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Abstract 9 

Predicting species abundance is critical for understanding ecological dynamics and guiding 10 

conservation and management strategies. Traditional species abundance models (SAMs) rely on 11 

environmental variables and the presence or absence of key species, but often overlook community 12 

context and unmeasured environmental variation. Community composition can serve as a proxy 13 

for both unobserved environmental variables and biotic interactions influencing focal species. 14 

Here, we tested whether incorporating community composition via latent variables improves 15 

abundance predictions of sport fishing using a large-scale dataset. We assessed how latent variables 16 

selection and lake characteristics influences model accuracy across species. Our results show that 17 

low-abundance species were better predicted by models based solely on environment, while high-18 

abundance species benefited from latent variables. Lake contribution to accuracy were correlated 19 

among species with similar occurrence, but unrelated to environmental characteristics. Model 20 

performance varied by species, with no consistent association with trophic level, occurrence, or 21 

abundance. These findings underscore the need to tailor models to species-specific contexts and 22 

integrating community composition into abundance modelling.  23 
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 26 

Introduction  27 

Species abundance is a fundamental indicator of population health and viability within ecosystems. 28 

It offers crucial information on a species’ risk of local extinction, detectability, and ecological 29 

influence on their local communities, thereby informing conservation priorities and sustainable 30 

management practices. Understanding spatial patterns of species abundance is essential for 31 

determining whether populations are declining and require protection, or whether they can be 32 

harvested sustainably without compromising long-term viability (Degnbol and Jarre 2004). This 33 

knowledge is particularly valuable for policymakers, conservation practitioners, and resource 34 

managers striving to balance ecological sustainability with societal needs. Despite its importance, 35 

accurately estimating species abundance remains a major challenge. Data collection typically 36 

requires intensive fieldwork, make it both costly and time-consuming (Yoccoz et al. 2001; 37 

Lindenmayer and Likens 2010; Dickinson et al. 2010). In additional, ethical considerations are 38 

increasingly relevant, especially for methods that involve fish capture and handling.  39 

 40 

Sampling constraints often limit the frequency and spatial extent of abundance assessments (e.g., 41 

across multiple lakes, streams or watersheds), making it challenging to generate comprehensive 42 

data over large geographic areas, extended time periods (Jackson and Harvey 1997), and across 43 

multiple species. These limitations are especially challenging when timely conservation or 44 

management actions are required. To address these challenges, fisheries researchers often reduce 45 

sampling intensity (e.g., number of waterbodies) and rely on predictive models to estimate 46 

abundance across broader regions (Species Abundance Models – SAMs; Waldock et al. 2022). 47 
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Traditional SAMs typically incorporate local and regional environmental variables such as 48 

temperature, habitat quality, and substrate to estimate abundance (Lek et al. 1996; Brosse et al. 49 

1999; VanDerWal et al. 2009; Boyce et al. 2016; Sobrino et al. 2020). These variables are generally 50 

easy to measure and can capture broad spatial and temporal trends in abundance in space and time. 51 

However, while these models can yield useful estimates, they often lack the precision and accuracy 52 

needed for fine-scale management and frequently overlook complex biotic interactions, such as 53 

competition and predation, that also influence abundance distributions (Mack et al. 2000; 54 

MacKenzie et al. 2002; Gaston 2003). Consequently, there is a persistent need to improve 55 

predictive models by incorporating additional data sources and quantitative frameworks that better 56 

account for the diverse factors influencing species abundance. 57 

 58 

Stahl et al. (2024) proposed a framework that enhance species abundance predictions by integrating 59 

environmental variables with co-occurrence data. While earlier SAMs have included presence-60 

absence data as predictors, they typically focused only on species with well-known interactions 61 

with the target species, such as those between a predator and its prey (Boulangeat et al. 2012; Lewis 62 

et al. 2017; Olkeba et al. 2020). In contrast, Stahl et al.’s approach incorporated presence-absence 63 

data for the entire local community as predictors of local abundance of a target species, offering a 64 

more comprehensive basis for predicting the abundance of a focal species. This approach offers at 65 

least two key advantages over traditional models. First, it leverages patterns of species co-66 

occurrence as proxies for unmeasured environmental variables. Second, it allows the integration of 67 

interaction networks at both local and regional scales, using these networks to predict variation in 68 

species abundance for a taget species. The framework employs Gaussian copulas to generate latent 69 

variables from species covariation, enabling the identification of complex patterns in multispecies 70 

data (Popovic et al. 2018).  71 
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 72 

Latent variables were initially introduced to reduce dimensionality in community data (e.g., 73 

indirect gradient analysis) and have since been adapted to represent unobserved ecological factors 74 

and processed inferred from species covariation in ecological models such as hidden environmental 75 

drivers or biotic interactions (see Walker & Jackson 2011). These latent factors, estimated from 76 

co-occurrence matrices, aim to capture as much variation in community composition as possible. 77 

If community structure is primarily shaped by species responses to environmental gradients and 78 

local interspecific interactions, these latent variables can effectively stand in for missing predictors 79 

in abundance models. Stahl et al. (2024) showed that copula-based latent variables reliably act as 80 

proxies for unmeasured environmental gradients when applied to simulated community data. In 81 

simulation studies where species abundances were generated as linear functions of environmental 82 

conditions and location-specific process error—without including species interactions or nonlinear 83 

environmental responses—the latent variables successfully captured the underlying environmental 84 

structure driving abundance patterns. This predictive improvement held across a range of scenarios, 85 

underscoring the robustness and generality of the framework across diverse ecological contexts. 86 

 87 

In real-world ecosystems, species interactions, such as competition, predation, and mutualism, play 88 

a fundamental role in shaping community structure and species abundance (Chase and Leibold 89 

2003; Tylianakis et al. 2008). These interactions introduce ecological complexities that can be 90 

captured by latent variables, which serve as proxies for unmeasured ecological factors and 91 

processes. By capturing both environmental influences and species interactions, latent variables 92 

offer a more comprehensive representation of the factors driving species abundances. This dual 93 

capacity makes them particularly promising for improving the accuracy and robustness of 94 

ecological models when applied to empirical data. Here, we apply a latent abundance-predictive 95 
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framework to a large empirical dataset of lake fish communities. Lake fish communities, being 96 

relatively more isolated systems compared to riverine and terrestrial system, often experience 97 

limited dispersal among sites. As a result, local species compositions and abundance are more 98 

likely to be shaped by in-lake environmental conditions and species interactions due to limited 99 

dispersal between lakes. As a result, local species compositions and abundance distributions are 100 

more likely to respond to local-lake influences, raising the possibility that variations between lakes 101 

could be effectively captured by latent factors.  102 

Here, we apply the framework developed in Stahl et al. (2024), on a large landscape-scale fish 103 

abundance data set, encompassing nearly 600 lakes and a wide range of environmental gradients. 104 

Our primary objective is to evaluate whether the inclusion of latent variables improves of the 105 

prediction of species abundance in real-world ecosystems, where species interactions and habitat 106 

specificity are key drivers. We focus on predicting sport fish abundances due to their ecological 107 

importance (e.g., large biomass), cultural and economic value, and heightened sensitivity to fishing 108 

pressure. As central targets of fisheries management, sport fishes also provide a practical context 109 

in which to assess the utility of our modeling approach for informing conservations and resource 110 

management strategies. To evaluate how different components of the fish community contribute to 111 

predicting sport fish abundances, we developed three modelling scenarios: (1) latent variables 112 

derived solely from other sport fishes, (2) latent variables derived from non-sport fish species, and 113 

(3) latent variables based on the full community, including both sport and non-sport fishes. 114 

 115 

To evaluate model performance, we developed a suite of novel assessment tools that examine both 116 

species-level predictions and community-level patterns, providing insights that will also benefit 117 

future users of our species abundance modelling framework. First, we assessed which lake types 118 

most strongly influenced predictive performance and whether these lakes represent rare or common 119 
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environmental conditions and species compositions, thereby informing the generalizability of our 120 

models across diverse ecological contexts. Second, we analysed shared patterns in species-specific 121 

predictive errors, as correlated errors may indicate that species respond to similar interactions and 122 

habitat conditions -a consideration for developing conservation strategies that account for 123 

community dynamics. Finally, we compared the predictive ability of models trained on all lakes 124 

versus only those where each target species for prediction occurs, addressing the trade-off between 125 

model generality and specificity. This comprehensive evaluation approach not only tests the 126 

robustness of our framework in capturing the complexity of lake ecosystems but also highlights 127 

opportunities for refining predictive modelling. Moreover, our modelling and assessment 128 

frameworks are flexible and can be readily adapted to other ecological modelling applications, 129 

offering a roadmap for future use by researchers and fisheries managers. 130 

 131 

Material and method 132 

Dataset 133 

Fish abundance was collected in 707 lakes by the Ontario Broadscale Monitoring Program 134 

(Sandstrom et al. 2011; Lester et al. 2021) of the Ontario Ministry of Natural Resources and 135 

