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Abstract 17 

Background: Heatwaves, which are becoming more intense and more frequent due to global 18 

warming, are a major threat to the stability of plant populations and ecosystems. Safeguarding 19 

ecosystem function requires a clear understanding of vulnerability to these extreme events. Yet 20 

vulnerability cannot be reliably inferred from experiments that manipulate only mean 21 

temperatures or from standard thermal tolerance assays. These limitations have spurred a 22 

growing body of research specifically simulating heatwaves and studying their effect on plants. 23 

Method: Here, we present a systematic review of empirical studies on plant responses to 24 

heatwaves.  25 

Results: Regional biases are pronounced, reflecting the logistical and financial challenges of 26 

conducting these costly experiments. Likely for similar reasons, studies have largely been 27 

restricted to seedlings, with little attention to adult plants and wild species in the reproductive 28 

stage. Experimental approaches are also highly diverse, particularly in how heatwaves are 29 

simulated, creating major hurdles for cross-study comparison. More than half of the studies 30 

(53/84) incorporated at least one interacting factor—most commonly drought (23/84)—yet 31 

other ecologically important interactions, such as grazing and microbial associations, remain 32 

underexplored. 33 

Implications: This review offers a comprehensive resource to guide the next generation of 34 

heatwave experiments, highlighting underrepresented plant groups and geographic regions, 35 

and underscores the pressing need for greater standardisation in experimental approaches to 36 

facilitate a synthetic understanding of heatwave effects globally. Such coordination will 37 

improve our ability to identify heatwave-sensitive species and better predict ecological 38 

responses to climate extremes. 39 
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1. Introduction 42 

Heatwaves pose a major and growing threat to plants and ecosystems. In recent decades, 43 

intense and prolonged heatwaves have become more frequent and severe, leading to 44 

widespread plant dieback and mortality (Steffen et al., 2014; Breshears et al., 2021). These 45 

extreme climatic events have raised serious concerns about the persistence of plants and the 46 

broader consequences for biodiversity and ecosystem stability (Evans et al., 2025). As global 47 

temperatures continue to rise, the frequency and severity of heatwaves are projected to increase 48 

further as well (Trancoso et al., 2020), potentially triggering ecological collapse in vulnerable 49 

systems (Urban, 2015). Natural heatwaves are challenging to study (Ummenhofer & Meehl, 50 

2017; Thakur et al., 2022), so researchers have increasingly used experimental simulations of 51 

heatwaves to investigate plant responses and identify species and systems most at risk (Davies 52 

et al., 2018). These experiments have deepened our understanding of heat stress physiology, 53 

recovery mechanisms, and thresholds of vulnerability. 54 

Heatwave simulations differ widely in their design, which limits comparability across studies. 55 

Biological effects of heatwaves can differ markedly from those caused by gradual, moderate 56 

warming (Jagadish et al., 2021; Bernacchi et al., 2023). While moderate warming may promote 57 

growth by accelerating metabolism, heatwaves often exceed critical thresholds, causing 58 

irreversible tissue damage (Bernacchi et al., 2023). Although definitions vary, heatwaves are 59 

generally described as several consecutive days of abnormally high temperatures (Perkins & 60 

Alexander, 2013), and experimental simulations often adopt conditions that are hotter and 61 

shorter than those in warming studies, yet milder than acute heat shock treatments (Jagadish et 62 

al., 2021). 63 

An important complexity is that simulated heatwaves may vary in many dimensions. Studies 64 

differ in their experimental settings—ranging from tightly controlled climate chambers to field-65 
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based manipulations—each offering different advantages and limitations (Notarnicola et al., 66 

2021; Arnold et al., 2025a). Field experiments can better reflect real-world interactions, such 67 

as the combined effects of high radiation and low humidity (De Boeck et al., 2010, 2016), but 68 

they are difficult to implement in variable climates. Controlled-environment studies offer 69 

greater precision but may exclude important ecological complexity. Simulated heatwave 70 

experiments also differ in the traits measured, the life stages and plant functional groups 71 

targeted, and the inclusion (or omission) of interacting factors, such as drought, herbivory, and 72 

microbial interactions (Breshears et al., 2021; Trivedi et al., 2022). 73 

To understand this growing body of research, we conducted a systematic review of empirical 74 

heatwave studies on plants. Our goal was to identify key dimensions of variation across 75 

experiments and highlight underexplored areas of research. Specifically, we examined which 76 

plant types, experimental methods, regions, traits, and interacting effects are most studied. This 77 

synthesis provides a foundation for developing more standardised and ecologically meaningful 78 

heatwave experiments, which are urgently needed to improve cross-study comparisons, 79 

strengthen predictive models, and inform conservation efforts under increasing climate 80 

extremes. 81 

We addressed the following research questions: 82 

1. What are the most frequently used characteristics of simulated heatwaves in 83 

experimental studies? 84 

2. Which plant growth forms and life stages are investigated in heatwave studies? 85 

3. Which physiological and morphological traits are measured to evaluate plant responses? 86 

4. Which regions and habitats are represented in current heatwave experiments? 87 

5. What other environmental factors (e.g., drought, elevated CO₂) are included as 88 

interacting effects in heatwave studies? 89 
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2. Material and methods 90 

Our methodology was described in our pre-registration (Mu et al., 2024), and we adhered to it 91 

as much as possible. However, we adjusted several elements. These adjustments are mentioned 92 

below when applicable (see also online Appendix 1 for a summary of these adjustments). We 93 

broadly followed the guidelines of PRISMA-EcoEvo (O’Dea et al., 2021) to report this study 94 

(Supporting Information SI1). We report author contributions using MeRIT guidelines 95 

(Nakagawa et al., 2023) throughout this manuscript and the CRediT statement (McNutt et al., 96 

2018) at the end of the manuscript. 97 

 98 

2.1. Literature searches 99 

X.M. conducted literature searches using four different sources, all on August 12, 2024. First, 100 

X.M. conducted a main database search using Scopus and Web of Science (Core Collection), 101 

both accessed through the University of New South Wales, Sydney. For this, all authors jointly 102 

created strings with keywords aimed at capturing empirical studies on wild plants that cover 103 

one or more topics relevant to heatwaves (Table S1). Second, to find relevant grey literature, 104 

X.M. used similar keyword strings in Bielefeld Academic Search Engine (BASE), applying a 105 

filter to include only theses (doctype:18*). Third, X.M. conducted several searches in Google 106 

Scholar using translations of a simplified English string into Italian, Portuguese, Simplified 107 

Chinese, and Traditional Chinese, which were languages that at least one person from our team 108 

could understand (Table S1). However, we only screened the first 10 results from each of these 109 

Google Scholar searches, sorted by relevance. We planned to screen 10 more if at least half of 110 

the previous 10 contained relevant articles, but that was not the case for any language. A pilot 111 

conducted before our pre-registration found that these searches retrieved relevant benchmark 112 

articles (see Mu et al., 2024), ensuring that our searches were comprehensive. 113 
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 114 

2.2. Screening process and inclusion criteria 115 

Our screening criteria are summarised in Table 1 and in Figure S1 (slightly different from our 116 

pre-registration; see Mu et al., 2024). We used Rayyan QCRI (Ouzzani et al., 2016) for both 117 

the initial and the full-text screenings. P.A., P.P., R.N. and X.M. conducted the initial screening, 118 

i.e. assessed the title, abstract, and keywords of retrieved studies. The full-text content of 119 

studies that passed the initial screening was then assessed by two people: X.M. (100%) and 120 

either P.A., P.P. or R.N. (33%, 34%, 33% of the cases, respectively). In both initial and full-121 

text screening, authors resolved conflicts through discussion until consensus was reached. Full-122 

text screening decisions are shown in Supporting Information SI2. 123 

 124 

Table 1. Scope of our systematic review on topics related to the impact of heatwaves on plants, 125 

according to the population, intervention/exposure, comparator, outcome, and study-design 126 

