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Abstract  18 
 19 
Interaction matrices summarise pairwise species impacts within ecological communities into 20 
an analytically tractable format and have been central to advancing our understanding of 21 
ecosystem dynamics. However, despite their ubiquity, they have faced constant, recurring, 22 
criticism for oversimplifying ecological complexity. While suggested extensions address 23 
specific shortcomings, they often come with significant trade-offs, including increased data 24 
demands and analytical complexity. Despite their challenges, interaction matrices have been a 25 
nexus of fundamental ecology connecting many subdisciplines, representing both cause and 26 
consequence of ecological dynamics. Here we overview the fundamental definitional, 27 
dynamism and data challenges confronting the interaction matrix framework and critically 28 
examine the current state-of-the-art of approaches developed to tackle them. We contend that 29 
the centrality of interaction matrices within academic ecology is set to continue. Nonetheless, 30 
their role as a unifying and focus of synthesis could be markedly improved by refreshing how 31 
they are considered. We argue that by fully embracing, rather than fighting, their inherent nature 32 
as uncertain, transient abstractions, ecology can better maximise their potential as a unifying 33 
nexus of ecological research and incorporate advances in wider complexity sciences. As we 34 
enter the second century of their use within ecology, such a shift will reinforce interaction 35 
matrices as a valuable tool to unlock the complex dynamics of ecological communities. 36 

 37 

  38 
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The centrality of interaction matrices in ecology 39 

A fundamental goal of ecology is to understand the consequences of the relationships between 40 
species. A common approach to addressing the complexity of natural ecosystems has been to 41 
distil species interactions into a discrete 'interaction matrix' that summarises the pairwise 42 
effects organisms have on one another given a specific environmental context. The 43 
mathematical construct brings tractability to entangled webs of linkages within communities 44 
and allows researchers to study the emergent properties of ecological systems as a complex 45 
system1. As such, interaction matrices have been described as “among ecology's most 46 
important mathematical abstractions” 2 and are a foundational staple of ecological research, 47 
forming a key connecting bridge between theory and observation.  48 

Recognition of the interconnectedness of ecosystems dates back to the earliest pioneers of 49 
ecology3–5, but it took the influence of physical scientists such as Alfred Lotka6 and Vito Volterra7 50 
to bring into ecology the fundamental ‘mass action’ abstraction of distilling interspecific 51 
interactions into a single rate term8,9. Since then, a multitude of distinct approaches to defining 52 
the elements of interaction matrices have developed2,10–12, ranging from two-by-two systems up 53 
to mathematically-large abstractions13, but all share the aim of capturing direct impacts 54 
between a set of species populations with a two-dimensional grid of values (Box 1).  55 

Both the opportunities and limitations that such mean-field approximations represent in an 56 
ecological context were rapidly recognised14 and their value has been much discussed ever 57 
since15. Fundamentally, while mean-field approaches rooted in statistical physics unlock 58 
tractable solutions for high-dimensional biological systems16, the level of abstraction and 59 
reductionism embedded into the construction of interaction matrices frequently conflicts with 60 
desires to explicitly account for known ecological processes and fine-grain detail17. Despite 61 
these reservations, the potential of interaction matrices to link ecological frameworks and data 62 
is evident (Figure 1), for example, translating resource use overlap between pairs of species into 63 
community-level dynamics18. This utility of interaction matrices has repeatedly been sufficient 64 
to override, at least temporarily, misgivings about their ‘realism’, and their use today is 65 
widespread. As an illustration, 35 of the 210 articles published in Ecology Letters during 2023 66 
(16%) use interaction matrices in some way, rising to 36% when considering only community 67 
ecology papers (SI 1).  68 

The use of interaction matrices and the wider concept of interaction networks19,20 extends to 69 
nearly every corner of ecology from biogeography21 to conservation22,23. A totemic example of 70 
the use of interaction matrices has been the relationship between stability and complexity of 71 
ecosystems: early results using the simplest possible models24 were followed by a succession 72 
of studies that included additional ‘realistic’ structuring, while still retaining the fundamental 73 
interaction matrix approach13,25,26. Interaction matrix based analyses have shown that stabilising 74 
structures appear to be overrepresented in real networks28–31 and allow the identification of 75 
community level responses to changing environments that could not be identified from pairwise 76 
analyses32. Despite the diversity of metrics that can be used to quantify ecological stability, 77 
most fundamentally depend on interaction matrices in one way or another27.  78 