Forestry (OMNRF, 2012), Canada. The lakes spanned from a latitude of 43° to 54° and a longitude 136 

of -95° to -76°, with areas of 0.21 to 905 km2 and maximum depth of 1.2 to 213 m. The lakes were 137 

sampled during the summers (June to September) from 2008 to 2012. The lake selection process 138 

used a stratified random sampling design, with strata defined by geographic zone and lake surface 139 

area. The lakes spanned three primary watersheds and 21 secondary watersheds (Figure 1). 140 

Watershed delimitations were obtained through Ontario Ministry of Natural Resources and 141 

Forestry - Provincial Mapping Unit (2024). 142 
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A depth-stratified design was employed to sample and estimate fish abundance (see Lester et al. 143 

2021 and Sandstrom et al. 2011 for more details on methods). The number of nets set per stratum 144 

was scaled with the surface area and depth strata within each lake to standardize sampling effort. 145 

Within each depth stratum, small and large mesh gillnets (small - mesh size between 13 and 38 mm; 146 

and large between 38 and 127 mm) were deployed overnight for 18 hours (Appelberg 2000; Arranz 147 

et al. 2022). All fish captured were identified to the species level. Counts of fish from each lake 148 

were converted to catch per unit effort (CPUE) by dividing the number of fish caught by the total 149 

length of net deployed. It reflects the expected catch per 100 meters of net over an 18-hour period. 150 

The number of species per caught per lake ranged from 2 to 25. We assumed that CPUE was an 151 

accurate proxy for local density of each species in each lake (Olin et al. 2009). 152 

 153 

The original dataset contained 87 species in total. We modelled the abundance of 14 species 154 

considered to be “sport fish”, as these species are present across a large potion of the region and 155 

are frequently target species for fisheries management (see Table 1 and Figure S2; selection of 156 

sport fish species was made following personal correspondence with Dr. Dylan Fraser, Concordia 157 

University, Montreal, Canada). We excluded 39 species that occurred in fewer than 10 lakes (i.e. 158 

<2% of all lakes) from the dataset, both to reduce computational time when calculating community 159 

latent variables, and because extremely rare species are generally not useful predictors of more 160 

widespread species (McGarigal et al. 2000). After applying these filters, we retained 34 non-sport 161 

fish species and 14 sport fish species, resulting in a final dataset of 48 species across 594 lakes 162 

(Figure 1). 163 

 164 

Environmental predictors 165 



 9 

Multiple environmental variables were measured for each lake at the same time they were sampled 166 

for fish abundances (see Sandstrom et al. 2011 on the choice of variables to measure, and the 167 

sampling methods used for each variable). A total of 64 environmental variables were recorded per 168 

lake (Table S2). These variables included measurements of local climate conditions (16 variables), 169 

hydro morphology (13 variables), lake chemistry (11 variables), lake productivity (10 variables), 170 

human activity on the lake (seven variables), watershed characteristics (five variables), as well as 171 

latitude and longitude.  172 

 173 

To streamline the analysis and reduce redundancy, we first standardized all variables to mean zero 174 

and unit variance, so they had a common scale and then applied Principal Component Analysis 175 

(PCA) followed by a sparsification step via a varimax rotation to derive a smaller number of 176 

composite environmental variables (Zou et al. 2006). Varimax aims to produce axes where many 177 

of the environmental loadings are close to zero, simplifying interpretation by emphasizing the most 178 

important relationships (correlations) between environmental variables and PCA axes. We used the 179 

prcomp and varimax from the R package stats (R Core Team 2017) for this analysis. Since the 180 

dataset was split into calibration and validation sets (see Modelling structure overview for more 181 

details on the split), we first ran the PCA on the calibration set data and then projected the validation 182 

set onto the newly generated multivariate (PCA) environmental axes. This approach reduced 183 

dimensionality while maintaining consistent predictive structures between the calibration and 184 

validation sets, and it was applied to each validation replicate during the modelling procedure.  185 

 186 

To identify the optimal number of PCA environmental axes, we conducted an analysis where the 187 

number of latent variables was fixed while the number of environmental PCA axes varied (see 188 

Supp. Information for details). The combination yielding the lowest out-of-sample error was 189 
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selected, leading to the use of 10 composite environmental PCA axes for all subsequent analysis 190 

(Table S3 and Figure S3). 191 

 192 

Latent variable generation 193 

We generated latent variables representing species covariation patterns based on presence-absence 194 

data for groups of species of interest (see following section Modelling structure overview). Latent 195 

variables were generated in two steps: (1) we first fitted a stacked species distribution model with 196 

a binomial family to model species occurrence, and (2) we applied a model-based copula ordination 197 

using Gaussian copulas to the stacked predictions. These steps were implemented with the 198 

functions stackedsdm and cord from the ecoCopula R package (Popovic et al., 2019, version 1.0-199 

2).  200 

 201 

The copula method was selected for its robustness with binomial data and computational efficiency 202 

(Popovic et al. 2022). We first fit a stacked species regression model without any predictors, used 203 

as a null model, to generate Dunn-Smyth residuals (Dunn and Smyth 1996). These residuals, which 204 

approximate standard normal residuals, are particularly advantageous for models with non-205 

Gaussian responses, including binary, count, and Poisson-distributed data. The Gaussian copula 206 

model was then fitted on these residuals to capture latent dependence structures among species. To 207 

mitigate potential bias associated with lake size, the log-transformed lake area was included as a 208 

covariate in the stacked species regression model. 209 

 210 

We generated sets of latent variables from three species groups: (1) sport fish species, (2) non-sport 211 

fish species, and (3) all fish species. These latent variable sets were then used as predictors in our 212 

single-species abundance models for each sport fish species. By using different groups of species 213 



 11 

combinations as a basis for latent variable generation, we were able to contrast their effectiveness 214 

in improving abundance predictions. This is particularly important because sampling and 215 

identifying all fish species in a lake may not be necessary for predicting the abundance of a target 216 

species if they do not contribute to improving predictive accuracy. The groups were also structured 217 

to reflect management’s varying interests. For example, if a group of species is identified as 218 

important for predicting the abundance of a target species, it could strengthen the case for 219 

incorporating them into management strategies aimed at the target species. To maintain consistency 220 

in the numbers of predictors, we limited the number of latent variables to four for each group (Stahl 221 

et al. 2024). Similarly to environmental variables, we conducted an analysis to identify the optimal 222 

number of latent variables to generate, where the number of composite environmental variables 223 

was fixed while the number of latent variables varied (see Supp. Information for details). The 224 

combination that resulted in the lowest out-of-sample error was selected, resulting in using four 225 

latent variables for subsequent analysis (Figure S4). 226 

 227 

Modelling structure overview 228 

To apply the framework from Stahl et al. (2024) to our dataset, we modified the original approach 229 

and implemented the following steps: 230 

- Using all lakes (n = 594), we derived three sets of latent variables from the presence-231 

absence data of: (1) sport fish species, (2) non-sport fish species, and (3) all fish species. 232 

- The dataset was randomly split into a calibration set and a validation set, representing 233 

respectively 70 % (n = 416 lakes) and 30 % (n = 178 lakes) of the dataset considered. This 234 

split was performed multiple times for each target sport fish species to assess uncertainty 235 

over model performance.  236 
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- Environmental variables of the calibration set were summarized by PCA with a 237 

sparsification step (Zou et al. 2006), and the environmental variables of the validation set 238 

were subsequently projected onto the same PCA axes (see section Environmental 239 

predictors for rationale).  240 

- The calibration set was used to fit (train) statistical models for predicting lake abundance 241 

of each of the 14 sport fish species. The trained models varied in their inclusion of different 242 

sets of predictors: (1) environmental variables summarized by sparse PCA axes, (2) 243 

environmental PCA axes combined with latent variables generated from presence-absence 244 

of the 14 sport fish species, (3) environmental PCA axes with latent variables generated 245 

from presence-absence of all non-sport fish species, and (4) PCA environmental axes and 246 

latent variables from the presence-absence of all fish species. This approach aimed to 247 

contrast the effects of different species groups on predictive ability and provide a 248 

comparison with models relying only on environmental data, as is commonly done in 249 

abundance modelling.  250 

- The validation set was used to evaluate the performance of each model in predicting species 251 

abundance, with accuracy measured by the log error. 252 

- The process of cross validation was replicated 1000 times. To determine the contribution 253 

of each lake to the dataset, we calculated the difference in error between two scenarios (1) 254 

when the lake was included in the calibration dataset, and (2) when the lake was excluded 255 

from the calibration dataset. This step allowed us to assess how influential a particular lake 256 

is on model performance and to identify whether certain lakes have a disproportionate effect 257 

on prediction accuracy. 258 

 259 
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Model fitting 260 

We compared models containing (1) PCA environmental axes, (2) PCA environmental axes and 261 

latent variables generated from presence-absence of sport fish, (3) PCA environmental axes and 262 

latent variables generated from presence-absence of non-sport fish, and (4) PCA environmental 263 

axes and latent variables generated from presence-absence of all fish species.  264 

We modelled variation in local abundance for each of the 14 sport fish species via a Generalized 265 