(PECOS) framework (Richardson et al., 1995; Foo et al., 2021). 127 

  128 

Population Wild terrestrial plants (not cultivars) 

Exposure Simulated heatwaves (including artificially controlled passive and active 
heating) 

Comparator Control group without heating 

Outcome Survival, morphological or physiological measures, or heat shock protein 
expression 

Study design Empirical studies in the lab or the field 
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2.3. Data extraction 129 

X.M. extracted all data from empirical heatwave studies included in our systematic review. P.P. 130 

cross-checked around 20% of the extracted data to ensure replicability. The extracted data (Fig. 131 

1) included plant growth forms, life stages, simulated heatwave characteristics, response 132 

variables (survival, physiological, morphological, or molecular traits), the habitat and region 133 

of the plants, and other environmental factors tested under heatwaves. Notably, we adopted a 134 

broader classification of plant growth forms (woody vs herbaceous) rather than more specific 135 

types (e.g., tree, shrub, herb, climber), given the plasticity of growth forms across lifespans and 136 

regions. This classification was implemented in R (version 4.4.0) using the package 137 

growthform (Taseski et al., 2019). 138 

Notably, X.M. used the temperature difference between treatment and control groups to 139 

quantify heatwave intensity, rather than relying on absolute heating temperatures. This relative 140 

measure accounts for global variability in baseline temperatures across latitudes and elevations. 141 

X.M. prioritised mean temperatures over maximum temperatures, as many studies incorporated 142 

ramping patterns and (diel) temperature fluctuations, rendering maximum temperatures a 143 

relatively poor proxy for thermal exposure. Because heating temperatures were reported in 144 

various formats (e.g., text, figures, schematics), X.M. estimated mean temperatures as 145 

accurately as possible based on the available information. For instance, when studies specified 146 

different day and night heating temperatures with ramping rates according to photoperiods, 147 

X.M. calculated daily mean temperatures by weighting the day and night temperatures by their 148 

respective durations (e.g., mean daily temperature = (mean day temperature × day duration + 149 

mean night temperature × night duration) / 24 hours). Maximum temperatures were recorded 150 

only as an alternative when mean temperatures could not be reliably estimated. 151 
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X.M. recorded the country where each study was conducted based primarily on the described 152 

experimental location. If no specific location was provided, X.M. used the country of the first 153 

author's institutional affiliation. For plant measurements, X.M. extracted the measurement 154 

names from figures, tables, or datasets provided by authors. X.M. categorised these 155 

measurements as multilevel traits—spanning morphological, physiological, and molecular 156 

categories—and further subcategorised them according to their relevance to key metabolic 157 

processes and core plant functions (as shown in Fig. 1). Although some measurements are 158 

associated with multiple metabolic pathways, X.M. assigned each to the category most critical 159 

to plant health and survival. For example, although stomatal conductance is linked to both 160 

water relation and carbon flux, X.M. classified stomatal conductance as water relation because 161 

transpiration may be more vital than photosynthesis for plant survival under heatwave 162 

conditions. 163 
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 164 

Fig. 1 Conceptual diagram illustrating the categories used in this study as meaningful proxies 165 

for sources of variation in heatwave experimental designs. Variation may arise from: (A) Study 166 

setup (yellow section), including aspects of the study environment, heating equipment, and 167 

temperature control; (B) Plant type (green section), covering growth form and life stage; (C) 168 

Conducted measurements (purple section), encompassing physiological, morphological, and 169 

molecular traits, which are further classified into eight functional processes: carbon flux, water 170 
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relations, thermal response, growth, damage, reproduction, heat shock protein expression, and 171 

other biochemical indicators (e.g., chlorophyll a and b); (D) Co-factors (blue section) studied 172 

alongside heatwaves, including climate factors, soil properties, management practices, and 173 

biotic interactions. These co-factors are further divided into nine categories: drought (reduced 174 

water supply), CO₂, growth temperature, precipitation (including increased water supply, water 175 

regime, and irrigation method), chemicals, microbial activity, mowing, fertilisation, and 176 

herbivory. 177 

 178 

3. Results and discussion 179 

3.1. Number of eligible studies 180 

Our screening process is summarised in Figure S2. Searches from all sources retrieved a total 181 

of 3093 records, 1170 of which were duplicates. We assessed the title, abstract, and keywords 182 

of the remaining 1923 articles, from which 193 met our initial selection criteria (i.e. were 183 

initially included). After examining the full text, we excluded 108 studies that did not meet our 184 

selection criteria. Specifically, 72 studies simulated heatwaves that did not meet the defined 185 

heat conditions (e.g., heat intensity was insufficient, duration was inappropriate, or descriptions 186 

were unclear); 12 focused on cultivars or crops rather than wild species; seven lacked relevant 187 

measurements of plant morphological, physiological, or heat shock responses; four full-text 188 

articles could not be retrieved; eleven did not include a control treatment, making it impossible 189 

to assess the heatwave intensity; and two were published in languages outside those we could 190 

assess (see also Fig. S2). One additional record (Zhu, 2017) was a thesis that included a relevant 191 

published chapter that was captured in another record (Zhu et al., 2024) (duplicated); these 192 

were considered a single study. Another record (Backes, 2022) was a thesis with two relevant 193 

chapters, one of which lacked a control treatment, so this was also counted as a single study. 194 
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In total, this process resulted in the inclusion of 84 eligible studies in the systematic review 195 

(see the list of studies in Appendix 2 and details in Supporting Information SI3). The first study 196 

on the effects of a simulated heatwave on plants was published in 2004. 197 

 198 

3.2. Geographic spread 199 

Although the 84 studies in our systematic review reported experiments globally, the majority 200 

were conducted in only a few countries (Fig. 2). The uneven distribution we found regarding 201 

heatwave experiments is probably due to institutional bias (Zvereva & Kozlov, 2021), the 202 

availability of research funding (Luukkonen et al., 1992), and research attention driven by the 203 

impacts of historical extreme climate events (Steffen et al., 2014). Notably, three studies were 204 

conducted in tundra regions within polar zones, demonstrating the feasibility of simulating heat 205 

events even under extremely low temperatures. In contrast, tropical regions (including large 206 

parts of Africa and South America) remain severely understudied, despite their high levels of 207 

plant diversity (Raven et al., 2020). While this distribution pattern is consistent with studies 208 

measuring thermal tolerance in wild plant species (Geange et al., 2021), current empirical 209 

research on the effects of heatwaves on plants remains notably restricted in geographical scope. 210 
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 211 

Fig. 2 Global distribution of 84 heatwave studies (field and laboratory). Red dots mark the 212 

specific experiment locations where such information was available. Detailed information is 213 

provided in Supporting Information SI3. 214 

 215 

3.3. Heatwave design 216 

Transparent reporting of temperature regimes is essential as thermal settings and their 217 

interaction with ambient conditions may critically influence plant responses. Yet 218 

approximately 39 out of 84 studies (46.4%) described the heatwave regime only in the text. 219 