In recent years, new data streams, increased appreciation of feedback, and growing ambitions 79 
to represent increasingly complex systems are posing significant questions for how the 80 
venerable interaction matrix can be best used to accelerate ecological understanding. In this 81 
perspective, we collate and examine the diverse recurring challenges for the interaction matrix 82 
framework within ecology, grouped into questions of definition, dynamism and data. We argue 83 
that although some of these are fundamentally ‘unsolvable’, quantitative interaction matrices 84 
will continue to provide a distinct and valuable convergence point for different subfields within 85 
ecology where theoretical and empirical work can meet to maximise each other’s utility through 86 
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mechanistic predictions. Despite their issues, these perennially controversial abstractions are 87 
still rich in underexploited promise. However, this will require the active acknowledgement and 88 
engagement with both their strengths and deficiencies. We propose four directions that can 89 
maximise their potential to drive forward community ecology. 90 

 91 

Figure 1 A) Interaction matrices are the central uniting feature of community ecology. They are uniquely placed to 92 
unite observations of interspecific interactions, trajectories of populations and theoretical understanding of the 93 
structure and dynamics of communities (here illustrated with niche models and random matrix theory). B) Interaction 94 
matrices are specified by three components: an underlying skeleton of interactions, a dynamic modelling framework 95 
and a system state. The dynamics and state are often implicit but are crucial to interpreting the interaction matrix 96 
appropriately. The interaction skeleton can derive from many alternative sources (Box 2): illustrated here (clockwise 97 
from top left) are extrapolation from literature records, observation of interaction frequency from DNA barcoding or by 98 
observation of feeding, experiments where functional responses of performance (here egg number) is measured in 99 
response to varying density of another species (here worms), and time series reporting the dynamics of multiple 100 
populations. Created in BioRender. Terry, C. (2025) https://BioRender.com/2425ztg  101 
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 102 

Box 1. Mathematical formulation of interaction matrices.  103 
 104 
For the purposes of this perspective, we are defining ‘interaction matrices’ broadly as arrays of 105 
numbers that define the impact of one population on another. Mathematically, this can make 106 
interaction matrices Jacobian matrices, whose elements in row 𝑖 and column 𝑗describe the 107 
first-order partial derivatives of the 𝑖th function with respect to the 𝑗th variable. As such, they 108 
are a distinct, more specific, concept to ‘interaction networks’ that only graph links (possibly 109 
quantified) between components of the ecological community.  110 
 111 
Importantly, there are several distinct approaches to formally mathematically defining the 112 
elements of an interaction matrix2, that are often referred to with overlapping names. All are only 113 
defined for a particular set of species abundances 𝑵 (and implicitly particular environmental 114 
conditions) and as such are short-term responses where all populations are assumed to be 115 
held constant. Assuming a Lotka-Volterra model: 116 

𝑑𝑁𝑖

𝑑𝑡
 = 𝑟𝑖 𝑁 + ∑  

𝑆

𝑗
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an apparently direct approach is to specify the interaction matrix 𝐀 as being made up of the 𝛼 118 
coefficients. This corresponds to the effect on each species’ per-capita growth rate: 119 
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 120 

and is hence distinct to approaches that use the effects on each population, which at 121 
equilibrium can be defined33 as: 122 

𝐴𝑖𝑗
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 123 

Other approaches take other formulations such as the ‘alpha matrix’ that scales the population 124 
growth rate relative to both self-effects and intrinsic growth (the original ‘community matrix’18) 125 
or different underlying dynamic models. However, given information on other parameters and 126 
system state2 these classes of ‘interaction matrix’ are interchangeable and most of our points 127 
apply equally to them all.  128 
 129 
 130 
  131 



5 
 
Box 2. Approaches to building an interaction matrix: 132 

We can differentiate three principal approaches to specifying interaction matrices across 133 
ecology. While different research fields have distinct traditions driven by availability of data they 134 
are ultimately converging on a similar goal. A further approach, the inference of interactions 135 
from spatial cooccurrence data, does not meet our definition of dynamic interaction matrices 136 
and has significant challenges34. In all cases the interaction matrix assumes a particular (often 137 
implicit) model of population dynamics.  138 

