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Phenotypes serve as the interface between organisms and their environments and are thus pivotal
for comprehensive biological understanding. However, comparative analyses of species’ pheno-
types must account for the non-independence of characters imposed by the branching pattern of
macroevolution. Methods to account for this phylogenetic non-independence have historically
been conceived of as their own subfield: “phylogenetic comparative methods” (PCMs). In this
conceptualization, a researcher takes a pre-existing phylogenetic hypothesis and uses that phy-
logeny to “correct” for the non-independence of the character data that they wish to analyze.
Here we argue that parallel developments in philosophy, data availability, computational capac-
ity, and model development have led away from this classic view of PCMs and towards a new
paradigm of character evolution, where patterns of character evolution are seen as intrinsically
related to the diversification process, and thus should be inferred jointly with the tree rather than
“reconstructed” on an existing phylogeny in a two-step process. In the context of this concep-
tual trajectory, we review historical milestones in studies of character macroevolution and discuss
major recent conceptual and methodological advances, with an emphasis on the opportunities
and insights provided by the joint inference perspective. We include primers on multiple current
topics in character evolution, including: 1) state-dependent speciation and extinction models and
the importance of cladogenetic change; 2) jointly modeling discrete and continuous characters; 3)
accounting for hidden process variation in character evolution; 4) Joint inference in divergence-
time estimation; 5) joint inference of phylogeny and ancestral sequences, and; 6) joint inference of
alignment and phylogeny. The article concludes with a reflection on the future trajectory of these
methods, emphasizing the interconnectedness of character evolution with broader processes in
biology.

keywords: alignment inference; ancestral-state estimation; Bayesian inference; Brownian motion;
hidden-state models; indel models; joint inference; phylogenetic comparative methods; SSE mod-
els; stochastic character maps; structured Markov models; threshold model; total-evidence dating
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The evolution of the study of character macroevolution

The birth of modern approaches to studying character evolution across species is often cred-
ited to Felsenstein (1985). Prior to this work, such statistical comparative studies were typically
ahistoric—they did not account for phylogenetic structure (reviewed in Huey et al., 2019). Felsen-
stein (1985) clearly articulated the problem of not accounting for phylogenetic relationships: trait
data from species are not statistically independent because species share greater or lesser degrees
of evolutionary history, as determined by the underlying phylogeny. Felsenstein (1985) also pro-
vided a solution to this problem by showing that the residuals of a continuous trait evolving on
phylogeny are independent under a Brownian model of evolution. This approach of using resid-
uals, now commonly referred to as phylogenetic independent contrasts (PIC), became the basis
of many empirical studies and is still used today. In order to apply PIC, one needs a pre-existing
phylogeny with branch lengths, necessitating a two-step inference: First one infers a phylogeny
(often considered a necessary nuisance) and then subsequently one can perform a comparative
analysis “correcting” for the phylogeny in order to illuminate the focal biological feature of inter-
est. There were other practical reasons for the initial prevalence of this step-wise approach. First,
comparative biologists were often uninterested in phylogeny itself (the molecular phylogenetic
revolution had only just begun, phylogenies were uncommon, and phylogenetics, as a field, was
not as strongly integrated with other areas of evolutionary biology as it is today; Losos, 2011).
Perhaps more critically, phylogenetic models were in their infancy: we had very limited abilities
to simultaneously analyze heterogeneous data sets (basic partitioned analyses, where some pa-
rameters are independently estimated for different data subsets, had not been developed; see, e.g.,
de Queiroz et al., 1995), and few tenable alternatives to the two-step approach existed.

Further supporting these practical motivations for a two-step procedure were broader philo-
sophical and conceptual concerns. Specifically, it was considered a “cardinal rule” that one should
“never use the characters that are part of the evolutionary hypothesis under investigation to build
your phylogenetic tree” (Brooks and McLennan, 1991). In this view, the two-step procedure is
not just a practical necessity, it is the optimal approach—to do otherwise and include the data
relating to the focal comparative hypothesis in the tree inference itself was considered to either be
“circular” (Coddington, 1988) or to violate the requirement of character independence necessary
for proper hypothesis testing in the first place (see Box 1; Armbruster, 1992; Frumhoff and Reeve,
1994). Some of this concern about circularity and non-independence was due to conflating two po-
tential problems: (1) real statistical concerns regarding character independence during inference
(an assumption of most models) and (2) philosophical concerns regarding independence between
the tree and the focal hypothesis (which is not possible, hence “correcting” for the phylogeny
in the first place; Luckow and Bruneau, 1997). However, even given that distinction, both the
circularity and independence-related arguments were made in the context of a period of history
when phylogenetic data were scarce and issues of bias introduced by potential non-independence
among characters were a real concern: if one’s dataset comprises only a few dozen hard-earned
characters, correlation (non-independence) among a handful of those characters can introduce sig-
nificant bias! Phrased differently, even if a researcher believed that the inclusion of the focal data
might be expected to produce a more accurate phylogeny in general, they might still be concerned
that correlated patterns of stochastic variation in those (non-independent) characters might bias
the phylogenetic inference towards their hypothesis of choice, resulting in inaccurate conclusions
(Frumhoff and Reeve, 1994; de Queiroz, 1996).

This two-step paradigm has been long dominant and is still common—approaches based on
this paradigm are what we now call “phylogenetic comparative methods” (PCMs)—with major
texts (and research communities) focused on either phylogeny inference (e.g., Felsenstein, 2003)
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or the subsequent application of those phylogenies to studies of trait evolution (e.g., Harmon,
2018; Revell and Harmon, 2022). In part, this continuing dichotomy is likely due to pedagogical
effectiveness, but it also reflects the historical idea that the inference of phylogeny and phyloge-
netic comparative methods are separate enterprises (e.g., Kapli et al., 2020). However, concep-
tual developments and progress in the areas of data availability, model complexity, and com-
putational power has reduced our dependence on this classic two-step approach. First, greater
conceptual clarity, and a move to embrace phylogenetics as an inferential science rather than
a necessarily hypothetico-deductive one, mitigated the circularity concerns (see Box 1; Luckow
and Bruneau, 1997; Ronquist, 2004). For example, it is more natural, within an inferential frame-
work, to wish to include all data that might inform that inference in order to derive as accu-
rate an inference as possible, whereas a hypothetico-deductive framework lends to greater con-
cern about conservativeness (“reliability”; de Queiroz, 1996) with respect to the focal hypothesis.
This shift away from the two-step approach was accelerated by increased data availability in the
form of molecular datasets—practical concerns about the influence of a few characters are reduced
when one’s dataset totals thousands of characters. Complementing both the conceptual and data-
availability trends were increases in model availability, particularly in the form of likelihood-based
approaches (e.g., Schluter et al., 1997; Pagel, 1999b; Lewis, 2001; Butler and King, 2004) and data
partitioning (e.g., Nylander et al., 2004; Brown and Lemmon, 2007) and rapid increases in raw com-
putational power. Researchers now had the tools at their disposal to perform joint inference in a
reasonable way and had fewer practical or philosophical reasons to prefer the two-step approach.
This intersection of increased data availability, modeling options, and computation power also
facilitated the development of Bayesian inference methods (Rannala and Yang, 1996; Yang and
Rannala, 1997; Huelsenbeck and Bollback, 2001; Huelsenbeck et al., 2002), which led naturally to
more integrative approaches: a Bayesian framework provides a natural means of incorporating
multiple types of data (see Box 2).
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Box 1: The shadow of Popper