Some of these studies reported only a mean or maximum temperature, obscuring diurnal shifts 220 

and the true heat load experienced by plants (Fig. 3a). In contrast, 34 studies (40.5%) included 221 

graphical representations (raw data traces or schematic diagrams), which more effectively 222 

convey temporal fluctuations. Only 11 studies (13.1%) showed the temperature information in 223 

a table and one study in a datasheet (1.2%). 224 
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Studies included in our systematic review varied considerably both in the number and 225 

characteristics of the simulated heatwaves they conducted. Most studies applied a single 226 

heatwave treatment, typically characterized by a specific temperature pattern maintained over 227 

a continuous period. However, a subset of studies included multiple heatwave events, either by 228 

varying key characteristics such as intensity and duration, or by repeating heatwaves over 229 

intervals spanning days (French et al., 2019; Birami et al., 2021), weeks (Ahrens et al., 2021; 230 

Liu et al., 2023), months (Yu et al., 2023), or even up to a year (Qu et al., 2020; Li et al., 2021). 231 

Heatwave intensity (i.e. temperature difference between heatwave and control groups) ranged 232 

widely across studies, from 1°C to over 20°C, with the majority of studies applying increases 233 

of 10°C or less (Fig. 3b). Although we only included studies applying at least 4°C increase in 234 

maximum temperature under heatwave conditions compared to a control condition in our 235 

systematic review, peak temperatures (i.e., maximum values) may only be sustained briefly 236 

due to ramping protocols or temperature fluctuations (Fig. 1) and we thus focused on mean 237 

temperature differences (see section 2.3). 238 

The duration of the heatwaves simulated by studies ranged from three days (minimum required 239 

for inclusion in this review) to as long as 99 days, with most experiments clustering around one 240 

week in length (Fig. 3c). This heatwave duration is consistent with the natural heatwaves 241 

observed in both historical records and current climate conditions (Perkins-Kirkpatrick & 242 

Lewis, 2020; Trancoso et al., 2020). As heatwaves are projected to become increasingly 243 

prolonged under future climate scenarios, studies simulating durations longer than one week 244 

are particularly relevant for assessing plant persistence under extreme conditions in coming 245 

decades (Trancoso et al., 2020). Notably, six studies imposed heatwave treatments lasting more 246 

than three weeks, perhaps exceeding the length of recommended heatwaves by experimental 247 

guidelines proposed by Breshears et al., 2021. However, these long heatwaves may be plausible 248 
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under certain regional projections, high-emission scenarios, or late-century timeframes 249 

(Trancoso et al., 2020). Given that extended heat exposure can increase the risk of cumulative 250 

stress or trigger acclimation responses in plant (Marchand et al., 2005), these studies may yield 251 

distinct physiological or ecological outcomes and should therefore be interpreted with caution 252 

when comparing results across studies. 253 

Regarding the location of the experimental simulation of heatwaves, studies were mostly 254 

conducted in climate chambers, greenhouses, and field settings (natural sites and common 255 

gardens). These markedly differ in their temperature-control capacity (from precise regulation 256 

to fully dynamic fluctuations), ambient conditions (e.g., light intensity, humidity), plant growth 257 

context (ex situ vs in situ), and experimental scale (e.g., number of plants, species diversity, 258 

interacting factors). The choice by researchers reflects trade-offs among their objectives, 259 

priorities, and logistical constraints. Interestingly, we found that simulated heatwaves were 260 

applied relatively evenly across the three experimental locations, from tightly controlled 261 

laboratory conditions to complex, real-world field scenarios (Fig. 3d). 262 
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    263 

Figure 3. Study setup patterns: source of heatwave simulation description (a); heatwave 264 

intensity (b); heatwave duration (c); heatwave simulation location (d). 265 

 266 

3.4. Plant type 267 

Studies on heatwave effects have most frequently focused on woody growth forms (55 out of 268 

84 studies, 65.5%; Fig. 4a). However, more herbaceous species have been studied overall (139 269 

out of 269 species, 51.7%; Fig. 4a), likely because herbaceous plants dominate outside of the 270 

tropical regions (Taylor et al., 2023)—where all heatwave research has been conducted—and 271 

are often represented by multiple species within individual studies. 272 
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More than half of the studies we included in our systematic review (49 out of 84 studies, 58.3%) 273 

focused on early developmental stages, particularly seedlings (38 studies, 45.2%; i.e. the 274 

earliest juvenile stage after germination, bearing cotyledons and still partly reliant on seed 275 

reserves while establishing independent photosynthesis.) and saplings (11 studies, 13.1%; i.e. 276 

well-established juvenile plant that is fully photoautotrophic but not yet reproductively mature; 277 

Fig. 4b). This is likely due to the prevalence of woody plants in heatwave research, whose long-278 

life cycles and large size pose challenges for well-controlled experiments on mature individuals, 279 

often requiring field settings and sophisticated equipment. Additionally, there is a common 280 

assumption that seedlings are more susceptible to extreme climatic events than mature plants 281 

(Lenoir et al., 2009; Lloret et al., 2009; Jagadish et al., 2021). Thus, only nine studies (10.7%) 282 

of studies in our systematic review applied heatwave treatments to adult plants prior to 283 

flowering. Surprisingly, the effects of heatwaves on seeds have been scarcely explored (three 284 

studies, 3.6%), and only one study has examined plant reproductive stages (Tushabe et al., 285 

2023), despite their notably higher sensitivity to temperature (Hedhly, 2011; Wang et al., 2016; 286 

Lohani et al., 2020). Unexpectedly, almost a quarter of the studies (23 out of 84, 27.4%) did 287 

not clearly specify the life stage of the plants used in heatwave experiments. In some cases, 288 

developmental stage can be roughly inferred from the experimental timeline, yet ambiguous 289 

inference may hinder accurate assessments of plant fitness and comparability of results across 290 

studies, so we categorised these as unclear. 291 
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        292 

 293 

Figure 4. Proportion of studies and species by plant growth form (a) and life stage (b) at the 294 

time of heatwave exposure, and number of species included per study (c). 295 

 296 

3.5. Plant traits 297 

When exposed to high temperatures during heatwaves, plants activate signal‐transduction and 298 

gene‐regulation pathways that drive metabolic shifts and physiological adjustments, often 299 



   

 

 19 

ultimately manifesting as visible morphological changes (Zhao et al., 2020). Physiological 300 

measurements were by far the most common approach among the studies included in our 301 

systematic review, used by 77 out of 84 studies (91.7%) and covering 265 out of 269 species 302 

examined (98.5%) (Fig. 5b). Conversely, morphological assessments represented 47 studies 303 

(56%) of traits reported in studies examining heatwave effects on plants, such as structural 304 

shifts or biomass allocation. Heat‐shock protein expression and changes in biochemical 305 

composition were reported in 28 studies (33.3%). Only 16 studies (19%) made all types of 306 

measurements (i.e., molecular, physiological, and morphological) together (Fig. 5a), 307 

highlighting a gap in multi‐scale trait integration that limits our ability to trace causal chains 308 

from gene regulation through whole‐plant function under stress. 309 

When these trait categories are divided into functional sub-categories (e.g., carbon flux, water 310 

relations, growth, damage, thermal responses, reproduction, and biochemical processes; Fig. 311 

5d), distinct patterns emerge between the study focus and species examined. At the study level, 312 

researchers have generally distributed their attention relatively evenly across functional 313 

processes, with the exception of reproduction, which has received comparatively little focus. 314 

Thus, overall, only one study has covered all six sub-categories (Fig. 5c). In contrast, trait 315 

measurements at the species level concentrated on direct indicators of heat injury (114 out of 316 

269 species, 42.4%), such as visual damage scores, chlorophyll fluorescence (Fv/Fm), and 317 

thermal response traits (e.g., leaf temperature, critical thermal maxima). This pattern suggests 318 

that multi-species studies may prioritise indicators of stress impact that are easily comparable 319 

across species, rather than regulatory mechanisms. Although five studies measured more than 320 

20 traits, the majority focused on fewer than 15 (Fig. 5e). It is worth noting that approximately 321 