1. Direct specification based on theoretical expectations. Mostly associated with theoretical 139 
analyses, in this approach the elements of the interaction matrices are directly specified from 140 
distributions determined by the researcher. This can range from randomly generated Jacobian 141 
matrices35,36, through to more ecologically informed models such as the niche model38 including 142 
allometric relationships39 and include a variety of dynamical forms using generalised niche 143 
modelling 37. 144 

2. Reconstruction from observations of population counts. With this approach, comparisons of 145 
populations of multiple species within the community through time are used to identify the 146 
elements of the interaction matrix. The raw data can be purely observational, include deliberate 147 
perturbations in the style of ‘Press’ or ‘Pulse’ experiments40, or structured experiments41. The 148 
method used can be purely correlative, for example S-maps and causal discovery algorithms42–149 
44 or can embed assumptions about the underlying functional form of the interactions between 150 
species with auto-regressive models45. The input data can be long-term time series, or multiple 151 
short or single-generation transitions46,47 and can also imbed other extraneous variables such as 152 
climate variables. 153 

3. From observations of underlying interaction processes. Records of the frequency of 154 
observable interactions such as pollination visits or parasitism can be converted into 155 
interaction matrices. Translating such sets of observations into a quantitative interaction matrix 156 
describing the impact of populations on each other requires additional assumptions, for 157 
example body-size based parameterisation10 or inferring interaction strength from resource use 158 
overlap48. The estimation of interactions not directly observed is also an increasing line of 159 
research, whereby unobserved interactions can be approximated from variables such as 160 
functional traits, species abundances, or environmental factors49,50. Likely interactions can be 161 
inferred from larger-scale ‘metawebs’ of observed interactions tabulating which species have 162 
been seen to interact in that region51.  163 

  164 
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Fundamental Challenges to The Interaction Matrix 165 

Approach 166 

Throughout their history, the use of interaction matrices has been subject to numerous 167 
criticisms and suggested developments. These challenges are tightly interlinked but can be 168 
grouped into three themes related to their definition, dynamism and data (Figure 2). Here we 169 
briefly scan the diversity of challenges and criticisms of interaction matrices. In each case, 170 
while some suggested ‘solutions’ exist, these are often incompatible with each other and can in 171 
turn generate further challenges. 172 

 173 

Figure 2. Multiple interacting challenges assail the interaction matrix approach. Created in BioRender. Terry, C. (2025) 174 
https://BioRender.com/0yzqn3h 175 

Definition: problems of resolution and scale 176 

Natural ecosystems are manifestly not the tidy, bounded, discretisable and well-mixed systems 177 
that an interaction matrix presents. Communities have internal structure, ranging from spatial 178 
heterogeneities or intra-specific genetic variation, to matters of animal behaviour and life 179 
stages:  180 

Spatial scale and structuring. The first challenge when creating an interaction matrix is 181 
defining the spatial boundaries of the community in question. This seemingly innocuous step 182 
continues to pose difficulties since it is vanishingly rare for natural communities to have 183 
discrete boundaries. Even within apparently bounded habitats (e.g. ponds) species with high 184 
movement capacity can link the dynamics of other species across natural boundaries52. 185 
Interaction network structure frequently scales with the area under consideration53–55, and once 186 
an outer boundary is defined, there is frequently significant heterogeneity and spatial 187 
structuring, both of which can have dynamic consequences. While this can be partially 188 
addressed by explicitly building space into a metacommunity modelling approach56,57, these 189 
models bring the additional challenge of integrating spatial interactions in metacommunity 190 
matrices. Dispersal between spatially distinct populations is frequently modelled as a diffusive 191 
term that positively influences local dynamics57, but empirical validations remain scarce58.  192 