The paradigm shift from understanding character evolution via two-step PCMs to deriving
understanding from joint inference connects to a related shift in our conception of the nature of phy-
logenetic inquiry in general. Much of the early period of systematics was marked by the pervasive
influence of the philosopher of science, Karl Popper (reviewed in Helfenbein and DeSalle, 2005).
Phrased simplistically, Popper held that science differs from metaphysics in that science operates
by deductive reasoning: it produces predictions that can be falsified by the formal rules of logic.
Specifically, the modus tollens (confirming the consequent) deductive structure states that if it is true
that when A holds, B also holds (i.e., “if A, then B”), and we observe something other than B (i.e.,
“not B”), then we can conclude that A is not true (i.e., “therefore, not A”), and it is only through this
falsification that science moves forward (e.g., Popper, 1959). While Popper’s 1959 The Logic of Sci-
entific Discovery also touches on probability theory, the systematics community largely ignored this
nuance and responded to Popper’s focus on deductive reasoning with mental contortions to show
that particular methodologies (i.e., parsimony- or likelihood-based approaches) better fit Popper’s
logical formalism and thus were more scientific (e.g., Siddall and Kluge, 1997; de Queiroz and Poe,
2001; Faith and Trueman, 2001; Farris et al., 2001, see discussion in Rieppel (2003); Helfenbein and
DeSalle (2005)).

Popper’s ideas were also influential—philosophical details aside—in promoting the general
view that hypothesis-testing approaches, such as underlie two-step PCM approaches to understand-
ing character evolution, are superior to purely inferential alternatives. After all, inference (induc-
tion) was not logically capable of demonstrating (proving) anything (see Rieppel, 2003) and science
was based on deduction and falsifiability. The resulting hypothetico-deductive focus led to many
of the earlier works on comparative methods being explicitly framed in the context of falsifiable
hypotheses. For example, in discussing whether it is appropriate to include the comparative data
related to one’s phenomenon of interest in the underlying phylogenetic inference, de Queiroz (1996)
focused specifically on the question of whether those data could bias the conclusions towards the
focal hypothesis. If any bias, given the outcome of the analysis, runs counter to the focal hypothesis,
then you’re all good (the analysis is “reliable”); the question of accuracy was secondary (de Queiroz,
1996).

Once clearly the dominant paradigm in systematics (e.g., see Olmstead, 2001), the influence of
Popperianism has declined, due in part to arguments that it is inapplicable to historically contingent
fields like phylogenetics (Sober, 1991; Rieppel, 2003; Vogt, 2008)—or conversely, that it is equally
applicable to both parsimony- and likelihood-based approaches, and thus useless for choosing be-
tween them (de Queiroz, 2014)—and to the rise of unabashedly inferential Bayesian approaches
(Ronquist, 2004). While we still have an awkward tendency to refer to phylogenies as “hypotheses”
(suggesting, perhaps, an unspecified null that we were able to reject?), we are more likely to also rec-
ognize that they are estimates. This reconceptualization naturally leads us towards a joint-inference
framework—if we want our estimates to be as accurate as possible, we presumably want to include
all available data that might inform that estimate. This shift, in turn, relieves us of some practical and
conceptual difficulties associated with the hypothesis-testing framework. For one thing, hypothesis
testing requires that we be ignorant of our data before performing the test (e.g., see Goldman et al.,
2000), a condition that is rarely met in phylogenetics. Perhaps more fundamentally, many of the
things we might be interested in learning about character evolution do not naturally fit within a
hypothetico-deductive framework. Is the number of times such and such a trait evolved a hypothe-
sis? Is the degree to which such and such a trait is correlated with a particular other trait a hypoth-
esis? These are probabilistic questions—not logical-deductive ones—that are accessible through the
tools of inference rather than falsification.
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Box 2: The light of Bayes

The explicitly inferential nature of Bayesian inference lends itself to joint estimation (compared with
hypothetico-deductive approaches; see Box 1). However, Bayes’ theorem also provides a formal-
ization demonstrating the importance of joint inference: if two datasets share aspects of the same
generating process (e.g., they share a phylogenetic history), then accurate inference depends on the
two datasets jointly informing model parameters.

To illustrate this point, imagine we have two datasets, X1 and X2. Perhaps these datasets corre-
spond to different DNA sequence alignments, or different morphological characters, or some mix of
genetic and morphological data. Suppose we are interested in how these traits evolve together, or
how they share information about some underlying variable of interest (for example, a phylogenetic
tree). To that end, we specify a model that describes how both X1 and X2 evolve together (i.e., a
joint model) with parameters θ. The parameters θ represent one or more unknown variables that we
hope to estimate (e.g., phylogeny or rate of morphological change), while the model describes how
specific values of those parameters affect the probabilities of different possible observed datasets.

The joint probability of X1 and X2 under this model—given specific values of the parameters θ—
is P(X1, X2 | θ), conventionally called the likelihood function. In a Bayesian context, the joint posterior
distribution of θ is:

posterior︷ ︸︸ ︷
P(θ | X1, X2) =

likelihood︷ ︸︸ ︷
P(X1, X2 | θ)

prior︷︸︸︷
P(θ)

P(X1, X2)︸ ︷︷ ︸
marginal likelihood

(1)

where P(θ) is our belief about the specific values of θ before observing the two datasets, and
P(θ | X1, X2) is our posterior belief about the specific values of θ after observing the two datasets.