34 out of 84 studies (40.5%) evaluated biochemical processes, including molecular assays (e.g., 322 

targeting reactive oxygen species [ROS]) and elemental composition, representing a broader 323 
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scope than molecular measurements alone (28 studies, 33.3%). This reflects a moderate focus 324 

on the biochemical mechanisms underpinning physiological resilience. These patterns 325 

collectively show that the impacts of and responses to heatwaves that occur during different 326 

points of development need further study to link molecular markers with physiological and 327 

morphological traits, and ultimately reproductive fitness. 328 

329 

Figure 5. Overview of the coverage across studies and species regarding measurement 330 

categories (a, b), measurement sub-categories (c, d), and specific measurements (e). 331 
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3.6. Multifactorial Environmental Interaction 332 

Given that climate change and human activities increasingly alter environmental conditions, 333 

heatwaves seldom occur in isolation. Instead, heatwaves coincide with multiple abiotic and 334 

biotic stressors, possibly producing interactive effects on plants. For example, ongoing 335 

warming not only increases baseline growth temperatures but also accelerates soil moisture 336 

loss (Mukherjee & Mishra, 2021), which may intensify heat-introduced damage on plants 337 

(Marchin et al., 2022) or, in some cases, trigger early tolerance acclimation and increased 338 

tolerance (Notarnicola et al., 2021). Additional pressures, such as soil salinity, insect herbivory, 339 

and grazing, can further modulate plant responses by triggering distinct defence strategies 340 

(Lamalakshmi Devi et al., 2017). Among the 84 studies conducting heatwave experiments on 341 

plants we reviewed, more than half of them (53 studies, 63.1%) incorporated at least one 342 

additional environmental treatment (Fig. 6). Yet, most studies among them (35 out of 53 studies, 343 

66%) focused exclusively on climatic co‐stressors. Drought was by far the most common 344 

climatic co‐stressor (23 out of 84 studies, 27.4%), likely due to its frequent co‐occurrence with 345 

heatwaves in both field observations and climate projections (Mukherjee & Mishra, 2021). 346 

Other climatic factors, such as elevated CO₂ (eight studies, 9.5%) and pre‐heatwave warming 347 

temperatures (four studies, 4.8%), received relatively less attention. Non‐climatic factors such 348 

as biotic interactions, soil chemistry or microbiology, and land‐management practices (e.g., 349 

irrigation regime, fertilisation, mowing) appeared in only a handful of studies (1–3 per 350 

category), which limits the broader applicability of their findings (Fig. 6). For example, just 351 

two studies (2.4%) have examined herbivory under heat stress, both focusing on insects and 352 

overlooking vertebrate grazers, which may drive plant damage in certain regions (Morgan, 353 

2021). The diversity of stress combinations helps explain the variability in plant performance 354 

reported across heatwave studies. To improve our ability to predict plant persistence and 355 
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ecosystem function under complex, changing climates, future research should embrace 356 

multifactorial designs and expand the range of interactive factors examined to include locally 357 

and globally relevant variables that co-occur with heatwaves. 358 

359 

Figure 6. Number of studies including specific interactive factors.  360 
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4. Future directions and research agenda 361 

4. 1. Heatwave simulation: diversity, dilemmas, and development 362 

The diversity of heatwave types, along with variation in experimental environments and 363 

research objectives, has led to diverse approaches for simulating heatwaves. While such variety 364 

has fostered experimental flexibility and robustness, it also presents challenges for researchers 365 

and conservation practitioners in selecting an appropriate experimental framework that aligns 366 

with their specific research objectives. Here, we summarise existing and emerging heatwave 367 

study designs to facilitate standardising and generalising effective experimental strategies, 368 

which may finally enhance the translation of research findings into practical applications. 369 

 370 

4.1.1. Designing and reporting heatwave studies to facilitate synthesis  371 

A critical methodological challenge in plant–heatwave research is the representative simulation 372 

of heatwave conditions, which requires defining and controlling key parameters of intensity 373 

and duration. These are typically derived from heatwave definitions or historical climate 374 

records, and in some studies are combined with climate model projections to construct 375 

biologically realistic scenarios (e.g., Drake et al., 2018). Possibly due to the diverse definition 376 

of ‘heatwave’ applied across studies, we observed striking variation in both the simulated 377 

intensity (i.e., the temperature increases above control conditions; Fig. 3b) and duration (Fig. 378 

3c). While this variation may capture the growing complexity and regional heterogeneity of 379 

heatwave patterns under ongoing climate change, it also reduces the comparability of critical 380 

experimental conditions across studies. This, in turn, limits cross-study synthesis and hinders 381 

efforts to identify the most susceptible species and ecosystems. A key question in heatwave 382 

simulation design, therefore, is whether to adopt standardised protocols or retain flexibility to 383 

capture site- or context-specific characteristics when setting core heatwave parameters. 384 
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To address this challenge, we recommend designing heatwave intensity and duration protocols 385 

based on the primary research objective, emphasising either practical conservation or 386 

theoretical mechanisms. First, for application-oriented studies (often field-based), 387 

experimental parameters should closely reflect local heatwave characteristics and 388 

environmental conditions, particularly when targeting ecologically important, endangered, or 389 

habitat-sensitive species. This context-specific approach can efficiently yield meaningful 390 

insights for conservation planning and local ecosystem management. Accordingly, we suggest 391 

reporting detailed contextual information, including biome type, regional climate, soil 392 

environment, and the data sources or models possibly used to define heatwave scenarios. 393 

Ideally, a brief overview of previous studies on the same species, ecosystem, or biome should 394 

also be included, along with an assessment of whether and how well the heatwave simulation 395 

aligns with commonly applied definitions. Second, for fundamental research, establishing 396 

benchmark ranges for heatwave intensity and duration could significantly enhance 397 

comparability across studies (Breshears et al., 2021). We therefore advocate developing 398 

standardised heatwave simulation guidelines at national or global scales. Such guidelines could 399 

be especially valuable for well-controlled environments, where conditions can be optimised to 400 

isolate the effects of heat load and enable effective comparisons of species-specific 401 

susceptibility. This standardisation may also be appropriate for studies examining how 402 

geographical factors (i.e., latitude, elevation, or provenance) influence species’ capacity to deal 403 

with heatwaves. Furthermore, for multi-species studies and those involving diverse plant 404 

growth forms, employing uniform simulation parameters (e.g., French et al., 2017) can provide 405 

a robust platform for cross-species comparisons, facilitating theoretical investigations into 406 

plant susceptibility based on inherent functional traits. 407 
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In addition to heatwave intensity and duration, frequency is a key but often underdefined 408 

parameter. In climatology, heatwave frequency refers to the total number of days meeting 409 

specific heat index criteria within a year, rather than the number of repeated events that include 410 

consecutive heatwave days (Perkins & Alexander, 2013). Translating this into an experimental 411 

study design, frequency is often represented by repeated heatwave events applied over a given 412 

period. Currently, implementations of repeated heatwave studies vary widely in the internal 413 

structure, including intensity, duration, timing, and intervals between episodes. Some studies 414 

consider short breaks of a few hours as “reasonable” interruptions that reflect natural 415 

fluctuations within a single heatwave (French et al., 2017), rather than classifying them as 416 

separate events (Arnold et al., 2025a). This divergence may blur the distinction between studies 417 

focused on heatwave frequency and those addressing duration. Moreover, both the timing and 418 

length of intervals between heatwave sessions may influence plant responses by allowing for 419 

recovery and/or by introducing legacy effects that alter subsequent stress responses. Beyond 420 

frequency, seasonal timing of heatwaves is another critical yet underexplored factor. Seasonal 421 

context matters (e.g., earlier in spring or later in autumn) because plant susceptibility varies 422 

across developmental stages (Grubb, 1977; Dreesen et al., 2015; Cope et al., 2023). Heatwaves 423 

that occur “out of season” during sensitive phenological phases (e.g., early in spring during 424 

leaf-out or bud formation) can adversely affect growth and reproduction, which jeopardises 425 

species fitness and can disrupt community-level synchrony (Dreesen et al., 2015; Trotta et al., 426 