Additive Model (GAM) with a Tweedie distribution (Tweedie 1984) with a log-link function, using 266 

the functions tw and gam from the mgcv R package (Wood 2004, 2017, version 1.9-1). These 267 

models assume that the log of the conditional mean abundance for a species in each lake is the sum 268 

of (possibly nonlinear) functions of lake-specific covariates (Wood, 2017). We modelled the 269 

functional relationship between each predictive variable and log-mean abundance with a 2nd order 270 

thin-plate regression spline smoother (Wood 2003) with three basis functions using the function s 271 

from the R package mgcv. All models were estimated using restricted maximum likelihood (Wood 272 

2011) using only data from the calibration set. The Tweedie distribution was selected for its 273 

flexibility in modelling a wide range of mean-variance relationships, which is particularly 274 

advantageous given that the available abundance data are expressed as a density (number of catches 275 

per unit effort, CPUE, a commonly used metric in fisheries research). Since CPUE data often 276 

include many zeros and continuous positive values, the Poisson and negative binomial distributions 277 

are less appropriate for accurately capturing the underlying structure of the data.  278 

 279 

Metrics for evaluating model predictive ability 280 

Although our models can be fit to predict both presence-absence and abundance, we focused 281 

exclusively on evaluating their performance in abundance predictions. Given our interest in 282 

predictive accuracy, all metrics discussed below compare predicted abundance with observed 283 
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abundance, but only in the cases where the species was present. Note again, though, that our models 284 

were fit considering all lakes regardless of whether the species was present or not. This is important 285 

as some applications may require models to estimate potential abundance capacity in lakes where 286 

the species is absent, particularly for management purposes such as stocking, and our models are 287 

well-suited for such use. To assess whether a specific lake improved or reduced predictive ability, 288 

we used log error (LE) of predicted abundance as a measure of the bias of model prediction (Eq. 289 

1): 290 

𝐿𝐸𝑠,𝑚,𝑙 = 𝑙𝑜𝑔10 (
𝑌̂𝑠,𝑚,𝑙

𝑌𝑠,𝑚,𝑙
) Equation 1 

where s, m, l are indices for individual species, model, and lakes, respectively. Y denotes to the 291 

observed abundance and Ŷ represents the predicted abundance. 292 

 293 

This LE metric (Equation 1) assesses whether the model overestimated or underestimated the 294 

species' abundance in that lake. A positive LE indicates that the model overestimates abundance, 295 

whereas a negative LE reflects an underestimation. By examining the direction of the error, we 296 

could assess the impact of each lake on the overall predictive performance. The log error is also 297 

useful for evaluating the accuracy of predictive models when dealing with skewed data or data 298 

spanning several orders of magnitude (Tofallis 2015).  299 

 300 

The log error (LE metric, Equation 1) measures the relative magnitude of the difference between 301 

predictions and observations, rather than the absolute difference between the two. As noted earlier, 302 

LE was only calculated for lakes where the species was present (i.e. abundance greater than 0). For 303 

each calibration replicate (i.e., where lakes were selected randomly to be part of the calibration or 304 

validation set), the mean error across the validation set was assigned to the corresponding lakes of 305 
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the validation set. The median was then calculated across replicates for each model specification 306 

based on groups of species, target (response) species, and lake. This approach allowed to stabilize 307 

the error metric, as some lakes may have, in certain replicates, been part of a set with an extreme 308 

error rate. 309 

 310 

Target analyses based on key questions 311 

(1) Does the inclusion of latent variables improve prediction accuracy? To determine whether 312 

including latent predictors tended to improve model predictions compared to models with only 313 

environmental variables, we calculated a metric, LE, for each model and species, equal to the 314 

difference between the median of the absolute log error of out-of-sample predictions of the model 315 

containing only environmental variables to the median of the absolute of the log error of out-of-316 

sample predictions (Eq. 1) of the model that incorporated latent variables (Eq. 2). 317 

∆𝐿𝐸𝑠,𝑚 = 𝑀𝑒𝑑(|𝐿𝐸𝑠,𝑙,𝑚0
|) − 𝑀𝑒𝑑(|𝐿𝐸𝑠,𝑙,𝑚|) Equation 2 

where s, m, l are indexes for individual species, models, and lakes, respectively. Med refers to the 318 

median across lakes for a single fold and m0 to the model containing only environmental variables. 319 

Our goal was to determine whether the advantages observed in the original framework (Stahl et al. 320 

2024), which was tested on simulated data, could be replicated in an empirical dataset. 321 

 322 

(2) Are predictions of sport fish abundances more accurate when using sport fish, non-sport fish, 323 

or all fish species as predictors? We visually contrasted the distribution of log error (Eq. 1) of 324 

models with latent variables derived from three different community subsets (sport fish, non-sport 325 

fish, or all fish). 326 

 327 
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(3) What types of lakes significantly increase or decrease predictive ability, and are these lakes rare 328 

or common in terms of environment and/or species composition? We calculated (1) the 329 

environmental distinctiveness of a lake as the lake pairwise Mahalanobis distance matrix based on 330 

environmental variation (i.e., PCA axes), and (2) the ecological distinctiveness of a lake, in terms 331 

of species composition, was quantified using its Local Contribution to Beta Diversity (LCBD, 332 

Legendre & De Cáceres, 2013). LCBD values measure how much each local community 333 

contributes to the overall beta diversity of the study region, with higher values indicating lakes 334 

whose species assemblages are more compositionally unique relative to the regional 335 

metacommunity 336 

To assess each lake’s predictive contribution, we compared the median log error when the lake was 337 

included in the model calibration to the median log error when the lake was excluded (i.e., the lake 338 

was in the validation set, Eq. 3). To the best of our knowledge, this represents a novel approach for 339 

assessing how individual observations (in this case, lakes) contribute to model performance (i.e., 340 

leverage), which can be generalized to any modelling framework whereas based on likelihood 341 

approaches (as in here) or machine learning techniques.  342 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑙,𝑠 = Med𝑙∈𝐶𝑗
(|𝐿𝐸𝑠,𝑗|) − Med𝑙∈𝑉𝑗

(|𝐿𝐸𝑠,𝑗|) Equation 3 

where l, s, j are indices for lakes, and replicates, respectively. The median (referred to as Med in 343 

Eq 3) 𝐿𝐸𝑗,𝑠 was calculated for the lakes in the validation set for species s in replicate j. Vj in Eq. 3 344 

represents the validation set for replicate j, and Cj represents the calibration for the same replicate. 345 

For each species, we used the log error values of the best-performing model, defined as the one 346 

with the absolute median log error closest to zero. 347 

Unlike the Euclidean distance, the Mahalanobis accounts for correlations among environmental 348 

variables (Mahalanobis 1936; De Maesschalck et al. 2000). This ensures that distances along 349 
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strongly correlated environmental axes are not overrepresented and that each lake’s environmental 350 

distinctiveness reflects departures from typical conditions. The pairwise Mahalanobis distance 351 

between lakes was calculated over the first 62 axes of a PCA based on the 64 environmental 352 

variables. Note that these PCA axes are somewhat correlated (unlike standard PCA axes) given the 353 

sparsification step via a varimax rotation, hence the use of the Mahalanobis distance. Additionally, 354 

we applied Principal Component Analysis (PCA) instead of using the original variables because 355 

their correlation structure exhibited rank deficiency cause by the fact that the last two eigenvalues 356 

were exactly zero. This indicates that some variables were linearly dependent or provided 357 

redundant information, reducing the effective dimensionality of the data. The PCA was conducted 358 

using the function princomp from the R package stats (R Core Team 2017). For each lake, we 359 

calculated the average Mahalanobis distance between it and all other lakes. A smaller distance 360 

indicates that the lake's environmental conditions are uncommon (rare) compared to the others, 361 

while a larger distance suggests that the lake shares many common environmental features with 362 

other lakes. 363 

Local Contributions to Beta Diversity (LCBD) is a metric used to quantify the unique contribution 364 

of individual communities (here lakes) to the overall beta diversity within a region (Legendre and 365 

De Cáceres 2013) and as such can be viewed as a measure of ecological distinctiveness of a lake 366 

in the dataset. High LCBD values indicate that a lake has a more distinct (rare) community 367 

composition compared to other lake communities, while low values suggest that the species 368 

composition is more widespread and common across lakes. LCBD was calculated from the 369 

presence-absence dataset of all species using the functions beta.div.comp and LCBD.comp from 370 

the R package adespatial (Dray et al., 2023, version 0.3-23). 371 

 372 
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(4) To what extent do species share lakes that either improve or reduce predictive accuracy? We 373 

calculated Pearson correlations between all pairs of species of the lake-specific contributions to 374 

model predictive ability for each species (i.e., models containing the same environmental and latent 375 

variables, as per Eq. 3). By visually examining these correlations, we aimed to identify patterns of 376 

shared environmental or biotic factors that might impact multiple species in similar ways. This 377 

approach allowed us to determine whether certain lakes consistently played a greater role in 378 

predicting abundance for multiple species or if their influence varied by species. 379 