Selection and resolution of state variables. An interrelated challenge is to determine what the 193 
rows and columns of the matrix should represent, i.e. defining the state variables of the system. 194 
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There has been considerable progress in moving on from early empirical matrices whose 195 
components were frequently very loosely taxonomically defined59, towards quantitative 196 
networks of more tightly defined state variables60,61, and more recently expansions to hundreds 197 
of species and multiple interaction types (e.g.62–65). However, although the size and resolution of 198 
empirical networks has increased dramatically, there isn’t a clear endpoint66,67. While the 199 
population appears to be a natural unit, the assumption of species populations as discrete, 200 
homogenous sets with ecological relevance is severely challenged by multiple forms of intra-201 
specific variation, whether driven by genetic, micro-environment, behavioural or life-stage 202 
differences68–71. Regardless of recent improvements in the detail of description, summarising 203 
the impacts of a species on another with a single ‘average’ parameter is unavoidable within the 204 
standard interaction matrix formulation. Although such parameters should be interpreted as 205 
long-term average effects reflecting the effective dynamics of the system this simplification 206 
inevitably still discards whole classes of information. 207 

Dependence on temporally variable environmental conditions. Interaction strength between 208 
species strongly depends on abiotic conditions that fluctuate through space and time54,72,73. To 209 
resolve this variability into a fixed matrix it is necessary to define and measure an average over a 210 
meaningful timescale for the community. However, it is widely appreciated both that key 211 
timescales may vary dramatically for different components of the system74 and that fluctuating 212 
interaction strength under different variable environments is itself a key determinant of key 213 
dynamics such as coexistence75. While there are multiple proposed frameworks to embed 214 
environmental dependence into interaction matrix specification76 or extend to multi-215 
dimensional arrays across a gradient77, these move away from the fundamental concept of the 216 
interaction matrix, and their implementation in dynamical models is still not fully developed.  217 

Dynamism: non-linearities, higher order interactions and evolution  218 

Even in a perfectly defined ecosystem, internal community dynamics generate fundamental 219 
challenges to the interaction matrix approach12,17. The purpose of an interaction matrix is to 220 
summarise the effect of one species onto another with a single number, which necessarily 221 
involves linearisation. However, effects between species are frequently observed to be non-222 
linearly dependent on the state of the system78,79.  Interactions are therefore poorly captured 223 
unless they are strongly constrained to a fixed point. 224 

Non-linearities in pairwise interactions. Non-linear, density-dependent interactions between 225 
species are the norm, rather than an exception. The impact has been thoroughly investigated in 226 
small modules80, but analysis of extensions beyond linear cases for wider communities remains 227 
a challenge. This linearisation issue is particularly acute for the assessment of the stability 228 
where apparently small differences in the form of density dependence can have substantial 229 
impacts81. Suggested remedies include generalized modelling frameworks37 to explore the 230 
effects of nonlinearities on stability by fixing only a few key parameters, or structural 231 
methods48,82 that sidestep detailed parameterization by focusing instead on persistence 232 
probabilities as a function of general network topology. However, many of these methods 233 
remain tied to Lotka-Volterra formulations or closely related dynamics83. This reliance on Lotka-234 
Volterra models reflects the core paradox: despite their well-documented limitations, their 235 
mathematical tractability and capacity to reproduce almost any dynamical behaviour84 has 236 
made them an indispensable tool. While understanding of these potential complexities has 237 
evolved significantly, solutions to integrating complex interactions at the community scale has 238 
not yet advanced to the same degree due to these fundamental constraints. 239 

Higher-order interactions: Many interactions between species are influenced by the wider 240 
ecological community which generates the potential for complex emergent dynamics and 241 
feedbacks85. The challenge these effects pose for the interaction matrix approach was 242 
recognized early86,87 under the broad umbrella of ‘higher-order interactions’. They are expected 243 
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to be widespread88, although there still exist only a few large-scale parameterised examples89. 244 
Proposed solutions to the challenge of biotic contextualisation include frameworks for 245 
modelling adaptive foraging90, interaction modifications91, hypergraphs92, and rewiring93, as well 246 
as extending analysis of interaction matrices into successively higher dimensional arrays94,95. 247 
While models can be built, their analysis is challenging, for example, the significant increase in 248 
parameters can create many more fixed points96.  249 

Evolutionary changes: A further internal source of feedback between the structure and 250 
dynamics of communities are evolutionary changes to interactions between species. Rapid 251 
evolution is increasingly recognised as having the potential to substantially impact the 252 
dynamics of communities97. This introduces path dependence to the dynamics of the system, 253 
as knowledge of the current state of the system is not necessarily sufficient because interaction 254 
strength will depend on the history of the system. As with higher-order interactions, there are a 255 
number of modelling frameworks exploring different consequences98,99, but very little robust 256 
empirical information and strong limits to analytical opportunities.  257 