2023).  427 

Advancing our understanding of plant resilience, acclimation, and recovery under repeated or 428 

atypically timed heat stress requires targeted heatwave simulations and benchmark ranges for 429 

key variables to enhance experimental consistency, possibly informed by global historical 430 
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patterns. The ecological impacts of heatwave regimes, shaped by intensity, duration, frequency, 431 

and timing, remain a critical research frontier.  432 

Realistic simulation of heatwaves requires not only specifying key parameters but also 433 

manipulating the thermal dynamics throughout the event. Daily temperature variation (e.g., 434 

day–night shifts, ramping rates, random fluctuations) has been implemented in diverse ways 435 

(Fig. 1). While such configurations may be tailored to specific research objectives, temperature 436 

fluctuations are often difficult to control in settings with variable ambient conditions or limited 437 

technical capabilities. In these cases, it is essential to record and report the targeted and realised 438 

temperature profiles, along with any unintended temperature deviations, to facilitate 439 

interpretation of results. Directly comparing results from studies that employ very different 440 

dynamic temperature regimes can be difficult at best and misleading at worst. For example, 441 

even with equal peak temperatures and overall durations, heatwave simulations that use 442 

different regimes, such as constant heating, diurnal shifts, or pulsed exposures (Fig. 1), impose 443 

different cumulative heat loads on plants and potentially elicit markedly different physiological 444 

responses. Recent evidence suggests that cumulative heat load may be a stronger predictor of 445 

plant responses than peak temperature alone (Cook et al., 2024), such that explicitly 446 

incorporating exposure duration potentially offers greater biological relevance (Bauweraerts et 447 

al., 2013). Continuous temperature monitoring throughout simulated heatwave events enables 448 

the calculation of real-time cumulative heat load imposed on plants, providing an informative 449 

metric for comparing heatwave severity across studies. Nevertheless, this metric should be 450 

applied carefully within a heatwave‐specific framework; otherwise, it risks conflating 451 

heatwave effects with other warming scenarios (i.e., gradual warming or acute heat shocks) 452 

(Jagadish et al., 2021). Furthermore, we emphasise the importance of incorporating night-time 453 

temperatures in heatwave simulations (Arnold et al., 2025a). Although nighttime temperatures 454 



   

 

 27 

are generally lower than daytime temperatures in absolute terms, they can increase 455 

disproportionately under heatwave conditions (Vose et al., 2005; Davy et al., 2017; Wu et al., 456 

2023). Elevated nighttime temperatures may hinder the repair of daytime heat damage and lead 457 

to increased respiration, water loss, and energy expenditure, potentially compounding the 458 

physiological stress imposed by high daytime temperatures in subsequent days (Kundu et al., 459 

2024). 460 

 461 

4.1.2. Empirical heatwave simulations  462 

Compared to the volume of research on general warming effects on plant ecophysiology, 463 

empirical studies specifically addressing heatwaves remain remarkably limited. Given 464 

mounting evidence of severe heatwave impacts on ecological communities, this gap is a source 465 

of critical uncertainty for predicting and mitigating species loss and community shifts, 466 

especially among sensitive species and communities, and within vulnerable ecosystems (Chen 467 

& Lewis, 2023). Despite the urgent need for such studies, heatwave experiments often present 468 

technical, financial, and logistical challenges (Ettinger et al., 2019; Arnold et al., 2025a), which 469 

may discourage broader research engagement. Nevertheless, the great effort of researchers and 470 

practitioners over the past decades has contributed to a variety of feasible approaches. These 471 

methodological developments provide valuable technical support and resource-efficient 472 

solutions that fundamentally enable the expansion of heatwave-related research across diverse 473 

ecological contexts and research conditions. 474 

Field experiments, including common garden studies, typically involve plants exposed to 475 

natural environmental conditions and rooted in relatively open soil, whether in situ, relocated, 476 

or grown in mesocosms (see Table S2 for examples). The core challenge of simulating 477 

heatwaves in such settings is maintaining elevated temperatures consistently while minimising 478 
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confounding effects from other environmental factors. Achieving this goal requires careful 479 

consideration of site-specific variables, such as diurnal temperature ranges, as well as 480 

precipitation, light availability, and soil moisture. Evaluation of these factors informs 481 

equipment selection and maintenance demands. Due to the high-intensity warming needed for 482 

simulating heatwaves, passive warming methods (e.g., open- or closed-top chambers) are 483 

generally insufficient to achieve sustained high temperatures without active heating (Speights 484 

et al., 2018; Ettinger et al., 2019; Arnold et al., 2025a). Instead, active systems such as infrared 485 

lamps or air heaters are often necessary, either alone or in combination (Fig. 1). Consequently, 486 

these experiments generally demand robust infrastructure, reliable power sources, continuous 487 

monitoring tools, and substantial logistical support (Arnold et al., 2025a).  488 

Despite the challenges, field heatwave simulations share the general advantages of in situ plant 489 

studies. They preserve natural environmental heterogeneity (e.g., light, wind, humidity), plant-490 

soil interactions, and community-level dynamics (including herbivory), thereby enabling more 491 

ecologically realistic predictions of plant responses to heatwaves. Soil moisture dynamics play 492 

a critical role in mediating heatwave effects (De Boeck et al., 2016). Because the dynamics of 493 

root water uptake and progressive soil drying during a heatwave are difficult to replicate in 494 

controlled pot experiments, field settings remain essential for capturing these critical processes. 495 

Field-based heatwave experiments have been successfully implemented across a range of 496 

extreme thermal environments, including Arctic (Marchand et al., 2005; Graae et al., 2009; 497 

Gemal et al., 2022) and alpine regions (De Boeck et al., 2016; Arnold et al., 2025a), and are 498 

increasingly applied to cover plant communities (Dreesen et al., 2012; Arnold et al., 2025a) 499 

and even large, mature trees (Drake et al., 2018). Such innovative designs continue to broaden 500 

the scope and potential of field heatwave simulations. It is also important to note that empirical 501 

and observational studies conducted during naturally occurring heatwaves—though outside the 502 
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scope of this review—provide rare and valuable, real‐world insights that can both validate and 503 

extend findings from controlled simulations, particularly in terms of post‐heatwave plant 504 

responses and recovery (Breshears et al., 2021). 505 

              Climate chambers and glasshouses provide controlled environments to study plant 506 

responses to heatwaves, allowing precise and repeatable manipulation of temperature and other 507 

parameters. Yet, artificial conditions—such as limited light, short experimental periods, and 508 

reliance on pots—can alter morphology and physiology, reducing relevance to field-grown 509 

plants (Poorter et al., 2016). Phenotypic discrepancies are evident even among outdoor gardens, 510 

greenhouses, and climate chambers, which differ in control intensity (Karitter et al., 2023). To 511 

ensure robust results, such experiments must account for deviations from field conditions, 512 

including setup (facility, medium, pot size), sample size, key growth factors (light, CO₂, 513 

nutrients, humidity, water, temperature, salinity), and issues under abiotic stress (Poorter et al., 514 