 380 

A lack of correlation would indicate that different species respond to distinct, lake-specific factors. 381 

This insight is critical for ecological modelling – where it signals that predictive performance for 382 

one species may not generalize to others – and for and for conservation and management, as it 383 

highlights that protecting or managing a lake for one species may not benefit others with different 384 

ecological requirements. Alternatively, identifying shared drivers across species could streamline 385 

management efforts by focusing on key environmental factors that support multiple species 386 

simultaneously. Conversely, recognizing species-specific contributions allows for tailored 387 

management strategies address the unique needs of individual species. 388 

 389 

(5) Are sport fish abundances better predicted using all lakes or only those where the species is 390 

present? To address this question, we conducted the same analysis but restricted the pool of lakes 391 

to those where species was present (i.e., abundance greater than 0). For this analysis, we excluded 392 

two species, muskellunge and sauger, due to their very low occurrences - present in only 38 and 393 

29 lakes, respectively - which resulted in insufficient variation in the community composition of 394 

these lakes and made it impossible to fit the various models. As before, we first measured the 395 

average log error per lake (Eq. 1) across replicates and compared the performance of the two 396 
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models with the metric SLE, defined as the difference between absolute mean log error of the 397 

model fitted using all lakes and the absolute mean log error of the model fitted using the reduced 398 

lake pool (Eq. 4).  399 

Δ𝑆𝐿𝐸𝑠,𝑚 = |
1

𝑀
∑ 𝐿𝐸𝑙,𝑠

𝑙 ∈ 𝑀

| − |
1

𝐿𝑠
∑ 𝐿𝐸𝑙,𝑠

𝑙 ∈ 𝐿𝑠

| Equation 4 

where s, m, l, M, Ls, are indices for species, models, all lakes of the dataset, and lakes where species 400 

s is present, respectively. A positive SLE indicates that the model using only lakes where the 401 

species is present performs better, while a negative value suggests that the model fitted with all 402 

lakes performs better.  403 

 404 

Results 405 

Our first goal was to determine whether incorporating latent variables derived from presence-406 

absence of other species in the lake community improved predictions of target (sport fish) species 407 

abundance, which we assessed by comparing LE between the environmental-based model and 408 

the latent-based models. Not all target species models benefitted from the inclusion of latent 409 

variables (Figure 2). Importantly, the method used to generate these latent variables did not affect 410 

the direction of the LE values and consistently produced the same overall effect on predictive 411 

ability, whether as an improvement or a decline relative to the environmental model. A clear trend 412 

emerged: species with low occurrences were predicted more accurately by the environmental 413 

model, whereas species with higher occurrences were better predicted by models that included 414 

latent variables. We then assessed how different species groups influenced predictive performance 415 

by comparing models in which the latent variables were derived from sport fish species, non-sport 416 

fish species, or all fish species combined. Our analysis showed that the best-performing model 417 
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varied by species used to build latent variables, but differences in LE densities across models were 418 

relatively modest, suggesting that variations in predictive accuracy were not substantial (Figure 3, 419 

Table S3). Cisco, lake whitefish, largemouth bass, northern pike, and smallmouth bass were best 420 

predicted by the model using latent variables incorporating all fish species. In contrast, black 421 

crappie, lake trout, rainbow smelt, walleye, and yellow perch were better predicted by the model 422 

using non-sport fish species. The remaining four species were most accurately predicted by the 423 

model that included only sport fish species. 424 

 425 

Next, we focused on identifying which types of lakes influenced predictive ability by 426 

analysing their contributions to LE and evaluating whether these influential lakes were rare or 427 

common in terms of their environmental characteristics and/or community composition (Figure 4).  428 

The LE metric showed no correlation with lake rarity, whether defined by environmental 429 

characteristics (Mahalanobis distance) or by species composition (LCBD). This suggests that 430 

predictive ability is not primarily driven by whether lake types are common or rare, although certain 431 

lake characteristics may still influence predictive through their overall characteristics, regardless 432 

of their rarity (or commonness). To determine which lake characteristics influenced predictive 433 

ability, either positively or negatively, we plotted the contribution to the log error against each 434 

environmental variable. These variables included log-transformed area (in km²), altitude (in 435 

meters), maximum water temperature (in °C), and Trophic Status Index (TSI) based on phosphorus 436 

levels (Figure S5). No clear pattern emerged in relation to key environmental variations. Taken 437 

together, these results indicate that our models are robust against variations in lake rarity, whether 438 

defined by environmental characteristics or community composition, and are not strongly 439 

influenced by specific environmental factors, reinforcing the general applicability of the predictive 440 

framework across diverse lake types. 441 
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We evaluated whether the predictive contributions of individual lakes were consistent across 442 

species by calculating the correlation of lake-specific contributions between species for each model 443 

specification (i.e., sport fish species, non-sport fish species, and all fish species; Figure S6). Visual 444 

analysis revealed three distinct groups with similar correlations across models: (1) rainbow smelt, 445 

muskellunge, and sauger; (2) burbot, lake trout, black crappie, brook trout, and largemouth bass; 446 

and (3) yellow perch, smallmouth bass, northern pike, walleye, lake whitefish, and cisco.  447 

The first and third groups showed negative correlations with each other but positive correlations 448 

within their respective groups (Table 2). In contrast, species in the second group exhibited 449 

idiosyncratic responses, with no meaningful correlations either within or between groups. The 450 

species groups also appear to be correlated with their occurrence rates (i.e., number of lakes that 451 

the species was present): group 1 consisted of low-occurrence species, group 2 included medium-452 

occurrence species, and group 3 represented high-occurrence species. 453 

Finally, we examined whether sport fish abundances (target species) were better predicted by 454 

models fitted using data from all lakes or only from lakes where the species was present. The results 455 

varied by species but were extremely consistent across models (Figure 5). For rainbow smelt, lake 456 

trout, and lake whitefish, models fitted using only the lakes where the species occurred performed 457 

better on average. In contrast, for black crappie, brook trout, largemouth bass, burbot, smallmouth 458 

bass, cisco, walleye, northern pike, and yellow perch, predictions were more accurate when models 459 

included data from all lakes in the dataset. This finding highlights an important aspect of modelling 460 

species abundances: a one-size-fits-all approach is not the most effective, as each species may 461 

require different model specifications to produce accurate abundance predictions. 462 

 463 

Discussion 464 



 22 

Our first goal was to assess whether abundance models including latent variables, as designed by 465 

Stahl et al. 2024, could improve prediction accuracy of species abundances in a large, complex 466 

natural system. The original approach was tested only through simulations and did not account for 467 

species interactions, such as those found in large scale lake-fish ecosystems. One of the key 468 

advantages of this modelling framework is its ability to use presence-absence data, which are easier 469 

to generate than abundance data, to extract latent variables that are then used to predict the 470 

abundance distributions of target species. The results indicate that models containing latent 471 

variables primarily improved predictions for high-occurrence species, whereas low occurrence 472 

species are betted predicted by the environmental model alone, highlighting that the benefits of 473 

including latent variables are species-specific rather than uniform across the community. 474 

 475 

Our second goal was to assess whether the choice of species subset to generate latent variables 476 

impacted predictive performance. We found that no single species subset performs best across all 477 

target species. This suggests the framework’s effectiveness is relative insensitive to species subsets.  478 

The findings are consistent with the original framework assessment using simulated data, which 479 

also showed better that incorporating latent variables yielded better predictions for higher-480 

occurrence species. They also align with the broader literature, which suggests that low-occurrence 481 

species are generally more vulnerable to stochastic environmental fluctuations and demographic 482 

instability (Gaston 1994; Brown et al. 1995), while high-occurrence species tend to engage in more 483 

complex biotic interactions (Mouquet et al. 2003; Araújo and Luoto 2007). This could suggest that 484 

latent variables are most beneficial for predicting high-occurrence species, which are more 485 

influenced by biotic interactions, whereas low-occurrence species are predominantly shaped by 486 

stochastic environmental and demographic processes. However, it is possible that these outcomes 487 

are system-specific, and the modelling framework could perform better for low-occurrence species 488 
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in other ecosystems. The framework is flexible enough to be generalized across different taxa and 489 

systems. Future applications could explore alternative methods for combining species to generate 490 

latent variables that maximize the predictive accuracy for target species, such as using model 491 

selection tailored to select species combinations that improve predictions for specific species (see 492 

below for other alternative for species selections).  493 

 494 

Our third goal was to identify the types of lakes that strongly influenced predictive ability, either 495 

positively or negatively, by examining the relationship between log error contribution and both 496 

environmental and community composition distinctiveness (LCBD). We found no correlation 497 

between log error contribution and the rarity or commonality of lake environmental features, 498 

community compositions, or specific environmental features. Essentially, this suggests that large 499 

lakes are just as likely to improve predictions as small lakes, and models’ predictive ability is not 500 

influenced by specific environmental attributes or species compositions. On one hand, this finding 501 

is significant as it challenges the common assumption that certain environmental and biotic 502 

characteristics inherently enhance predictive power in ecological models. For instance, one might 503 

expect larger lakes, being more stable (May 1972) and supporting more diverse habitats, to provide 504 

more reliable predictions (Magnuson et al. 2005).Alternatively, larger lakes may be less predictable 505 

because their greater abundance of microhabitats and, as a result, local environmental variation 506 