Data: Quality of Available Information 258 

Thirdly, but as importantly, the preceding challenges rest on the assumption that there is 259 
sufficient information available to confidently infer the entries of the interaction matrix, even 260 
when the assumptions made about the dynamics are considered reasonable.  261 

Converting observed interactions to matrices: It is widely appreciated that most observed 262 
interaction networks are undersampled100,101, leading to the so called ‘Eltonian shortfall’ in our 263 
knowledge of interactions102. While the quality of observed interaction networks has improved 264 
greatly (as discussed above), and there is increasing optimism that it will be possible to tackle 265 
gaps in partially observed networks103, the precision of inferred interaction networks will always 266 
be constrained. Furthermore, species impact each other through multiple processes, yet 267 
frequently observed interaction networks capture only a single class of interaction (for example 268 
trophic, pollination or competition). While increasing efforts are being made to construct multi-269 
layer networks104,105 the additional empirical effort and challenges comparing interaction types 270 
are significant constraints.  271 

Even with a reasonable set of observations, a fundamental challenge is converting from 272 
observed interaction networks to interaction matrices that describe the dynamics of the 273 
community (Figure 1B). While interaction matrices represent a strong unifying objective, the gap 274 
between observed ecological network and inferred interaction matrix is more precarious than 275 
may be assumed. For example, translating from observed mutualistic pollination networks to an 276 
interaction network requires assumptions of both the benefit of a visit to each partner and 277 
intraguild competition48. Development of approaches to translate between types of networks 278 
began early, for example to translate resource use overlap into competition106 and refinements 279 
are still being developed (e.g.107), yet it remains the case that such conversions are sensitive to 280 
model form108,109 and scaling with self-regulation terms110. 281 

Observed dynamics: Parallel issues arise when inferring interaction matrices from time-series 282 
or observation of population responses. The idealised long time-series under steady conditions 283 
or the small, short, perturbations from equilibrium envisaged in theoretical frameworks40 are 284 
essentially impossible to empirically observe. Observational error is frequently large and can 285 
require careful handling111. Unique interaction networks are rarely identifiable without some 286 
kind of assumed model structure, however, the specific assumptions of the model functional 287 
form that can have significant impact on the inferred structure of the interaction matrix112. 288 
Highly uncertain interaction strengths have the potential to generate artefactual results in 289 
subsequent analyses113. Recently developed ‘model-free’ approaches114,115 can sidestep some 290 
challenges by estimating interaction matrix coefficients directly from abundance time series 291 
without assuming an underlying model but have considerably greater data demands, often 292 
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needing more than 35-40 temporal observations even for simplified assemblages115. As such, 293 
the ability to infer interaction matrices from large, diverse communities remains an open area of 294 
research43 and will reach fundamental limits to inference of network structure from time 295 
series116. 296 

Tackling the Challenges 297 

We would expect that the above catalogue of challenges is familiar to most ecologists. 298 
However, collating even this undoubtedly incomplete list in one place clarifies that piecemeal 299 
solutions simply cannot ‘fix’ interaction matrices. ‘Solving’, or even addressing, one set of issues 300 
almost inevitably exacerbates a different category of challenges facing interaction matrices. 301 
What should be done? 302 

The interaction matrix is currently a central paradigm within ecology, in the sense that it is a 303 
construct that informs and underlies a substantial proportion of research. Is this dominance an 304 
impediment, building up tensions and awaiting a Kuhnian paradigm shift to a fundamentally 305 
different approach117? While the very nature of a paradigm makes it hard to identify alternatives, 306 
fundamental challenges and extensions have been raised through most of their 100 year history, 307 
yet their popularity remains undimmed. There has been a repeated cycle of problems being 308 
identified, a specific solution presented, but a swift reversion back to original interaction 309 
matrices. While predictions of the future course of science are inherently risky, it seems likely 310 
that interaction matrices are here to stay, despite their deficiencies (Figure 3).  311 