However, we may also analyze the two datasets one at a time, treating the posterior from the
first dataset as the prior for the second dataset:

P(θ | X1) =
P(X1 | θ)P(θ)

P(X1)
(prior updated by first dataset)

P(θ | X1, X2) =
P(X2 | X1, θ)P(θ | X1)

P(X2 | X1)
(prior updated by second dataset)

This two-step procedure is equivalent to doing a joint analysis because

P(θ | X1, X2) =
P(X2 | X1, θ)P(θ | X1)

P(X2 | X1)
(from above)

=
P(X2 | X1, θ)

P(X2 | X1)
× P(X1 | θ)P(θ)

P(X1)
(using posterior from step 1 as prior)

=
P(X1, X2 | θ)P(θ)

P(X1, X2)
(combining terms)

where the last line follows because P(A, B) = P(A | B)P(B). Notice that the final posterior dis-
tribution of the sequential analysis is identical to the posterior of the joint analysis (Eq. 1). This
equivalency of the step-wise and simultaneous inference approaches, however, only holds when the
second step of our inference updates our belief about θ (the posterior of the first step becomes the
prior in the second, where it is updated by the data in X2).

This logic also implies that if we study the evolution of a trait on a phylogeny, that trait should
in turn affect our estimate of the tree itself as well the other parameters of the model. If we in-
stead fix the estimates from the first step (as in conventional PCMs), we obtain biased estimates of
the posterior. Rephrasing, and pulling up from the formalism of Bayes theorem, if we believe that
different datasets evolved following some sort of shared process (such as evolving on the same phy-
logeny), then accurate inferences of that process require that one data subset be allowed to update
our inferences from the other data subsets and vice versa: joint inference is required.
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We argue that this gradual practical and philosophical transition over the past 40 years, from
two-step analysis, where the PCM is conditioned on a pre-existing phylogeny or set of phyloge-
nies, towards a tendency to perform joint inference, has brought about a subtle paradigm shift
in phylogenetics: phylogenies are not static structures upon which we can map our characters of
interest, or which we should use to “correct” for non-independence. Instead, all our data evolved
together and we should not a priori partition those data into a set to use for the phylogenetic in-
ference and another set for investigating our comparative questions. This shift is perhaps most
usefully illustrated by alternative conceptualizations of “phylogenetic signal.” The classic view of
phylogenetic signal in PCMs is that the distribution of trait values may be more or less determined
by the structure of the (pre-existing) phylogeny, under a Brownian motion (BM) model, and fur-
ther that if this phylogenetic signal (or “phylogenetic effect”) is low, the phylogeny is not useful in
understanding the evolution of the trait (Pagel, 1999a; Blomberg et al., 2003; Losos, 2011) and the
inclusion of phylogenetic information may even be inappropriate (Losos, 2011). Under the alter-
native “joint inference” paradigm, however, the lack of phylogenetic signal is simply an indication
that our data of interest are poorly explained by Brownian motion—it’s not that the phylogeny is
irrelevant (do we think that our data are not the result of evolution, or that that evolution did not
occur within the lineages of the phylogeny?) but rather that we are not modeling the evolution
of our characters adequately. Interesting, a very similar critique—that Brownian motion is a poor
model of evolutionary change—was made in the original work (Felsenstein, 1985) and formed the
basis of arguments against these sorts of comparative analyses in general (Carpenter, 1992). Now,
however, we are not limited to BM models, and have a wealth of approaches available to simulta-
neously infer multiple inter-related elements of the evolutionary process, including the phylogeny
itself and patterns of character evolution.

In this review we provide a brief timeline (Fig. 1) of significant developments in the study of
character evolution, a summary of the fundamental “building blocks” of character evolution mod-
els, followed by a set of focal discussions of major current topics in this area, with an emphasize
on the opportunities provided by the paradigm shift from two-step procedures to joint inference.

Felsenstein 1985

Hansen 1997

Harmon et al. 2010

Boucher and Démery
2016

Maximum likelihood 
under Brownian motion

Schluter et al. 1997 Ancestral state 
inference

Ornstein-Uhlenbeck
model

Early burst model

Bounded Brownian 
motion model

O'Meara et al. 2006 Branch-dependent 
Brownian motion

Continuous Trait
Models

Revell and Collar 2009 Correlated continuous 
traits (multivariate 
Brownian motion)

Caetano and Harmon 
2019

Bayesian multivariate 
Brownian motion

Tree 
Models

Yule 1925 Yule model 

Kendall 1948 Birth-death model

Nee et al. 1994 Birth-death model on 
phylogenies

Heath et al. 
2014

Fossilized birth-death 
model

Morlon et al. 2011 Episodic Birth-death 
model

Maddison et al. 2007 State-dependent 
speciation extinction 
model

Beaulieu et al. 
2016

Hidden state-
dependent speciation 
extinction model 

Discrete Trait
Models

Jukes and Cantor 1968

Felsenstein 1981

Pagel 1994 Joint inference of 
discrete characters

Schluter et al. 1997
Pagel 1999

Model DNA 
evolution

Maximum likelihood 
of CTMC models

Ancestral state 
inference

Stochastic character 
mapping

Huelsenbeck et al. 2003

Huelsenbeck et al. 2001

Lewis 2001

Mayrose et al. 2010 ChromEvol model

Bradley et al. 2008 Ordered model

Felsenstein 2005 Threshold model

Model taxonomy, 
Equal state frequencies,
Irreversible model

Bayesian inference of 
Mk model

Figure 1: Timeline of select major events in the development of phylogenetic comparative methods, sorted
by discrete trait models, continuous trait models, and tree models. We elaborate on some of these methods
in the main text.
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Fundamental models of trait evolution

Phylogenetic comparative models—whether applied sequentially or jointly—are complex and di-
verse. In this section we first describe at a high level how stochastic models of evolution work,
by way of simulation. We then review a selection of major models and their extensions (also see
O’Meara 2012; Baum and Smith 2013; Harmon 2018; Cornwallis and Griffin 2024); these models
are the main building blocks for macroevolutionary study of character evolution.