(Strayer & Findlay 2010) is often not fully captured by standard environmental measurements. On 507 

the other hand, the results suggest that predictive accuracy is not inherently tied to these 508 

environmental complexities, increasing the generality of our predictive framework across various 509 

and diverse lakes. This implies that our models are robust across different environmental contexts, 510 

a valuable attribute for broad-scale ecological applications. 511 
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The correlation of lake contribution across species allows us to effectively group species by their 512 

occurrence rates, revealing underlying ecological patterns that shape species distributions and 513 

abundances. This association suggests that species within the same occurrence group (low, 514 

medium, or high) likely respond to similar environmental drivers or ecological interactions in lake 515 

ecosystems, supporting findings from other studies (Araújo and Guisan 2006; Ovaskainen et al. 516 

2010; Legendre and Legendre 2012). These results underscore the complexity of ecosystem 517 

dynamics and the need for sophisticated models that account for diverse species interactions and 518 

environmental conditions. Models that incorporate a broad range of variables, including both 519 

environmental factors and species interactions, are essential for capturing the intricate nature of 520 

ecological communities (Wisz et al. 2008). Given the distinct correlation patterns among the three 521 

species groups, generating latent variables specific to each group could be a promising avenue for 522 

improving abundance predictions. This strategy leverages ecological similarities within each 523 

group, potentially capturing more relevant interactions and environmental gradients that influence 524 

species abundance. Moreover, identifying species combinations (groups) that are consistently used 525 

across models for multiple target species may be more appropriate for management and 526 

conservation practices than identifying different species combinations that maximize abundance 527 

predictions for each individual target species as discussed earlier. This is because using a consistent 528 

set of species groups simplifies decision-making, enhances the applicability of the models across 529 

various contexts, and facilitates the development of broader, ecosystem-wide management 530 

strategies rather than focusing on species-specific predictions. 531 

 532 

The analysis of whether sport fish abundances were better predicted using data from all lakes or 533 

only those where the species was present revealed variations across species, with no clear pattern 534 

emerging in relation to occurrence, abundance, or trophic level. This suggests that the predictive 535 
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success of each approach may be driven by species-specific ecological factors, such as habitat 536 

specificity, life history traits, or community interactions – factors that are potentially not fully 537 

captured by the diverse and numerous environmental predictors we considered. These findings are 538 

consistent with previous studies (see Dormann et al. 2013; Elith et al. 2010; Thuiller et al. 2005 539 

among others), highlighting the importance of incorporating species-specific ecological dynamics 540 

in predictive models. The consistency of our results across models - whether based solely on 541 

environmental variables or a combination of environmental variables and community composition 542 

factors, highlights the importance of approaches that account for the unique ecological context of 543 

each species. This makes it challenging too design broad conservation and management strategies, 544 

because any general approach must still account for the specific needs of individual species. 545 

 546 

Our study provides a series of interconnected insights that link the questions we explored. First, 547 

we found that low abundance species are better predicted by environmental models, while high 548 

abundance species show improved predictions when latent variables are included (Question 1). 549 

This distinction suggests that environmental factors play a more significant role in shaping the 550 

distribution of low abundance species, whereas high abundance species may be more influenced 551 

by community interactions potentially captured by latent variables. Supporting this, we observed 552 

that individual lake contributions to predictive accuracy are correlated within low abundance 553 

species as well as within high abundance species (Question 4). However, these correlations do not 554 

extend between the two groups, indicating that the factors driving the predictive success of lakes 555 

for low abundance species are distinct and inversely related to those influencing high-abundance 556 

species. Interestingly, these patterns in lake contributions do not correlate with environmental 557 

distinctiveness, species composition distinctiveness, or any of the environmental variables assessed 558 

(Question 3). Together, these findings suggest that while environmental variables are key 559 
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predictors for low abundance species (Gaston 1994; Brown et al. 1995), high abundance species 560 

are likely responding to more complex, community-level interactions that are better captured by 561 

latent variables (Mouquet et al. 2003; Araújo and Luoto 2007). The distinct and negatively 562 

correlated patterns of lake contributions across these species’ groups point to underlying ecological 563 

processes not linked to traditional environmental or spatial predictors used in species distribution 564 

models. These results highlight the need for further investigation into the specific ecological drivers 565 

underlying these patterns, particularly species interactions and community dynamics, which may 566 

differ fundamentally between low- and high-abundance species. 567 

 568 

Our findings echo those of Hui (2013), who demonstrated that clustering species by their 569 

environmental affinities, or ‘archetypes’, improved predictive accuracy. In a similar way, we found 570 

that clustering species based on their occurrence patterns, particularly low- and high-abundance 571 

species, enhanced our ability to predict species distributions. This suggests that identifying and 572 

leveraging such clusters, whether based on environmental affinities or other ecological traits such 573 

as abundance, is essential for improving ecological predictive models. It underscores that a one-574 

size-fits-all approach may not be optimal when modelling species distributions, especially in 575 

complex ecosystems like lakes, where species interactions and community dynamics play a 576 

significant role. 577 

 578 

While our study provides valuable insights, it has limitations. A key limitation is that it relies on 579 

data from lake ecosystems, where dispersal is relatively restricted and species are likely more 580 

strongly shaped by local environmental conditions. While our modelling framework is applicable 581 

to any system, the empirical findings derived from our studied lake system may limit the 582 

generalizability to other ecosystems, particularly those where species dispersal plays a more 583 
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dominant force in shaping community structure and species distributions (Leibold et al. 2004; 584 

Peres-Neto et al. 2012; Thompson & Gonzalez 2017; Urban et al. 2012). Additionally, generating 585 

latent variables from presence-absence data may oversimplify the ecological processes influencing 586 

species abundance, especially in communities with complex, non-linear, or context-dependent 587 

interactions. For example, mutualistic or competitive interactions that vary in strength across 588 

different environmental conditions may not be adequately captured by latent variables derived from 589 

binary data (Ovaskainen et al. 2017 but see Clark et al. 2018 for a method that does) but see Clark 590 

et al. 2018 for a method that does). This simplification can introduce biases in model predictions, 591 

particularly when addressing intricate species interactions or generalizing results across different 592 

ecosystems.  593 

 594 

Another limitation is our use of random sampling to split calibration and validation sets for 595 

simplicity and efficiency. DiRenzo et al. (2023) and Roberts et al. (2017) recommend more robust 596 

methods such as spatial cross-validation or blocking, especially in cases where data are 597 

autocorrelated or where the covariance structure of predictors shifts between datasets. As Wenger 598 

& Olden (2012) point out, failing to account for these factors can reduce the transferability and 599 

accuracy of ecological models. Incorporating techniques such as stratified sampling may yield 600 

more reliable predictions. In summary, while our study advances the understanding of species 601 

abundance prediction, it underscores the need for more comprehensive modelling approaches that 602 

better account for the complex interplay of environmental, spatial, and biotic factors. 603 

 604 

In conclusion, our study demonstrates the value of integrating co-occurrence data via latent variable 605 

into predictive models for species abundance. Our findings highlight the importance of considering 606 

species occurrence patterns and environmental affinities when developing predictive models, as 607 
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clustering species based on these factors can enhance model accuracy. This reinforces the notion 608 

that tailored modelling approaches are essential for understanding and managing complex 609 

ecological systems.  610 
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Tables 850 

Table 1. List of species included in the dataset, with both common and Latin names. The 851 

“category” column indicates whether the species is classified as a sport fish, based on guidance 852 

from Dr. Dylan Fraser, Concordia University, Montreal, Canada. The study primarily focused on 853 

predicting the abundance of sport fish. Within each category, species are ordered by incidence in 854 

the dataset (i.e., percentage of lakes in which the species occur), from highest at the top to lowest 855 

at the bottom. 856 

Category Common name Scientific name Incidence (%) 

S
p
o
rt

 f
is

h
 

Yellow perch Perca flavescens 84 

Northern pike Esox lucius 71 

Walleye Sander vitreus 68 

Cisco  Coregonus artedi 58 

Lake whitefish Coregonus clupeaformis 53 

Smallmouth bass Micropterus dolomieu 48 

Lake trout Salvelinus namaycush 45 

Burbot Lota lota 38 

Largemouth bass Micropterus nigricans 16 

Brook trout Salvelinus fontinalis 11 

Black crappie Pomoxis nigromaculatus 10 

Rainbow smelt Osmerus mordax 9 

Muskellunge Esox masquinongy 6 

Sauger Sander canadensis 5 

N
o
n

-s
p
o
rt

 f
is

h
 

White sucker Castotomus commersonii 93 

Spottail shiner Notropis hudsonius 48 

Rock bass Ambloplites rupestris 43 

Trout perch Percopsis omiscomaycus 42 

Pumpkinseed Lepomis gibbosus 29 

Logperch Percina caprodes 26 

Common shiner Luxilus cornutus 23 

Golden shiner Notemigonus crysoleucas 23 

Emerald shiner Notropis bifrenatus 21 

Brown bullhead Ameiurus nebulosus 20 

Blacknose shiner Notropis heterolepis 18 

Bluntnose minnow Pimephales notatus 17 

Lake chub Couesius plumbeus 14 

Longnose sucker Castotomus castotomus 12 

Shorthead redhorse Moxostoma macrolepidotum 12 

Bluegill Lepomis macrochirus 9 
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Ninespine stickleback Pungitius pungitius 9 