2012). 515 

 516 

4.2. Susceptible plant candidates 517 

One of the primary objectives of plant–heatwave research is to identify the plants most at risk 518 

from extreme heat events. Among the ca. 374,000 known plant species (Christenhusz & Byng, 519 

2016), distinguishing those most susceptible to heat-induced mortality remains a significant 520 

challenge. This difficulty stems in part from species having distinct thermoregulation and 521 

thermal tolerance limits (Feeley et al., 2020), meaning their vulnerability cannot be reliably 522 

inferred from projected climate extremes alone—especially since heatwaves vary substantially 523 

across regions (Reddy et al., 2021). This task is urgent, as escalating climate extremes may 524 

drive rapid and irreversible biodiversity loss, with cascading consequences for ecological 525 

functions and services. Drawing on previous research into plant capacities and adaptive 526 
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strategies in response to thermal stressors, researchers typically narrow down the pool of 527 

vulnerable species by considering the following key factors. 528 

 529 

4.2.1. Plant functional traits 530 

Plants have evolved a diverse array of traits that underpin their life-history strategies and enable 531 

them to adapt to the environments they inhabit (Reich et al., 2003). In the context of a rapidly 532 

warming climate, certain thermoregulatory traits (e.g., leaf colour, size, and shape) may serve 533 

as useful indicators of plant vulnerability to heatwaves due to their influence on heat absorption 534 

and dissipation (Leigh et al., 2017). Some traits are directly linked to plant’s physical properties; 535 

for instance, leaf size and thickness influence the thickness of the boundary layer surrounding 536 

the leaf—a buffer zone between the leaf surface and the surrounding air that governs the rate 537 

of heat convection (Monteith, 1990; Schuepp, 1993). Such traits may also indirectly affect 538 

physiological processes related to temperature regulation, such as the rate of evaporative 539 

cooling (Buckley et al., 2017; Arnold et al., 2025b). With the rapid expansion of plant trait 540 

collection and the increasing availability of open-access databases (e.g., TRY; Kattge et al., 541 

2020, and AusTraits; Falster et al., 2021), morphological trait-based approaches have been 542 

broadly applied to explore plant responses to environmental stressors (Soudzilovskaia et al., 543 

2013; Anderegg et al., 2019). However, this approach remains underexplored in heatwave-544 

specific research. Individual experiments often involve only a limited number of species due 545 

to specific constraints, and meta-analyses that synthesise findings across studies are still 546 

relatively rare, highlighting a key gap for future synthesis. Additionally, it is important to 547 

consider that plants can undergo rapid phenotypic acclimation during heatwaves. For example, 548 

changes in leaf orientation, curling, or shedding may occur to reduce water loss and limit 549 

thermal stress. These dynamic and reversible morphological responses may play a critical role 550 
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in coping with acute heat stress and should be incorporated into trait-based assessments to 551 

better estimate plant resilience to heatwaves. In this context, large-scale trait datasets may offer 552 

a coarse yet efficient approach for identifying species most susceptible to extreme heat, 553 

particularly when detailed physiological data are lacking. 554 

 555 

4.2.2. Plant life stage 556 

Plants exhibit differing sensitivities to environmental stressors across life stages (Grubb, 1977) 557 

making it essential to consider their developmental phase at the time of heatwave exposure 558 

(Wahid et al., 2007). Although there is ongoing debate regarding which stage is most affected 559 

by extreme heat, current research has disproportionately focused on established seedlings, with 560 

far less attention to other potentially sensitive phases. In particular, the immediate post-561 

germination phase is likely to be the most vulnerable period of the life cycle to temperature 562 

extremes, yet it remains especially difficult to study. Other critical stages, such as seeds and 563 

reproduction, are likewise underrepresented despite their central role in species persistence (Fig. 564 

4b). Reproductive success and fitness—especially in annual species—are fundamental to 565 

species persistence. This imbalance hinders our ability to identify the most heat-sensitive 566 

periods and limits the potential to assess plant risk. Furthermore, it remains uncertain whether 567 

seedling performance under heat stress can reliably represent whole-life-cycle resilience, or to 568 

what extent it may serve as a meaningful proxy. 569 

Compared to the vegetative stage, heatwave experiments targeting the seed and 570 

reproductive stages may require additional considerations in both simulation design and 571 

performance assessment. For example, seeds in the soil seed bank are primarily heated through 572 

the conduction of atmospheric heat and the absorption of solar radiation into the soil. In bare 573 

soil conditions, substrate temperatures may exceed surrounding air temperatures during 574 
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heatwaves, while shallow soil layers can experience rapid declines in moisture content and 575 

increased porosity (García-García et al., 2023). These changes may expose seeds to abnormally 576 

high temperatures or even direct sunlight. For seeds that are sensitive to temperature, humidity, 577 

and light, such conditions may substantially reduce germination rates and seed vigour (Ooi, 578 

2012). Given the substantial variability in dormancy-breaking and germination requirements 579 

among species, one common approach to assessing post-heatwave plant recruitment is through 580 

regular field observations. Alternatively, in controlled experiments, it is essential to investigate 581 

the effects of heat after other required environment cues for germination initiation are met (e.g., 582 

high humidity, smoke exposure, or specific light cues).  583 

In contrast, heatwaves during the reproductive stage challenge how plants allocate 584 

resources between self-maintenance and reproduction, potentially involving both trade-offs 585 

and synergies (Lovett Doust, 1989). For some short-lived species, reproductive output may 586 

largely depend on lifespan (Notarnicola et al., 2021). Warming can promote earlier flowering 587 

(Notarnicola et al., 2021) and increase flower production (Frei et al., 2014), but excessive heat 588 

often reduces reproductive success by impairing pollen viability, disrupting pollination, and 589 

hindering seed formation—ultimately leading to infertility and yield loss (Qian et al., 2025). 590 

For perennial species such as trees and shrubs, heatwaves may disrupt the energy allocation 591 

trade-offs among growth, reproduction, and seed viability, potentially affecting long-term 592 

community dynamics (Macias & Redmond, 2025). Furthermore, transgenerational effects—593 

including maternal or paternal influences—may confer enhanced heat tolerance to offspring 594 

more rapidly than slower evolutionary processes, potentially improving survival under future 595 

extreme climatic conditions (Zhou et al., 2022). However, empirical evidence for these 596 

responses and their long-term consequences under heatwave scenarios remains limited. 597 

Compared to wild species, model plants and crops have been more extensively studied in this 598 
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context, potentially providing useful but underutilised information to address this knowledge 599 

gap (Resentini et al., 2023; Qian et al., 2025). 600 

Although plant phenology has been systematically documented across many regions, 601 

phenological shifts under climate warming, such as earlier germination following premature 602 

snowmelt (Hassan et al., 2023), may expose early life stages to climatic extremes. Concurrently, 603 

the seasonal timing of heatwaves is becoming more unpredictable and may impose cumulative 604 

physiological stress following recurrent heatwaves or drive acclimation responses across life 605 

stages (Perkins-Kirkpatrick & Lewis, 2020). These dynamics underscore the need for 606 

experimental frameworks that simulate heatwave exposure at multiple developmental stages, 607 

both independently and sequentially, while monitoring legacy and transgenerational effects. 608 

 609 

4.2.3. Thermal tolerance 610 

A quantitative approach to estimating plant susceptibility to extreme temperatures is the 611 

measurement of critical temperature thresholds, i.e. temperatures beyond which substantial 612 

thermal stress occurs. For example, regarding photosynthetic thermal tolerance, T₅₀ refers to 613 

the temperature at which Fv/Fm declines by 50%, while Tcrit denotes the onset of rapid decline 614 

of Fv/Fm (Perez & Feeley, 2020). In addition to these species-specific thresholds, various 615 

physiological indicators (e.g., electrolyte leakage, Fv/Fm), and molecular responses (e.g., heat 616 

shock protein expression) serve as markers of stress or thermal tolerance (Geange et al., 2021). 617 