Phylogenetic comparative methods are typically based on stochastic (random) models of evo-
lution. Generically, a stochastic model describes how a state variable at time t, denoted X(t),
changes over time; the process of change is governed by a set of parameter values denoted θ. In
a traditional phylogenetic study, we often assume that the phylogeny is known, and denote the
state variable for branch i at time t as Xi(t). The state variable may be a continuous trait value,
such as body size, or a discrete trait value, such as fruit color. However, the state variable may also
be more complicated; for example, Xi(t) may be a set of continuous and/or discrete traits that are
co-evolving.

The main utility of a phylogenetic stochastic model is that it allows us to compute the proba-
bility of observing a particular set of character states at the tips of the tree (the observed character
data) given a set of parameter values θ—this probability of the data given the model is the “like-
lihood” of the model. Thus, the stochastic model allows us to estimate the parameter values θ
in a model-based inference framework (e.g., maximum likelihood or Bayesian inference). While
the details of computing these probabilities are different for different models, in general we can
understand how they work using a simulation analogy.

The simulation procedure works as follows: First, we choose an initial state at the root of
the tree according to some root-state distribution. Next, we simulate the evolution of the trait
according to the stochastic model with parameter values θ down the branches of the tree until we
reach the present. Finally, we collect the states at the tips of the tree to serve as the “outcome”.
If we repeat this procedure many times, the fraction of outcomes that match the observed data
is the probability of the data given the model, otherwise known as the likelihood (of the model).
The ancestral state estimate at a particular node reflects the fraction of times that node is in each
state among outcomes that match the tip data (see also the section, below, on joint inference of
phylogeny and ancestral character states). Likewise, the histories of change along branches for
outcomes that match the observed data are called stochastic character maps, which can be used to
estimate the number of changes across the tree, or the amount of time each branch spends in each
state, etc.

See Figure 2 for an example of this procedure for a discrete-character model with two states
(red and blue). In this case, the observed data are that taxon a is blue, while taxa b and c are
red. The fraction of outcomes matching the observed data (indicated in the gray boxes) is the
probability of the data (in this case, 3/10) given the model and a specific set of parameter values.
These simulations are also useful for estimating ancestral states and stochastic maps. The common
ancestor of a and b is inferred to be red with probability 1 (3 of 3 outcomes), while the root of the
tree is inferred to be red with probability 2/3. The probability that blue evolved twice (based on
the stochastic maps) is 2/3 (Fig. 2). This same basic logic also applies to continuous trait models.

Discrete trait models

Models of evolution of discrete characters (characters with discrete character states) have their
origin in models of nucleotide substitution (Jukes, 1969; Kaplan and Langley, 1979) and were first
applied to infer phylogenies by Felsenstein (1973). These models are continuous-time Markov
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Figure 2: Simulated evolution of a two-state character (the states are red and blue) on a three-tip phylogeny.

chains (CTMCs)—models where the probability of changing to a new state depends solely on the
current state (and on the parameter values of the model) rather than being influenced by past
states—that can be generally referred to as Mk models, where k signifies the number of states
(Lewis, 2001). These models can be represented by a instantaneous rate matrix Q that describes the
instantaneous rate of change between states. The rows of a Q matrix represent the starting states
and the columns represent the ending states, and elements of the matrix represent the instanta-
neous rate of change between those particular states. For a simple, symmetric two-state model
(with states A and B), the Q matrix is as follows:

Q =

[
− q
q −

]
,

where the diagonal elements (indicated by −) are such that the rows of the matrix sum to zero.
Therefore, in the Q matrix above, the transition rate from A→ B and the transition rate from
B→ A both occur at the instantaneous rate q.

Common extensions of the core Mk model allow transition rates to vary. When transition rates
are not equal (as in the example above), the rate of change between state i and state j is typically
denoted qij. A symmetrical model (often referred to as SYM; Zharkikh, 1994) fixes the transition
rates to and from a given pair of states to be equal (i.e., qij = qji; see Fig. 3A,B for a four-state
example), while the all-rates-different (ARD) model (Paradis et al., 2004) allows each transition
rate to vary freely (qij ̸= qji). Applying these models to a trait with three states (A, B, and C)
results in these instantaneous rate matrices:

QSYM =

 − qAB qAC
qAB − qBC
qAC qBC −


QARD =

 − qAB qAC
qBA − qBC
qCA qCB −


It is also possible to specify models where some transition are set to zero, to reflect certain types

of changes that may be biologically impossible. In some cases, this can result in “irreversible”
models, where once a particular transition has occurred, the character can no longer reverse to the
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original state (see Goldberg and Igić, 2008 and references therein), for example,

QIRR =

 − qAB qAC
qBA − qBC

0 0 −

 ,

where it is impossible to evolve out of state C once it is reached.
Ordered Markov models (e.g., Brandley et al., 2008) allow transitions between adjacent states,

while all other transition rates are zero (Fig. 3C,D). These types of models are often applied to traits
that have a natural ordering, for example the loss of teeth (Paluh et al., 2021) or the evolution of
the number of vertebrae (Spear et al., 2023). Typically, upward transitions occur at one rate (the
“gain” rate), and downward transitions occur at another rate (the “loss” rate), though this is by no
means required. An example rate matrix for an ordered trait with four states (1, 2, 3, and 4) would
be:

QORD =


− λ 0 0
µ − λ 0
0 µ − λ
0 0 µ −

 ,

where λ and µ are the gain and loss rates, respectively.
A bespoke example of an ordered Markov model is the ChromEvol model of chromosome

evolution (Mayrose et al., 2010). Chromosome evolution is governed by a variety of processes
including chromosome gain, loss, and polyploidy. For simplicity, we show an example Q matrix
that describes the evolution of a group with four different chromosome numbers (1, 2, 3, and 4):

QChromo =


− λ + ρ 0 0
µ − λ ρ
0 µ − λ
0 0 µ −


Here λ and µ represent chromosome gain and loss, and ρ represents polyploidization events.
This general ChromEvol model then provides the foundation for additional elaborations tailored
to specific questions (e.g., Zenil-Ferguson et al., 2017; Freyman and Höhna, 2018; Mayrose and
Lysak, 2021; Tribble et al., 2025).