Blackchin shiner Notropis heterodon 7 

Mimic shiner Notropis volucellus 7 

Mottled sculpin Cottus bairdii 7 

Pearl dace Margariscus margarita 7 

Slimy sculpin Cottus cognatus 7 

Brook stickleback Culaea inconstans 6 

Creek chub Semotilus atromaculatus 6 

Fathead minnow Pimephales promelas 6 

Johnny darter Etheostoma nigrum 6 

Northern redbelly dace Chrosomus eos 6 

Spoonhead sculpin Cottus ricei 3 

Yellow bullhead Ameiurus natalis 3 

Common carp Cyprinus carpio 2 

Fallfish Semotilus corporalis 2 

Iowa darter Etheostoma exile 2 

Longnose dace Rhinichthys cataractae 2 

Silver redhorse Moxostoma anisurum 2 

 857 
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Table 2. Mean and standard deviation of correlation between species groups across models. We 858 

calculated the correlation between lake contributions for each species and model, revealing distinct 859 

grouping patterns (see Figure S6). The species were grouped as follows: (Group 1) rainbow smelt, 860 

muskellunge, and sauger; (Group 2) burbot, lake trout, black crappie, brook trout, and largemouth 861 

bass; and (Group 3) yellow perch, smallmouth bass, northern pike, walleye, lake whitefish, and 862 

cisco. 863 

 Group 1 Group 2 Group 3 

Group 1   0.72  0.04   

Group 2 - 0.09  0.03 - 0.03  0.09  

Group 3 - 0.75  0.06   0.12  0.04 0.80  0.05 

 864 
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Figure captions 865 

Figure 1. Map of the 594 lakes in Ontario, Canada, included in our models. Each point is color-866 

coded to represent the number of species present in the lake (i.e., species richness). Black lines 867 

delineate the provincial political boundaries, while grey lines delineate the secondary watersheds 868 

(Ontario Ministry of Natural Resources and Forestry - Provincial Mapping Unit 2024). 869 

Figure 2. LE as a function of model and species. The LE was calculated as the median absolute 870 

log error of the model with only environmental variables, minus the median absolute log error of 871 

the model incorporating latent predictors (Eq. 2). Positive values (in blue) indicate that the model 872 

with latent predictors performed better, while negative values (in red) signify better performance 873 

by the environmental model. Latent variables were generated using one of three groups (1) sport 874 

fish species, represented (“Env.sport”), (2) non-sport fish species, represented (“Env.non.sport”), 875 

or (3) all fish species (“Env.all”). Species are ordered by incidence (number of lakes present) in 876 

the dataset, from highest at the top to lowest at the bottom. 877 

Figure 3. Density plot of the log error as a function of species and model. The log error was 878 

calculated following Eq. 1, and for each lake, the median log error was taken across replicates for 879 

each species and model. Latent variables were generated using three groups: (1) sport fish species 880 

(green), (2) non-sport fish species (blue), and (3) all fish species (red). All models also included 881 

environmental variables. The dotted vertical line represents an error of 0, meaning the median 882 

prediction equals the median observed values. Species are ordered by their incidence (number of 883 

lakes occupied) in the dataset, from highest at the top to lowest at the bottom. 884 

Figure 4. Contribution of each lake to the log error as a function of environmental distinctiveness 885 

and Local Contribution to Beta Diversity (LCBD) per species (see methods how these values were 886 

calculated). The lake’s contribution was measured as the median across replicates of the difference 887 
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between the log error when the lake was included in calibrating the model and the log error when 888 

the lake was excluded (i.e., in the validation set, Eq. 3). A positive contribution indicates that 889 

including the lake in model improved predictions, while a negative contribution indicates that 890 

excluding it improved predictions. Point color indicate species presence (black) or absence (white) 891 

in the lake. High LCBD values indicate that a lake has a more distinct community composition in 892 

relation to other lakes, whereas a low value suggests a common composition. Each sport fish 893 

species is shown in a separate panel, and the log error values are from the best model (i.e., the 894 

model with a median log error closest to 0; see Appendix 2 for model details per species). The 895 

dotted horizontal line represents an error of 0, indicating that the median prediction equals the 896 

observed values). Species were ordered by incidence (number of lakes occupied) in the dataset, 897 

from highest at the top to lowest at the bottom. 898 

Figure 5. Boxplot of the SLE per species. The SLE is calculated as the absolute mean log error 899 

fitted using all lakes minus the absolute mean log error of the model fitted using only where the 900 

species is present (Eq. 4). A positive SLE indicates better performance when using the reduced 901 

lake pool, while a negative SLE suggests that the model using all lakes performs better. Each 902 

point represents a model, and the boxplots group the results of all four models per species. The 903 

dotted horizontal line represents an identical performance between models trained on either all 904 

lakes or only those where the species is present. Muskellunge and sauger were excluded due to 905 

their extremely low occurrences (number of lakes occupied), which rendered the analysis 906 

infeasible. Species are ordered by incidence in the dataset, from lowest on the left to highest on the 907 

right. 908 

 909 
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Figures 910 

 911 

Figure 1.  912 
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Figure 2.  914 
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Figure 3.  916 
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Figure 4.  918 
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Figure 5.  920 
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Appendix: Identification of optimal number of composite environmental variables and latent 922 

variables. 923 

Methods 924 

Given the high dimensionality of our data, we needed to decide how many variables to use in 925 

recombining the environmental variables, as well as how many latent variables to generate to best 926 

predict species abundance. To optimize these selections, we performed a two-step analysis. First, 927 

we fixed the number of one group of variables while varying the other (i.e., environmental variables 928 

or latent variables) and then repeated the process in reverse. Specifically, we set the number of 929 

variables to five for the fixed group and tested variables ranging from 2 to 15 in increments of 1, 930 

as well as 17 and 20 for the varying group. For each tested combination, we randomly split the data 931 

into calibration and validation sets (respectively 292 and 291 lakes). We then fitted a Generalized 932 

Additive Model (GAM) with a Tweedie distribution, using the functions tw and gam from the R 933 

package mgcv (Wood 2004; Wood et al. 2016, version 1.9-1). Each explanatory variable was fitted 934 

with a 2nd order thin-plate regression spline smoother (Wood 2003) with 3 bases functions using 935 

the function s from the R package mcgv and linking the smoothing parameters across environmental 936 

and latent variables. All models were estimated using restricted maximum likelihood (Wood 2011) 937 

using only data from the calibration set and used the double penalty approach for term selection 938 

(Marra and Wood 2011). This procedure was repeated 100 times and for six species with different 939 

occurrence rates representative of the whole dataset (Table S1). The out-of-sample average 940 

prediction was calculated across replicates, and the median across species of the Mean Squared 941 

Error (MSE) was derived. 942 

 943 

 944 
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Table S1: List of species considered in the dataset, including both common and scientific name as 945 

well as percentage of occurrence in the dataset. Species are organized by occurrence, with high 946 

occurrence species at the top of the table and low occurrence species at the bottom of the table. 947 

Common name Scientific name Occurrence rate (in %) 

Lake whitefish Coregonus clupeaformis 54 

Common shiner Luxilus cornutus 23 

Black crappie Pomoxis nigromaculatus 10 

Brook stickleback Culaea inconstans 6 

Fallfish Semotilus corporalis 2 

Channel catfish Ictalurus punctatus 1 

 948 

Results 949 

When fixing the number of latent variables and varying the number of environmental variables, the 950 

lowest Mean Squared Error (MSE) was observed when using 10 environmental variables (Figure 951 

S1). Conversely, when fixing the number of environmental variables and varying the number of 952 

latent variables, the lowest MSE was achieved with four latent variables. This pattern aligns with 953 

expectations, where MSE typically decreases as the number of variables increases until an optimal 954 

point is reached, after which overfitting causes the error to rise. Overfitting occurs because the 955 

model becomes overly complex, capturing noise in the training data rather than the underlying 956 

signal, leading to poorer generalization to new data (Burnham and Anderson 2004; Hastie et al. 957 

2009). Therefore, we selected 10 environmental variables and four latent variables for generating 958 

the composite environmental variables and latent variables in the main analysis.  959 
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 960 