 312 

Figure 3: Quantitative interaction matrices represent a useful trade-off in complexity including quantification of the 313 
community context and which can be expected to be attained for a wide variety of communities. Further extensions 314 
can further narrow the gap to real-world complexity and capture influential details but are frequently not able to be 315 
incorporated concurrently due to analytic and data limitations. The approach to ‘real-world’ complexity is here 316 
illustrated by an image of the kelp-forest exhibit from Monterey Bay Aquarium (CC0). Created in BioRender. Terry, C. 317 
(2025) https://BioRender.com/ufbrlcc 318 

It seems most useful to see interaction matrices as being an inevitable consequence of a 319 
reductionist approach to ecology118, that unlocks a tractable window into complexity, rather 320 
than an outdated framework to continuously press to move beyond. The trade-offs are the price 321 
one must acknowledge to get closer to mechanistic understanding and predictions. As such, 322 
the real challenge community ecology faces is to make the best value from these imperfect 323 
constructs. Given the diversity of limitations to the use of interaction matrices, we contend that 324 
there is often more to gain from better interpreting interaction matrices, over developing yet 325 
more extended frameworks. While it will always be a case of matching the tool to the specific 326 
question, as a field we need to need to get better at reading across systems to accelerate 327 
progress, and this requires a more consistent and comparable approach.  328 

Instead of caveating results after they are presented as a defence against critique, we suggest 329 
the fastest progress from both theoretical and empirical poles can be made by treating 330 
interaction matrices with appropriate productive scepticism throughout the scientific process 331 
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(Figure 4). By consciously letting go of the idea of a ‘perfect’ interaction matrix, this can facilitate 332 
the best use of the information that is both available. We suggest four focuses to aid this goal: 333 

 334 

Figure 4. How should interaction matrices be most productively considered? Between dismissal as artificial 335 
constructs and over-emphasis, there is a productive middleground of productive skepticism with significant scope 336 
for future developments. Created in BioRender. Terry, C. (2025) https://BioRender.com/wbhx7z5 337 

1) Clearly defining the focus and bounds of applicability to allow cross-system 338 
comparison  339 

More rigorously and explicitly defining the taxonomic, spatial and temporal bounds of 340 
applicability that a particular interaction matrix is intended to represent is an achievable goal 341 
with great potential benefits. This can substantially reduce the risk of misinterpretation of any 342 
conclusions but also offers the prospect to build towards stronger, wider generalisations. While 343 
currently a distant prospect, interaction matrices specifying the relationships between 344 
populations have the potential to better link many disparate areas of ecology by acting as a 345 
common currency. While databases for interaction networks have existed for some time59,119 346 
and form the basis for many meta-analyses120, comparable frameworks for the standardisation 347 
and publication of interaction matrix metadata  are still lacking. Improving interoperability 348 
between studies by more clearly defining scope of published interaction matrices and the 349 
assumptions embedded within them will be a key first step to this goal. 350 

2) Actively acknowledging inevitable uncertainty and testing the robustness of 351 
conclusions  352 

Methods to account for the diverse sources of uncertainty in empirical interaction matrices 353 
have rapidly developed in recent years. They have the potential to address many of the 354 
fundamental data-challenges, yet their use is still the exception rather than a rule. The existence 355 
of particular interactions can be treated probabilistically121–124 or as a fuzzy interaction web125, 356 
the sensitivity of results to inclusion of most-likely missing links126 can be tested, and 357 
uncertainty in interaction strength parameter estimates can be directly propagated127. The 358 
uncertainty in interaction estimates derived from the unknown form of the relationship between 359 
variables (model selection error) poses a more fundamental challenge112, but can still be 360 
explored and the robustness or otherwise of results to alternative plausible assumptions can be 361 
confirmed128. Model-averaging and MCMC approaches are potential methods to quantify the 362 
uncertainty associated to interaction strength estimates, albeit at the cost of potentially high 363 
computational requirements. As well as technical methods, this is as much a psychological 364 
shift towards being ready to acknowledge limitations to build stronger foundations. Inevitably, 365 
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this process may well identify that certain properties are practically unidentifiable due to 366 
sensitivities in the specification of the interaction matrix129. This may necessitate a move 367 
towards responses that are more robust to uncertainties in individual terms130–132, but will 368 
strengthen the field as a whole. 369 

3) Embracing advances across complexity sciences, especially coarse-graining. 370 

