborative, bringing together researchers, 

Indigenous communities, industry, and policy partners. This momentum is furthered by 

ensuring that decisions around standards, attribution, and data validation are made through 

inclusive consultation with a broad cross-section of the community, including historically 

underrepresented groups and the global majority. Community buy-in for data attribution and 

validation will facilitate community confidence in Open Data resources.  

True integration goes beyond technical aspects and requires active collaboration between 

scientists and technical experts from varied disciplines (Table 3, Figure 3). Establishing 

interdisciplinary data standards, training programs, research teams, and projects can 

facilitate this collaboration. Through this effort, we may be able to develop common research 

frameworks and questions that guide data integration efforts that can align the objectives of 

different disciplines (Rolin, 2015). For instance, questions about the impact of climate 

change on biodiversity through geological time can serve as a unifying framework for 

integrating paleontological, geological, and climatological data. 
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5. Conclusions 

Paleontological data systems are critical resources for the advancement of Earth System 

research. By committing to the development and maintenance of decentralised, 

interconnected, modular data systems, we are capable of addressing pressing questions 

about our planet and creating a more interconnected scientific community. This effort is 

already well underway and following success stories like Neotoma, integrated support 

systems can protect and sustain our community-developed data resources. Together, these 

recommendations align structural reforms with scientific needs and community values. The 

path forward requires a collective effort, sustained funding, and a commitment to 

collaboration, ensuring that paleontological data remain useful resources for future 

generations. 
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