The Mk model framework can also be used to study the joint evolution of two discrete char-
acters. This approach is commonly used to test if traits are evolutionarily correlated (Fig. 3E,F;
Pagel, 1994). For example, we can have traits each with two states: Trait One with states 0 and
1, and Trait Two with states A and B. One way to jointly model the evolution of these traits is to
combine the two binary characters into a single character with four states: 0A, 1A, 0B and 1B, and
create an instantaneous rate matrix reflecting dependent evolution:

QDep =


− q0A,1A q0A,0B 0

q1A,0A − 0 q1A,1B
q0B,0A 0 − q0B,1B

0 q1B,1A q1B,0B −


Note that many elements of this rate matrix are 0 because, by assumption, only a single trait can
change at a time. Dependent evolution is inferred by comparing transition rates for one character
as a function of the state of the other character: if q0A,1A is inferred to be higher than q0B,1B, then
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Figure 3: Simulated discrete trait evolution under various models: (A) symmetrical evolution, (B), ordered
evolution where only transitions between adjacent states are possible (e.g., A ←→ B ←→ C ←→ D), (C)
dependent evolution of two binary traits, and (D) the threshold model. For all models, the top row shows
a stochastic map of the discrete trait history and for (A–C) the bottom row shows a single sample history—
trait value plotted as a function of time. The bottom panel of (D) shows the sample history for all three
branches of the tree.

transitions from 0 to 1 occur faster when the second character is in state A rather than B. The
flexibility of the Q matrix allows users to specify their own model of trait evolution informed by
prior knowledge of their group or to formulate and test specific hypotheses of evolutionary rates.
For example, such “structured Markov models”, implemented in software such as PARAMO and
ontophylo (Tarasov et al., 2019; Porto et al., 2024), allow researchers to include developmental
(ontogenetic) constraints in their character evolution models (e.g., Tarasov, 2019; Tribble et al.,
2023) or to properly account for the difference between character states that are missing because
they are unknown rather than being inapplicable to the specific taxon in question (Tarasov, 2023,
see Maddison (1993)).

Threshold model

The threshold model (Wright, 1934, an alternative to CTMC discrete trait models) represents dis-
crete trait evolution via an unobserved continuous character—when the trait value of the contin-
uous character crosses a particular threshold, the observed discrete character changes state (Fig.
3G,H). The threshold model was inspired by models in quantitative genetics, where additive vari-
ation of an (unobserved) polygenic trait can contribute to discrete changes in phenotype. Wright
focused on the development of guinea pig toes, which is determined by an underlying physio-
logical character that varies approximately continuously. If that continuous character—referred
to as the liability—crosses some “threshold,” the guinea pig will develop an additional toe; be-
low that threshold, the normal number of toes develop. Felsenstein (2005) adapted this model
to macroevolution, permitting the modeling of discrete trait evolution (such as number of toes)
across a phylogeny by assuming that the liability, typically unobserved, evolves via Brownian
motion or some other continuous-trait model (Fig. 3G,H).

Generally we are interested in inferring the parameters of the liability (e.g., BM parameters)
as well as the placement of the threshold, with some simplification. Since the liability at the tips
is not observed (unlike a typical continuous trait model; Fig. 4), we lack any information of the
liability scale (e.g., does the liability range from 0−1 or 5−100). As such we can fix the value of
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σ2 (Felsenstein, 2005, see Revell (2014) for further discussion). Furthermore in a simple two-state
case, where there is a single threshold, we can arbitrarily set the threshold value, typically to 0
(Felsenstein, 2005; Revell, 2014; Cybis et al., 2015). In cases with n > 2 states, the liability value of
n− 1 thresholds need to be inferred (Revell, 2014; Cybis et al., 2015).

Continuous trait models

Most models of continuous trait evolution are based on Brownian motion (a “random walk”),
introduced to systematics by Felsenstein (1985). The Brownian motion model is characterized
by a single parameter, σ2 (sometimes called a diffusion parameter; Fig. 4A,B). Under Brownian
motion, at any given point in time an increase in the trait value is as likely as a decrease—the trait
value wanders (hence “random walk”). After a set amount of time (t), the new values will be
normally distributed with a mean equal to the starting value X0 and the variance determined by
tσ2.

A common variation on Brownian motion is the Ornstein–Uhlenbeck (OU) model, which de-
scribes the evolution of a trait towards some optimum value θ (Hansen 1997; Butler and King
2004; Fig. 4C,D). Like Brownian motion, the OU model assumes normally distributed changes
along branches of a phylogeny described by σ2, but it also includes two additional parameters,
the aforementioned optimum value (θ) and the magnitude of the pull towards θ, denoted α. Un-
like BM, where variance grows without bound as t→ ∞, under the OU model the variance will
grow until it reaches an asymptote defined by the stationary distribution σ2

2α . Larger values of α
result in less variance as the strength of the pull is stronger.

The OU model is only one of many derivatives of the BM model; there many others including
bounded Brownian motion (Boucher and Démery, 2016), those that model early bursts (Blomberg
et al., 2003; Harmon et al., 2010), or those that model jumps in trait space (a Lévy process, Landis
et al., 2013). These models are often motivated by attempting to capture a unique evolutionary
process. An additional elaboration is to allow for heterogeneity in the parameters across the tree,
allowing these parameters to vary in a branch-dependent manner (O’Meara et al. 2006; Uyeda and
Harmon 2014; Khabbazian et al. 2016; Fig. 4E,F).

This class of models can also have multivariate extensions that aim to jointly estimate the evo-
lution of two or more continuous traits. For example, the multivariate Brownian motion model
(Revell et al., 2008; Caetano and Harmon, 2019) is commonly used. Similar to a univariate BM
model, under a multivariate BM model each trait has its own diffusion parameter (e.g., σ2

1 and
σ2

2 ), but each pair of traits will also have an evolutionary covariance parameter, σ12 that indicates
the degree and nature of correlated evolution between traits. If σ12 = 0 the traits evolve indepen-
dently, equivalent to individually modeling each trait in a univariate framework. For σ12 > 0, if
X1 increases X2 will tend to increase as well, and for σ12 < 0, if X1 increases X2 will decrease. In
these case the traits are said to be “evolutionary correlated.”