With over half a century of methodological development, these approaches have been widely 618 

applied to predict the vulnerability of both wild and cultivated species under extreme heat (see 619 

(Geange et al., 2021), for a global systematic review).  620 

Despite being a valuable indicator of potential tolerance, thermal tolerance metrics 621 

should not be used to predict plant performance or survival under extreme conditions, such as 622 
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heatwaves, if these were not tested directly. For instance, critical thermal thresholds are often 623 

determined under conditions less extreme than actual heatwaves. Such measurements may 624 

overlook plant acclimation during heatwaves—which can increase thermal tolerance (Andrew 625 

et al., 2022; Harris et al., 2024) as well as the development of stress memory following repeated 626 

exposures. Therefore, interpreting these metrics requires careful consideration of the 627 

environmental context (Andrew et al., 2022) and prior stress history (Harris et al., 2024) to 628 

assess their ecological relevance. Moreover, some plants can maintain efficient transpiration 629 

during heatwaves, effectively decoupling tissue temperature from ambient air (Arnold et al., 630 

2025b; Cox et al., 2025). Consequently, even species with relatively low thermal thresholds 631 

may not face elevated risk under such conditions. Nonetheless, incorporating thermal tolerance 632 

metrics into heatwave studies can enhance cross-species comparisons of sensitivity. When 633 

combined with measurements of leaf temperature regulation and other physiological traits, 634 

these metrics offer a more integrated understanding of plant vulnerability to future heat 635 

extremes. 636 

 637 

4.2.4. Spatial patterns 638 

At broad terrestrial scales, many studies have assessed the resistance of plant systems to climate 639 

change by examining spatial patterns in distribution and susceptibility (Evans et al., 2025). For 640 

instance, researchers investigated thermal limits across environmental gradients, such as 641 

latitude (O’Sullivan et al., 2017; Sklenář et al., 2023), elevation (mountain, alpine, 642 

tundra)(Notarnicola et al., 2021; Danzey et al., 2024) and biome (Zhu et al., 2018; Andrew et 643 

al., 2022; Harris et al., 2024). Other studies have investigated plant migration rates toward 644 

cooler regions and higher elevations as a response to warming (Steinbauer et al., 2018; Auld 645 

et al., 2022). Notably, vulnerability cannot necessarily be defined by the absolute breadth of 646 
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tolerance; instead, a more decisive factor may be the gap between local warming patterns and 647 

the species’ upper thermal limits (Sentinella et al., 2020; Doughty et al., 2023). These large-648 

scale assessments can help refine the areas at high-risk under increased temperatures that 649 

should be prioritised for follow-up empirical heatwave experiments. 650 

With the increasing application of thermography technology in plant thermal 651 

monitoring, researchers can detect plant overheating and death during natural heatwaves 652 

rapidly and efficiently (Still et al., 2019). Combined with the broad measurement of plant 653 

thermal tolerance, this robust evidence could refine the evaluation of plant vulnerability. 654 

Recent advancement in thermal imaging resolution and analytical methods makes it possible 655 

to monitor specific, vulnerable plant species in conservation efforts (Jones, 2004). This 656 

approach can also be used in controlled heatwave experiments to monitor plant thermal 657 

regulation and dynamics at finer spatial scales—for example, capturing temperature variations 658 

within individual leaves (Craparo et al., 2017; Iseki & Olaleye, 2020). 659 

 660 

5. Conclusion 661 

We found substantial variation in existing experimental heatwave studies. These include bias 662 

in geographic distribution, plant types (growth forms and life stages), heatwave characteristics 663 

(e.g., intensity, duration, frequency), simulation methods and technologies, indicators of plant 664 

stress at morphological, physiological, and molecular levels, as well as the types of co-665 

occurring stressors. We have therefore proposed a set of recommendations and potential 666 

approaches to improve cross-study comparability and enhance the interpretability of 667 

experimental outcomes, thereby facilitating future meta-analyses and fostering a more 668 

consistent understanding across ecosystems and species. We aim for these recommendations 669 

to serve as a practical framework for designing future experimental studies on heatwaves. By 670 
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promoting greater consistency in experimental approaches, they can help advance our 671 

understanding of species vulnerability and improve forecasts of ecosystem responses under 672 

intensifying climate extremes. 673 
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Figure S1. Decision tree used for literature screening. The initial screening was based on the 1185 

title, abstract, and keywords of retrieved studies, while the full-text screening was based on the 1186 

full content of studies that had passed the initial screening. 1187 

1188 
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Figure S2. PRISMA flow diagram of the screening process. 1190 
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Supplementary tables 1192 

Table S1. Strings used to search the literature. 1193 

Source Search strings 

Scopus 

(heatwave* OR (heat w/1 wave*)) 

AND 

(tree* OR shrub* OR grass* OR herb* OR forb* OR vein* OR graminoid* 

OR monocot* OR veget* OR plant* OR sapling* OR seed*)  

AND 

(*physiolog* OR *morpholog* OR function* OR “shock protein*” OR 

“HSP*” OR fluorescence OR “Fv/Fm” OR senesc* OR product* OR 

phytomass OR biomass OR height* OR (stomata* AND conductance) OR 

defen* OR weight OR size OR growth OR hydraulic* OR photosynt* OR 

“photosystem II” OR “PSII” OR transpira* OR evapora* OR 

evapotranspira* OR surviv* OR mortal*)  

AND NOT 

(crop* OR “phylogenetic tree*” OR marine OR kelp OR seagrass OR 

"power plant*") 

Web of 

Science (Core 

collection) 

(heatwave* OR (heat NEAR/1 wave*)) 

AND 

(tree* OR shrub* OR grass* OR herb* OR forb* OR vein* OR graminoid* 

OR monocot* OR veget* OR plant* OR sapling* OR seed*)  

AND 
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(*physiolog* OR *morpholog* OR function* OR “shock protein*” OR 

“HSP*” OR fluorescence OR “Fv/Fm” OR senesc* OR product* OR 

phytomass OR biomass OR height* OR (stomata* AND conductance) OR 

defen* OR weight OR size OR growth OR hydraulic* OR photosynt* OR 

“photosystem II” OR “PSII” OR transpira* OR evapora* OR 

evapotranspira* surviv* OR mortal*) 

NOT 

(crop* OR (phylogenetic NEAR/0 tree) OR marine OR kelp OR seagrass 

OR "power plant*") 

BASE 

(“heat wave” OR “heat waves” OR heatwave*)  

AND  

(tree* OR shrub* OR *grass* OR herb* OR forb* OR vein* OR 

graminoid* OR monocot* OR veget* OR plant* OR sapling* OR seed*)  

AND  

(*physiolog* OR *morpholog* OR function* OR “shock protein” OR 

“shock proteins” OR HSP* OR fluorescence OR “Fv/Fm” OR senesc* 

OR product* OR phytomass OR biomass OR height* OR “stomatal 

conductance” OR defen* OR weight OR size OR growth OR hydraulic* 

OR photosynt* OR “photosystem II” OR “PSII” OR transpira* OR 

evapora* OR evapotranspira* OR surviv* OR mortal*)  

NOT 

(“phylogenetic tree” OR “phylogenetic trees” OR crop* OR marine OR 

kelp OR seagrass OR “power plant” OR “power plants”) doctype:18* 
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Google 
Scholar  

English 

(“heat wave” OR “heat waves” OR heatwave)  

AND  

(tree OR shrub OR grass OR herb OR plant OR sapling OR seed)  