The wider field of complexity science offers rapidly expanding opportunities to address new 371 
ecological questions using interaction matrices133. For instance, new developments have used 372 
interaction matrices to understand ecosystem learning134, ecological memory135 and 373 
information processing136. Of particular interest to ecology are complexity science 374 
developments within ‘coarse-graining’ to deal with scaling challenges137. This refers to 375 
simplifying complex data to reduce dimensionality while preserving general patterns and 376 
system behaviour properties.  377 

Ecosystems are highly structured138 due to continuous community assembly leading to non-378 
random trait distributions139, which have important implications for dynamics, coexistence, and 379 
resilience. Thus, species are typically able to be coarse-grained into functional groups140, 380 
taxonomic and phylogenetic groups141,142, or aggregated based on statistical patterns. For 381 
instance, using techniques borrowed from statistical physics such as Renormalization Group 382 
(RG) theory143 we can understand scale-invariant patterns, critical transitions, and emergent 383 
properties by systematically coarse-graining a system and studying how its parameters evolve. 384 
Validating such methods is typically conducted by predicting target metrics such as richness 385 
and diversity indices within a coarse-grained scale142 or testing for scale invariance indicating 386 
successful dimension reduction143.  387 

Emergent systems can be defined as self-contained processes that evolve over time144. In this 388 
framework, a coarse-grained process becomes an autonomous computational entity when it 389 
has a distinct function, informational self-sufficiency and its own causal dynamics. In ecology, 390 
this perspective aligns with ecosystems’ hierarchical structure where macro-patterns such as 391 
population dynamics emerge from micro-processes such as individual behaviour, metabolism, 392 
or species interactions. While coarse-graining is often applied intuitively in ecology, 393 
computational science advances offer a rigorous route to determine when a coarse-grained 394 
level genuinely captures an emergent process, and identify appropriate resolution and scale of 395 
interaction matrices. 396 

4) Validation of higher-level predictions from interaction matrices.  397 

Systems theory145 suggests that the usefulness of a model lies not in its ability to replicate every 398 
detail, but in its capacity to reveal general patterns and consistent system-level behaviours. 399 
Interaction matrices, as structured representations of ecological organisation, are particularly 400 
well-suited for this kind of systems-level reasoning. When treated as a mesoscopic layer 401 
between individual mechanisms and macroscopic community behaviour, these matrices allow 402 
us to formulate testable hypotheses about the stability, resilience, and functioning of these 403 
communities and the species that compose them. While they rely on simplifying assumptions, 404 
their mechanistic structure enables predictions that remain linked to ecological processes and 405 
supports multiple avenues of empirical and theoretical validation. Rather than seeking precise 406 
forecasts of individual species’ trajectories, validation can often more usefully focus on 407 
reproducible ensemble properties—such as coexistence thresholds, stability regimes, or 408 
responses to perturbations —that emerge across replicates or parameterisations. This can be 409 
achieved through microcosm experiments32,43,146 or tracking of field communities148,149. These 410 
strategies are especially valuable when full mechanistic detail is unknown or unknowable, 411 
allowing progress through the identification of statistical regularities and structural 412 
constraints131. By adopting a systems-theoretic approach that emphasizes both structure and 413 
function, interaction matrices can be used not just to describe, but to explain and predict 414 
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ecological phenomena—transforming them from theoretical constructs into empirically 415 
grounded components of a unified ecological science. 416 

Conclusion 417 
Interaction matrices represent a major step towards a holistic analysis of a community, perhaps 418 
the last universally applicable stepping-stone building up from analysing populations 419 
separately. Matrices offer the mathematical foundation to pursue a systems approach and to 420 
make predictions at the community scale. Despite their simplicity, the fact that interaction 421 
matrices have frequently demonstrated their usefulness implies they are capable of capturing 422 
fundamental information about communities.  They continue to represent one of the best 423 
chances to bring unity to community ecology across systems from small microbial systems to 424 
whole oceans.  425 

In his last book, Robert MacArthur described linear interaction matrices as possibly being 426 
‘hopelessly far from the truth and [so] should not be used”150,pg. 33). The still relevant challenge 427 
identified then is to exercise judgment on the extent that we can rely on their answers. This 428 
process will be greatly helped by a more careful treatment of interaction matrices, as uncertain, 429 
but powerful, constructs.  430 
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