Birth-death tree models

The birth-death process models the dichotomous branching process that produces phylogenetic
trees, but birth-death models and their derivatives also have become prominent in the study of
trait evolution. Birth-death processes are continuous-time Markov chains where, at any point in
time, each lineage has a certain rate (λ) of “birthing” a new lineage (a speciation event that results
in a node in the phylogeny) and a certain rate (µ) of going extinct (death; Nee et al., 1994). These
models produce probability distributions of trees. There are many variations of birth-death tree
models, for example time-dependent models that allow speciation and/or extinction rates to vary
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Figure 4: Continuous trait simulated under (A) Brownian motion and (B) OU. For both (A) and (B), the
top row shows stochastic maps of the ancestral values of the traits along the phylogeny, while the bottom
row shows a sample history—the trait value as a function of time—for the branch leading to species a. θ
indicates the optimum value for the OU model in (B).

over time (e.g., Morlon et al., 2011), or “fossilized” birth-death (FBD) models, which model fossil
recovery alongside speciation and extinction (Heath et al., 2014), and are thus useful for inferring
time-calibrated phylogenies from datasets that include extinct samples (see the Joint inference in
divergence-time section, below). One of the most prominent extensions of the birth-death process
links speciation and extinction rates to character states (state-dependent speciation and extinction
(SSE) models; Maddison et al., 2007). We review these methods, and other current areas in the
study of character evolution, in detail below.

Major areas in the study of character evolution

State-dependent speciation and extinction models and the importance of cladogenetic
change

A good example of the importance of joint inference comes from Maddison’s (2006) demonstra-
tion that the distribution of character states at the tips of a phylogeny is the result of the combined
effects of differential rates of character change (e.g., maybe state A transitions to state B more
frequently than the reverse) and of differential rates of speciation and/or extinction associated
with those character states (e.g., maybe lineages in state B speciate more quickly than do those
in state A). It is only by jointly inferring the parameters of the two generating processes (i.e., the
transition rates among states and the diversification rates associated with those states) that either
can be inferred accurately (Maddison et al., 2007). This later point is worth emphasizing: while
Maddison’s (2006) insight is most often applied to the inference of trait-associated diversification
rates (i.e., state-dependent speciation and extinction rates), it equally applies to inferences of the
character evolution parameters themselves (i.e., the transition rates): if a trait affects diversifica-

12



tion rates, accurate reconstruction of the patterns of trait evolution requires that character-change
parameters be co-estimated with the diversification rates. This insight profoundly altered our un-
derstanding of how to approach questions of character evolution and diversification-rate inference
and prompted the development of a broad suite of methods elaborating on this “state-dependent
speciation and extinction” (SSE) framework. For example, while the original model, BiSSE, was
limited to a single binary character (Maddison et al., 2007), that model has been expanded upon to
allow for multi-state characters (MuSSE; FitzJohn, 2012), continuous characters (QuaSSE; FitzJohn,
2010), and biogeographic characters (GeoSSE; Goldberg et al., 2011).

The SSE framework is additionally powerful for the study of character evolution because it
inherently requires the incorporation (within the likelihood calculation) of events that happen on
branches that ultimately go extinct and thus are not observed (Maddison et al., 2007). This feature
permits the development of models where character-state transitions occur cladogenetically (i.e.,
in association with a speciation event) rather than just anagenetically (i.e., along the branches of
the tree), since those models need to “keep track” of all cladogenesis events, whether or not both
daughter lineages leave extant descendants (Goldberg and Igić, 2012). The earliest such clado-
genetic model (BiSSE-ness; Mayrose et al., 2011; Magnuson-Ford and Otto, 2012) was a direct
conceptual extension of BiSSE and was followed by approaches that utilized the SSE framework
for the cladogenetic functionality specifically (e.g., ChromoSSE, which incorporates cladogenetic
changes in chromosome number but not differential trait-associated speciation and extinction
rates; Freyman and Höhna, 2018) and that included both cladogenetic state change and differ-
ential diversification rates (to infer the evolution of lineages’ geographic range, where, e.g., the
colonization of new areas might be expected to be linked to speciation; Goldberg et al., 2011).

As somewhat of an aside—but relevant, given our focus on inference versus hypothesis-testing
(see Popper Box)—one of the main challenges to SSE models came from Rabosky and Goldberg
(2015), who claimed—using an hypothesis-testing framework—that SSE models had high rates
of type I error (i.e., that such models concluded that focal character states were associated with
different diversification rates when in fact no such association existed). To reach this conclusion,
Rabosky and Goldberg (2015) simulated phylogenies with heterogeneous rates of diversification
(but those rates were unrelated to the focal trait) and then used likelihood ratio tests to compare
a model of rates being associated with the focal trait against a model of no rate variation. But
this—the absence of rate variation—is the wrong null model; the true generating model does have
rate variation, it is just not related to the focal trait. Since the model being rejected is not the
true model, this result does not demonstrate type I error (Beaulieu and O’Meara, 2016): it is the
wrong hypothesis test. “Hidden-state” SSE models (HiSSE; Beaulieu and O’Meara, 2016), which
co-estimate the rates associated with both the focal trait and a set of unobserved character states
(and all the respective transition rates among character states, both hidden and observed), attempt
to resolve this issue—it is not that the co-estimation is flawed but rather that “regular” SSE models
are not co-inferring enough of the relevant processes. These methods—and modeling hidden
process variation in general—are discussed in more depth below (see Accounting for evolutionary
process variation).

Adding to their power to investigate previously inaccessible problems through co-estimation,
different SSE components—including hidden states and cladogenetic state-change—can be com-
bined together. For example, Zenil-Ferguson et al. (2019) performed a series of combined multi-
state and hidden-state SSE models to investigate the interaction of polyploidy and the evolution
of self-compatibility (the ability of a plant to fertilize itself), and their consequences, both individ-
ually and in concert, on diversification rates in the tomato family, Solanaceae. Similarly, Tribble
et al. (2025) implemented a “ChromoHiSSE” model to explore the role of chromosomal changes
as a speciation mechanism in the species-rich plant genus Carex. This model allows for different
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rates of cladogenetic chromosome number change and cladogenesis without chromosome num-
ber change, where those rates depend on a hidden state (the different hidden states have different
rate parameters). By jointly modeling hidden states and cladogenetic change, ChromoHiSSE can
detect not only how chromosome number change affects speciation rates, but also how the rela-
tionship between chromosome number change and speciation varies across the phylogeny (e.g.,
process variation, see “Accounting for evolution process variation” below).