AND  

(physiology OR physiological OR morphology OR morphological OR 

function OR “shock protein” OR “shock proteins” OR fluorescence OR 

senescence OR product OR phytomass OR biomass OR height OR 

“stomatal conductance” OR defense OR defence OR weight OR size OR 

growth OR hydraulic OR photosynthesis OR photosynthetic OR 

“photosystem II” OR transpiration OR evaporation OR evapotranspiration 

OR surviv* OR mortal*)  

NOT  

(“phylogenetic tree” OR “phylogenetic trees” OR crop OR marine OR 

kelp OR seagrass OR “power plant” OR “power plants”) 

Italian 

(“ondata di caldo” OR “ondate di caldo” OR “onda di calore” OR “onde 

di calore”) 

AND 

(albero OR alberi OR arbusto OR arbusti OR cespuglio OR cespugli OR 

macchia OR erba OR erbe OR pianta OR piante OR alberello OR virgulto 

OR piantina OR piantine OR germoglio OR germogli OR pianticella OR 

pianticelle) 
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AND 

(fisiologia OR fisiologico OR morfologia OR morfologico OR funzione 

OR “proteina da shock” OR “proteine da shock” OR fluorescenza OR 

senescenza OR prodotto OR fitomassa OR biomassa OR altezza OR 

“conduttività stomatica” OR difesa OR peso OR massa OR dimensione 

OR altezza OR crescita OR idraulico OR fotosintesi OR fotosintetico OR 

“fotosistema II” OR traspirazione OR evaporazione OR 

evapotraspirazione OR sopravvivenza OR mortalità) 

NOT 

(“albero filogenetico” OR “alberi filogenetici” OR coltura OR 

coltivazione OR marino OR marine OR marini OR alga OR alghe OR 

“centrale elettrica” OR “centrali elettriche” OR “gruppo elettrogeno” OR 

“gruppi elettrogeni” 

Portuguese 

(“onda de calor” OR “ondas de calor”)  

AND  

(árvore OR arbusto OR grama OR erva OR planta OR muda OR semente) 

AND  

(fisiologia OR fisiológico OR fisiológica OR morfologia OR morfológico 

OR morfológica OR função OR “proteína de choque” OU “proteínas de 

choque” OU fluorescência OU senescência OU produto OU fitomassa OU 

biomassa OU altura OU “condutância estomática” OR defesa OR peso 

OR tamanho OR crescimento OR hidráulico OR fotossíntese OR 
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fotossintético OR “fotossistema II” OR transpiração OR evaporação OR 

evapotranspiração) 

NOT  

(“árvore filogenética” OU “árvores filogenéticas” OU marinho OU alga 

OU “usina de energia” OU “usinas de energia”) 

Simplified and Traditional Chinese 

(热浪 OR 熱浪)  

AND  

(树 OR 樹 OR 木 OR 灌木 OR 草 OR 植物 OR 苗 OR 芽)  

AND  

(生理 OR 生理的 OR 形态 OR 形態 OR 形态的 OR 形態的 OR 功能 

OR 休克蛋白 OR 荧光 OR 螢光 OR 衰老 OR 生产 OR 生產 OR 产物 

OR 產物  OR 植物量 OR 生物量 OR 高度 OR 气孔导度 OR 氣孔導度 

OR 防御 OR 防禦 OR 重量 OR 尺寸 OR 大小 OR 生长 OR 生長 OR 液

压 OR 液壓 OR 光合作用 OR 光系统 II OR 光系統 II OR 光系統 II OR 

蒸腾作用 OR 蒸騰作用 OR 蒸发 OR 蒸發 OR 蒸散量 OR 生存率 OR 

存活率 OR 死亡率)  

NOT  

(系统发育树 OR 系統發育樹 OR 庄稼 OR 莊稼 OR 作物 OR 海洋 OR 

海藻 OR 海草 OR 发电厂 OR 發電廠) 

 1194 

 1195 
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Table S2. Overview of heatwave simulation approaches in field experiments. NA indicates 1196 

that no relevant device/factors were involved in the study. 1197 

Active 
heater 

Passive heater Growth form Interactive 
factor 

Working 
environment 

Literature 

air heater open top 
chamber (OTC) 

woody drought subtropical Liu et al., 
2023 

open woody NA subtropical Qu et al., 
2020a 

open herbaceous mowing semiarid Qu et al., 
2020b 

open herbaceous NA oak-savannah 
glacial sand 
ecosystem 

Wang et al., 
2008 

open woody NA subtropical Yu, 2023 
open herbaceous NA mesic tall-

grass prairies 
Mainali et al., 
2014 

closed top 
chamber (closed) 

woody CO2; drought whitehall 
Forest 

Bauweraerts 
et al., 2014a 

closed woody CO2 whitehall 
Forest 

Ameye et al., 
2012; 
Bauweraerts 
et al., 2014b, 
2013 

NA herbaceous irrigation 
frequency 

managed 
pasture 

Langworthy 
et al., 2020 

irradiation 
lamp 

closed herbaceous drought tallgrass 
prairie; mid-
continent  

Hoover et al., 
2014 

closed herbaceous; 
woody 

NA Arctic tundra Marchand et 
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Rubin et al., 
2018 

NA herbaceous drought 
 

tallgrass 
prairie 
ecosystem  
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al., 2018 

NA woody drought; 
heavy rainfall 

experimental 
tree nursery 

Noh et al., 
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Dreesen et al., 
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NA woody NA European 
grasslands 

Van Peer et 
al., 2004 

NA woody drought semiarid 
steppe 

Li et al., 
2021b 
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NA herbaceous mowing subalpine 
grassland 

Benot et al., 
2014 

NA herbaceous NA arctic tundra Graae et al., 
2009b 

NA herbaceous Mowing subalpine 
grasslands 

Benot et al., 
2013 

Others closed woody NA woodland Drake et al., 
2018 

closed woody growth 
temperature 

woodland Dhami et al., 
2020 

closed herbaceous NA Antarctica; 
coastline 

Gemal et al., 
2022 

open herbaceous herbivory recently tilled 
old field 

Cope et al., 
2023 
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Appendix 1 – Changes from pre-registration 1200 

- We initially planned to conduct a meta-analysis using the studies reviewed, but we 1201 

decided to perform only qualitative analyses (i.e. systematic review only). 1202 

- We initially defined heatwaves as periods when temperatures in the high-temperature 1203 

group were at least 5 °C higher than the control group, lasting for at least three 1204 

consecutive days (72 hours) and no more than fifteen days (360 hours) to screen 1205 

papers. However, we later adopted a broader definition, requiring temperatures in the 1206 

high-temperature group to be at least 4 °C higher than the control group, lasting for at 1207 

least three consecutive days (72 hours) and up to 100 days (2400 hours). 1208 

- We initially planned to classify plants into detailed growth forms (i.e. tree, shrub, 1209 

herb/forb, graminoid, liana, vine, succulent, moss, liverwort, other), but later adopted 1210 

broader categories (woody and herbaceous) using the R package growthform. 1211 

- We initially planned to record the plant organ from which measurements were taken, 1212 

but later decided not to include this variable. 1213 

- We initially planned to categorize temperature_transition_type into two levels 1214 

(‘ramping transition’ and ‘transient transition’), but later expanded it into five levels: 1215 

‘Constant’, ‘Day & night control’, ‘Sustained shifting’, ‘Day control only’, and 1216 

‘Random fluctuation’. 1217 

- Because we decided to conduct only a systematic review, variables initially planned 1218 

for the meta-analysis were excluded from data collection (e.g., variables that would 1219 

have required extraction from figures). 1220 

  1221 
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