Figure S1: Median Mean Squared Error (MSE) as a function of number of composite 961 

environmental and latent variables. The figure shows the median Mean Squared Error (MSE); with 962 

the MSE calculated for out-of-sample abundance predictions across replicates and the median 963 

calculated across species. The number of variables generated was varied from 2 to 15 in increments 964 

of 1, as well as 17 and 20, while the fixed group used 5 variables. Each facet indicates the group 965 

being varied. The MSE is represented on a log10 scale, with the expectation of observing a decrease 966 

in MSE until an optimal point is reached, after which the error increases due to model overfitting. 967 

 968 

 969 
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Supplementary information 970 

Table S2: Table of environmental variables and their units grouped by categories (e.g., climate, 971 

productivity). See Sandstrom et al. (2011) for details on sampling methods. 972 

Category Environmental variable 

H
y
d
ro

 m
o
rp

h
o

lo
g
y

 

Area (km2) 

Maximum lake depth (m) 

Minimum lake depth (m) 

Numeric code indicating lake size 

Observed hypolimnetic area 

Observed hypolimnetic volume 

Observed thermocline depth (m) 

Perimeter lake (no islands, km) 

Proportion of lake area below 20m in depth 

Proportion of littoral (< 4.6m) 

Shoreline development factor 

Total shoreline of lake (perimeter and islands, km) 

Volume (m3) 

F
is

h
in

g
 a

ct
iv

it
ie

s Annual angling pressure based on aerial survey counts (angler-hours/ha-year) 

Conservation status (binary; 1 implies some form of conservation status) 

Fisheries management zone (categorical) 

Mean count of fishing boats in summer 

Mean count of ice huts in winter 

Mean count of open ice fishers in winter 

Mean count of shore fishers in summer 

P
ro

d
u
ct

iv
it

y
 

Dissolved Inorganic Carbon (mg.L) 

Dissolved Organic Carbon (mg.L) 

Ratio of ammonia over ammonium (mg.L) 

Ratio of nitrate over nitrite (ug.L) 

Secchi depth of lake in spring (m) 

Total dissolved solids (mg.L) 

Total Kjeldahl nitrogen (ug.L) 

Total phosphorus (ug.L) 

Trophic status index based on phosphorous 

True color (TCU) (see Moore et al. 1997 for details) 

C
li

m
a
te

 

Average date of the first day above 0°C (ordinal day) 

Average date of the last day above 0°C (ordinal day) 

Average rainfall from 1981-2010 (mm) 

Cumulative degree days where temperature was above 0°C 

Cumulative degree days where temperature was below 0°C 

Degree days above 5°C from 1981-2010 

Maximum monthly air temperature (°C) 

Maximum surface temperature (°C) 
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Category Environmental variable 

Maximum water temperature (°C) 

Mean annual air temperature from 1981-2010 (°C) 

Minimum monthly air temperature (°C) 

Number of days where temperature was above 0°C 

Number of ice-free days 

Proportion of cold days (between 8 and 12°C) during ice free period 

Proportion of cool days (between 22 and 26°C) during ice free period 

Proportion of warm days (between 16 and 20°C) during ice free period 

W
at

er
sh

ed
 

ch
ar

ac
te

ri
st

i

cs
 

Age of tertiary watershed 

Altitude above sea level (m) 

Elevation within tertiary watershed (max-min, m) 

Tertiary watershed area (km2) 

Tertiary watershed elevation (meters above sea level) 

W
at

er
 c

h
em

is
tr

y
 

Alkalinity (mg.L.CaCO3) 

Calcium concentration (mg.L) 

Chloride concentration (mg.L) 

Conductivity (uS.cm.s) 

Iron 

Magnesium concentration (mg.L) 

pH 

Potassium concentration (mg.L) 

Silicate concentration (mg.L) 

Sodium concentration (mg.L) 

Sulphate concentration (mg.L) 

 973 
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Table S3: Table of the loadings of the PCA conducted on 64 environmental variables. We kept the first 10 axes of the PCA. Environmental variables 974 

are grouped by categories (e.g., climate, productivity). See Sandstrom et al. (2011) for details on sampling methods. 975 

Variable Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 Axis 9 Axis 10 

Latitude -0.89 0.11 -0.06 -0.12 -0.01 0.33 0.05 -0.08 0.03 0.15 

Longitude 0.63 -0.09 0.04 0.17 0.11 -0.6 -0.28 0.09 -0.08 -0.02 

Area (km2) -0.1 0.2 -0.75 0.04 -0.13 -0.1 -0.08 0.03 -0.11 0 

Maximum lake depth (m) -0.02 -0.22 -0.37 -0.09 -0.76 -0.02 -0.07 -0.06 0.17 -0.14 

Minimum lake depth (m) 0 -0.24 -0.13 -0.12 -0.9 0.01 -0.03 -0.03 0.16 -0.09 

Numeric code indicating lake size -0.21 0.02 -0.71 0.16 -0.23 0.08 0.04 -0.05 0.24 0.14 

Observed hypolimnetic area 0.07 -0.08 0.06 -0.06 -0.79 0.04 0.07 0.05 -0.39 0.1 

Observed hypolimnetic volume 0.03 -0.12 -0.02 -0.08 -0.8 -0.01 0.07 0.04 -0.35 0.06 

Observed thermocline depth (m) -0.15 -0.07 -0.21 0.09 -0.07 0.05 -0.1 -0.01 0.74 -0.01 

Perimeter lake (no islands -0.12 0.02 -0.96 0.01 -0.08 0.04 -0.01 -0.01 0.01 0.01 

Proportion of lake area below 20m in depth 0.01 0.24 0.11 0.09 0.87 0.02 0.01 0.01 -0.16 0.05 

Proportion of littoral (< 4.6m) -0.06 0.27 0.06 0.17 0.73 -0.07 -0.09 0.07 -0.06 0 

Shoreline development factor -0.04 -0.12 -0.89 -0.06 0.09 0.14 0.12 -0.07 0.05 0.02 

Total shoreline of lake (perimeter and 

islands 
-0.1 0.01 -0.96 0 -0.04 0.03 0.01 0 -0.04 0 

Volume (m3) -0.04 0.15 -0.59 0 -0.33 -0.08 -0.21 0.01 0.01 -0.14 

Annual angling pressure based on aerial 

survey counts (angler-hours/ha-year) 
0.46 0.06 0.02 0.31 0.14 0.12 0.03 0.7 -0.02 -0.2 

Conservation status (binary; 1 implies 

some form of conservation status) 
0.01 0.03 -0.28 -0.15 -0.2 -0.13 -0.12 -0.08 0.13 -0.08 

Fisheries management zone (categorical) 0.85 -0.07 0.04 0.2 0.08 -0.32 -0.21 0.08 -0.05 -0.06 

Mean count of fishing boats in summer 0.45 0.07 -0.01 0.36 0.17 0.18 0.02 0.54 -0.03 -0.23 

Mean count of ice huts in winter 0.09 0.01 0.05 0.06 -0.1 -0.27 0.03 0.66 0.12 0.22 

Mean count of open ice fishers in winter 0.18 -0.11 0.1 -0.01 0.04 0 -0.07 0.71 -0.07 -0.08 
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Variable Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 Axis 9 Axis 10 

Mean count of shore fishers in summer 0.08 0 -0.03 -0.03 -0.04 -0.02 -0.09 -0.02 -0.31 0.05 

Dissolved Inorganic Carbon (mg.L) 0.03 0.06 0.01 0.88 0.08 0 -0.04 0 -0.03 -0.05 

Dissolved Organic Carbon (mg.L) -0.43 0.65 -0.01 0.01 0.34 0.12 -0.17 -0.07 0.07 -0.11 

Ratio of ammonia over ammonium (mg.L) 0.2 0.31 0.09 0.4 0.25 -0.24 0.26 0 -0.2 -0.05 

Ratio of nitrate over nitrite (ug.L) 0.18 0.04 -0.04 0.09 -0.17 -0.07 0.07 0.08 0.05 -0.68 

Secchi depth of lake in spring (m) 0.19 -0.69 0.02 0.04 -0.4 0.01 -0.01 0.03 0 0.02 

Total dissolved solids (mg.L) 0.25 0.08 0.01 0.94 0.06 -0.05 0.02 0.08 0.05 -0.03 

Total Kjeldahl nitrogen (ug.L) -0.02 0.71 0.05 0.4 0.34 0.07 0.1 -0.03 -0.05 -0.07 

Total phosphorous (ug.L) 0.01 0.84 -0.06 0.34 0.1 -0.04 0.15 0.01 -0.1 0.06 

Trophic status index based on phosphorous -0.03 0.81 -0.03 0.33 0.27 0.06 0.06 0 -0.07 0.07 

True color (TCU) (see Moore et al. 1997 

for details) 
-0.31 0.75 -0.04 -0.18 0.24 0.04 -0.18 -0.02 0.08 -0.18 

Average date of the first day above 0°C 

(ordinal day) 
-0.96 0.03 -0.03 -0.09 0.09 -0.12 -0.12 -0.03 -0.02 -0.03 

Average date of the last day above 0°C 

(ordinal day) 
0.92 -0.09 0.07 0.17 0 -0.24 -0.09 0.11 -0.05 -0.04 

Average rainfall from 1981-2010 (mm) 0.71 -0.1 0.03 -0.04 0.02 -0.2 0.13 0.11 -0.02 -0.32 