One important limitation of most SSE approaches from the perspective of joint inference is that
while patterns of character change and rates of speciation and extinction are co-estimated, the tree
itself is fixed. In this respect the application of SSE models is similar to the two-step classical
PCM approaches. This limitation is important because speciation and diversification rates are
inextricably related to the shape and branch lengths of the tree itself; ideally, we would want to
co-estimate the tree along with the diversification parameters and rates of character-state change.
Failing to accommodate diversification-rate variation potentially misleads estimates of divergence
times, which in turn may compromise our ability to detect state-dependent diversification rates
(Fig. 5).

Jointly modeling discrete and continuous traits

Historically, the models used for estimating processes of evolution of continuous versus discrete
characters were different, thus advances in modeling these character types have largely proceeded
independently (see fundamental models section; Fig. 1). The first methods for correlating contin-
uous and discrete traits were modifications of generalized linear models (GLMs), which treat the
phylogeny as the covariance matrix for residual errors (i.e., departures from expected trait values)
in a linear modeling framework (Martins and Hansen, 1997; Symonds and Blomberg, 2014). Re-
cently, however, mechanistic models have been developed that link the evolution of continuous
and discrete traits.

In most of these approaches, a joint model links the underlying process of trait evolution
among characters. Butler and King (2004) extended the Ornstein-Uhlenbeck model to include
multiple optima (θ): the multi-optima OU model. These multiple optima correspond to different
lineages on the phylogeny and thus to different optimal continuous trait values across different
subclades of the phylogeny in question. Furthermore, Butler and King (2004) assigned the phy-
logenetic location of these different optima based on the values of a discrete trait. This approach
allowed them to test if a continuous trait has different optimal values depending on the value of a
discrete state. Specifically, they assigned the terminal branches of the anole phylogeny to the dis-
crete states of habitat type of the species at the tip. Each habitat type was then assigned a different
optimum (θ parameter) to be inferred under a multi-optima OU model of body-size evolution (a
continuous character). In a Bayesian interpretation of this approach, assigning optima to branches
essentially imposes an infinitely strong prior on the history of the discrete state while inferring the
continuous trait history (see Box 2).

Shortly after Butler and King (2004), O’Meara et al. (2006) proposed another two-step ap-
proach: a multi-rate Brownian motion model that could be used to model shifts in rates of con-
tinuous trait evolution (the diffusion parameter σ2), which laid the groundwork for linking such
shifts to the evolutionary history of a discrete trait. Almost simultaneously, Thomas et al. (2006)
published a similar set of statistical innovations.

Subsequent developments based on these works have expanded the toolbox of two-step,
OU-derived methods for modeling correlated evolution between discrete and continuous traits.
Beaulieu et al. (2012) expanded on Butler and King (2004) by increasing the parameters that vary
across regimes to include optima, diffusion parameters (σ2), and “attraction” parameters (α). Col-
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Figure 5: Comparing two-step and joint analysis for state-dependent diversification rates. We simu-
lated a phylogeny with 200 tips under a binary-state-dependent speciation-and-extinction (BiSSE) model,
assuming that there were two rates of speciation, λ0 and λ1, corresponding to two discrete states, 0 and 1,
and that both extinction rates were zero (panel A). We assumed that the speciation rate in state 1 was four
times higher than in state 0. We then estimated parameters of the BiSSE model under three scenarios: 1)
the “true” scenario, where the true (simulated) tree was used as input for the BiSSE analysis; 2) the “condi-
tional” (two-step) scenario, where we estimated the tree from sequence data and then used the estimated
tree as input for the BiSSE analysis, and; 3) the “joint” scenario, where we estimated the parameters of the
BiSSE model and the tree simultaneously. For scenarios 2 and 3, we simulated 5000 sites on the true tree
under a Jukes-Cantor substitution model and an uncorrelated lognormal relaxed clock. We then estimated
Bayesian posterior distributions of divergence times (assuming the true tree topology was known) under
a constant-rate Yule tree prior (for the conditional scenario) and a two-rate BiSSE tree prior (for the joint
scenario), in both cases assuming the true substitution and relaxed-clock models. Finally, we fit the BiSSE
model to the true tree and the MCC tree estimated under the constant-rate Yule model. B) We then com-
pared posterior estimates of the ratio of speciation rates, λ1/λ0, estimated for the true scenario (red), the
conditional scenario (purple), and the joint scenario (yellow). The true ratio λ1/λ0 = 4 (dashed line) is well
estimated under the true scenario (red), but the conditional scenario substantially underestimates the ratio,
excluding the true value from the 95% HPD (purple). The joint scenario (yellow) results in estimates much
more similar to the true scenario, but with more uncertainty, presumably because this scenario incorporates
uncertainty in divergence times.
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lar et al. (2009), among others, took up where O’Meara et al. (2006) left off and used stochastic
mapping to infer the full evolutionary history of the discrete trait across all internal and terminal
branches of a phylogeny. Revell (2013) provides an important critique of these methods: by rely-
ing on a two-step approach, the continuous trait inference depends on a pre-inferred discrete trait
history, thus failing to correctly model the codependency between discrete and continuous traits
(see Box 2 for more on joint inference). Despite this critique, these approaches remained dominant
for almost 15 years, until new joint inferences approaches to co-infer the evolutionary history of
continuous and discrete characters were developed (May and Moore, 2020; Boyko et al., 2023).

Meanwhile, Felsenstein developed the threshold model (discussed above in Fundamental
models of trait evolution: discrete traits) independent of the OU approaches, extending it to jointly
model two traits: a continuous trait that is observed and a discrete trait where the underlying con-
tinuous trait (the “liability”) is unobserved, both evolving via Brownian motion and linked via the
covariance of the liabilities. Subsequent developments based on the threshold model framework
include generalizing to multiple characters and multi-state characters (Cybis et al., 2015) and to
enabling dimensionality reduction via a phylogenetic factor analysis to make analysis of large
multivariate datasets tractable (Tolkoff et al., 2018).

The threshold model approach differs from other methods for jointly modeling discrete and
continuous traits because it estimates the correlation between the traits themselves (or, at least, the
trait liabilities) rather than inferring a link between the underlying trait-evolution processes (i.e.,
their rates, or optima). This feature is important because if we assume the processes themselves
are linked (e.g., Boyko et al., 2023), then we are also assuming bidirectional information flow be-
tween the traits; information about the evolution of the discrete state will and should change our
inference for the evolution of the continuous trait, and vice versa. The threshold model, on the
other hand, does not assume the evolutionary processes generating the discrete and continuous
characters are linked, but rather proposes a way to estimate their covariances. The inferred evo-
lutionary history of the traits would be the same if inferred together or separately. Furthermore,
the threshold model has “memory”; the discrete character will change more frequently when the
liability is close to the threshold. This quality of the model is likely desirable in some empirical
cases but not in others (see Goldberg and Foo 2020).