Cumulative degree days where temperature 

was above 0°C 
0.94 -0.01 0.01 0.14 -0.08 0.11 0.06 0.04 0.01 0.16 

Cumulative degree days where temperature 

was below 0°C 
0.94 -0.12 0.08 0.09 -0.03 -0.2 0.01 0.08 -0.02 -0.1 

Degree days above 5°C from 1981-2010 0.91 0.02 -0.02 0.16 -0.08 0.23 0.05 0.03 0.01 0.16 

Maximum monthly air temperature (°C) 0.79 0.06 -0.03 0.1 -0.11 0.3 0.1 -0.01 0.04 0.33 

Maximum surface temperature (°C) 0.89 -0.09 0.33 0.01 0.05 -0.07 0 0.07 -0.13 -0.09 

Maximum water temperature (°C) 0.75 0.04 0.12 -0.08 0.35 0.02 0.22 -0.01 -0.08 0.16 

Mean annual air temperature for 1981 and 

2010 (°C) 
0.97 -0.07 0.05 0.14 -0.05 -0.04 0 0.07 -0.02 -0.03 

Minimum monthly air temperature (°C) 0.93 -0.12 0.08 0.12 -0.02 -0.2 -0.01 0.09 -0.03 -0.12 
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Variable Axis 1 Axis 2 Axis 3 Axis 4 Axis 5 Axis 6 Axis 7 Axis 8 Axis 9 Axis 10 

Number of days where temperature was 

above 0°C 
0.96 -0.07 0.05 0.15 -0.04 -0.11 -0.01 0.08 -0.02 -0.01 

Number of ice-free days 0.94 -0.04 -0.11 0.21 -0.09 -0.02 -0.01 0.07 0.04 0.01 

Proportion of cold days (between 8 and 

12°C) during ice free period 
-0.46 -0.08 0.08 -0.33 -0.23 -0.08 0.44 -0.12 0.21 0.09 

Proportion of cool days (between 22 and 

26°C) during ice free period 
-0.85 0.08 -0.23 -0.14 -0.11 0.06 0.17 -0.12 0.22 0.06 

Proportion of warm days (between 16 and 

20°C) during ice free period 
0.81 -0.04 0.16 0.21 0.16 -0.02 -0.27 0.13 -0.23 -0.07 

Age of tertiary watershed 0.83 0.03 -0.02 0.08 -0.12 0.23 0.08 0.03 -0.04 -0.01 

Altitude above sea level (m) -0.5 -0.11 0.04 -0.43 0.08 0.14 0.36 -0.14 -0.02 -0.36 

Elevation within tertiary watershed (max-

min 
0.24 -0.16 0.14 -0.18 0.02 -0.78 0.02 0.04 -0.08 -0.17 

Tertiary watershed area (km2) -0.56 0.08 -0.11 -0.09 0.02 0.37 0.03 -0.03 0.15 -0.08 

Tertiary watershed elevation (meters above 

sea level) 
-0.46 -0.03 -0.05 -0.4 -0.13 0.17 0.52 -0.13 0.09 -0.17 

Alkalinity (mg.L.CaCO3) 0.17 0.04 0.03 0.94 0.1 0.03 -0.1 0 0 -0.03 

Calcium concentration (mg.L) 0.18 0.05 -0.01 0.94 0.1 -0.03 -0.03 0.05 0.04 -0.04 

Chloride concentration (mg.L) 0.39 0.14 -0.02 0.6 0.02 -0.03 0.34 0.23 0.12 -0.02 

Conductivity (uS.cm.s) 0.25 0.08 0.01 0.94 0.07 -0.04 0.02 0.08 0.05 -0.03 

Iron -0.07 0.55 -0.01 -0.21 -0.1 0.17 -0.21 0 0.12 -0.06 

Magnesium concentration (mg.L) 0.13 0.05 0.06 0.83 0.06 -0.01 -0.15 -0.03 0.03 -0.02 

pH -0.03 0.02 -0.04 0.84 0.1 0.07 -0.1 0.02 -0.04 0.17 

Potassium concentration (mg.L) 0.28 0.31 -0.08 0.65 -0.09 0.18 0.3 0.1 0.11 0.01 

Silicate concentration (mg.L) -0.13 0.32 0.1 -0.06 0.12 -0.13 -0.19 -0.04 0.21 -0.42 

Sodium concentration (mg.L) 0.33 0.18 -0.02 0.56 -0.01 -0.03 0.37 0.25 0.14 -0.03 

Sulphate concentration (mg.L) 0.42 0.04 -0.03 0.32 -0.2 -0.39 0.25 0.22 0.14 0.03 

976 



 52 

Table S4: Table of the best model of all and the best latent model for each species. The models 977 

varied on whether they included (1) recombined environmental variables, (2) recombined 978 

environmental variables and latent variables generated from presence-absence of sport fish, (3) 979 

recombined environmental variables and latent variables generated from presence-absence of 980 

non-sport fish, and (4) recombined environmental variables and latent variables generated from 981 

presence-absence of all fish species. When identifying the best model, we selected the model 982 

with the median log error closest to 0. For the best model of all, we considered all four models 983 

and for the best latent model, we considered models 2, 3, and 4. Species are organised by 984 

occurrence, with high occurrence species at the top of the table and low occurrence species at 985 

the bottom of the table. 986 

Common name Scientific name Best model of all Best latent model 

Yellow perch Perca flavescens Non sport fish Non sport fish 

Northern pike Esox lucius All fish All fish 

Walleye Sander vitreus Non sport fish Non sport fish 

Cisco Coregonus artedi All fish All fish 

Lake whitefish Coregonus clupeaformis All fish All fish 

Smallmouth bass Micropterus dolomieu All fish All fish 

Lake trout Salvelinus namaycush Non sport fish Non sport fish 

Burbot Lota lota Environmental Sport fish 

Largemouth bass Micropterus nigricans All fish All fish 

Brook trout Salvelinus fontinalis Environmental Sport fish 

Black crappie Pomoxis nigromaculatus Environmental Non sport fish 

Rainbow smelt Osmerus mordax Environmental Non sport fish 

Muskellunge Esox masquinongy Environmental Sport fish 

Sauger Sander canadensis Environmental Sport fish 

 987 
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 988 

Figure S2: Maps showing the abundance distribution of each sport fish species. Species are 989 

organized by incidence within the dataset, with the most common species at the top and the 990 

least common at the bottom. Each point represents a lake where the species was observed. 991 

Abundance values are represented on a log10 scale, providing a clearer depiction of the wide 992 

range of abundance levels across the lakes. 993 

 994 
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 995 

Figure S3: Maps illustrating the spatial patterns for the first 10 axes of the Principal Component 996 

Analysis (PCA) conducted on 64 environmental variables. These axes capture the major 997 

gradients in environmental variation across the study area, with each map representing one of 998 

the top 10 PCA axes. 999 
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 1000 

Figure S4: Maps showing the spatial distribution of latent variables derived from three different 1001 

fish assemblages. We generated the latent variables using (1) sport fish species, labeled as 1002 

‘Sport,’ (2) non-sport fish species, labeled as ‘Non.sport,’ and (3) all fish species, labeled as 1003 

‘All.fish.’ These latent variables were based on the presence-absence data for the respective 1004 

fish groups. Each column represents a different model, while each row corresponds to a specific 1005 

latent variable, visually depicting how these variables vary across the landscape for each fish 1006 

assemblage. 1007 
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Figure S5: Contribution of each lake to the log error as a function of environmental variables. 1009 

The contribution was calculated as the median log error when the lake was part of the calibration 1010 

set minus the median log error when the lake was part of the validation set. A positive 1011 

contribution indicates that including the lake in the calibration set improved predictions. Color 1012 

of the points represents whether the species is present (black) or absent (white) from the 1013 

considered lake. The blue line represents the linear trend across all lakes. The four 1014 

environmental variables selected were: log transformed area (in km2), altitude (in m), maximum 1015 

water temperature in C, and Trophic Status Index based on phosphorus levels (TSI). The 1016 

environmental variables selected are meant to represent different types of lakes in terms of, 1017 

respectively, hydro-morphology, watershed characteristics, climate, and productivity. Species 1018 

are organised by occurrence, with high occurrence species at the top of the table and low 1019 

occurrence species at the bottom of the table. 1020 

 1021 
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 1022 

Figure S6: Correlation of lake contributions between species for model containing latent 1023 

variables generated from all fish species. The patterns observed allowed us to group species in 1024 

the following manner: (Group 1) rainbow smelt, muskellunge, and sauger; (Group 2) burbot, 1025 

lake trout, black crappie, brook trout, and largemouth bass; and (Group 3) yellow perch, 1026 

smallmouth bass, northern pike, walleye, lake whitefish, and cisco. Correlations above 0.5 are 1027 

highlighted in red and correlations below -0.5 in blue. Species are organised by occurrence, 1028 

with high occurrence species on the right and low occurrence species on the left. 1029 