Most recent developments in the estimation of correlated evolution between discrete and con-
tinuous traits have built off of the OU framework from Butler and King (2004) and O’Meara et al.
(2006), among others. Tribble et al. (2023) developed a method to test for correlated evolution
between continuous and discrete traits, where the discrete trait states are linked to the inferred
optima of a continuous trait while accommodating process variation: additional variation in the
evolutionary processes that is not due to the traits directly included in the model (described in de-
tail in the following section). Under the multi-optima OU approaches, discrete traits are linked to
inferred optima of continuous traits, but those models assume a perfect link between the evolution
of discrete states and optima—no other cause for variation in trait evolution beyond the modeled
traits is included. In Tribble et al. (2023), the authors fit a multi-optimum OU model to the contin-
uous traits, then correlate the per-branch optima with per-branch discrete states using stochastic
mapping. This approach notably does not jointly estimate the continuous and discrete states, but
instead infers their evolutionary histories independently, subsequently testing for a statistically
significant overlap in those evolutionary histories.

In parallel, Boyko et al. (2023) developed an OU-based approach that does jointly infer of the
evolution of a discrete character and the evolution of a continuous character under a multi-optima
OU model with process variation. Under this approach, the evolutionary processes of both char-
acters are linked; the discrete trait states may correspond to the inferred continuous state optima.
Boyko et al. (2023) built on earlier OU-methods that assigned the optima to pre-established dis-
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Figure 6: Simulation under models that jointly infer discrete and continuous trait evolution where the
rates of the continuous trait are dependent on a discrete trait with states 1 and 2. (A) State-dependent BM;
(B) State-dependent OU. Top row: stochastic character map with the continuous trait value plotted along
the branches. Bottom row: sample path of the branch leading to species a. State-dependent regimes are
colored. In (A), the discrete-character regimes differ in the values of the diffusion parameter; for Regime 1
σ2

0 = 0.001; for Regime 2 σ2
1 = 0.1. In (B), the discrete-character regimes differ in the values of the optimum;

for Regime 1 θ0 = 4; for Regime 2 θ1 = 1.

crete trait histories on the phylogeny, requiring the evolution of continuous optima to perfectly
match the history of the discrete trait (e.g., Beaulieu et al., 2012). Instead, Boyko et al. (2023) jointly
infer the evolutionary histories of the discrete and continuous traits, while also modeling hidden
process variation in their shared underlying regime.

In another approach to jointly model discrete and continuous trait evolution, May and Moore
(2020) developed a method to test for the effect of a discrete character on the rate of evolution of
a continuous character. For example, does the feeding apparatus of reef fish evolve faster than
that of non-reef-dwelling fish? The method, MuSSCRat, jointly models a discrete character and one
or more continuous characters evolving under a state-dependent multivariate Brownian motion
process while accounting for process variation in the continuous trait(s) that is not linked to the
discrete trait of interest. As with the OU-based approaches (e.g., O’Meara et al., 2006; Thomas et al.,
2006), and unlike the approaches based on the threshold model, MuSSCRat models the relationship
between the evolutionary processes (the rates) of the traits rather than the relationship between the
trait values themselves. Both Boyko et al. (2023) and May and Moore (2020) fully jointly model
the evolution of a continuous and a discrete trait via an inferred co-evolutionary process, but
differ in what that process is and thus the biological questions they are able to address. Future
developments in the joint evolution of discrete and continuous traits may expand the suite of
underlying evolutionary mechanisms linking trait evolution, or expand the number of traits that
are included in such models.
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Accounting for evolutionary process variation

The goal of many character evolution models is to link trait evolution with a factor possibly con-
tributing to variation in its evolutionary process, so-called “process variation”. For example, the
evolution of a continuous trait such as body size may depend on the evolution of a discrete trait
like life history. However, the evolution of body size likely depends on many additional factors
not included in the model, which may themselves also be evolving. For example, geography
could influence overall body size, environment might mediate life history, and genetic or func-
tional linkage with other traits could influence body size, life history, or the relationship between
them.

Despite this complexity, approaches to studying character evolution are often limited to mod-
eling the influence of one or a few factors on a given trait. Additionally, methods for accounting
for the influence of other factors are rarely used unless the focal hypothesis involves correlated
trait evolution or lineage diversification. For example, most researchers do not use SSE models
to accommodate the relationship between lineage diversification and trait evolution unless they
are explicitly interested in how the trait influences diversification. However, as Maddison (2006)
pointed out, if a trait influences lineage diversification dynamics, ancestral state estimates will be
incorrect without jointly estimating lineage diversification.

When discussing process variation, it is helpful to distinguish between focal and nuisance de-
pendencies. A focal dependence is of direct interest to the study in question; for example, the
relationship between dysploidy and speciation is one of focal dependencies in the study of how
karyotype changes generate macroevolutionary outcomes (e.g., Tribble et al., 2025). Alternatively,
a nuisance dependency is a factor that influences the variable of interest but is itself not part of the
primary scientific hypothesis. For example, the phasing of loci into distinct polyploid subgenomes
may be a nuisance dependency when modeling the phylogenetic relationships of a clade (Freyman
et al., 2023); even if a researcher is not explicitly interested in the subgenome identities of each se-
quence used in phylogenetic inference, that phasing will nonetheless inform the inferred topology
and thus must be included in the model. This phenomenon is well established in the statistical
framework of classic linear models, where “nuisance” dependencies may be included as indirect
effects and “focal” dependencies are included as direct effects. Failure to include indirect effects in
a linear model can lead to mistaken inference of the relationship(s) between the independent and
dependent variables. Similarly, avoiding nuisance dependencies in phylogenetic analyses may
lead to mistaken outcomes (Beaulieu et al., 2012).

A major challenge to appropriately model these nuisance dependencies is that they are often
unknown. To extend our linear modeling analogy, unknown sources of variation are captured in
an error term, but there is no error term in most stochastic phylogenetic models. While jointly
modeling multiple traits or traits and lineage diversification can account for the interdependency
of those processes, it cannot account for the possible influence of other unknown factors.

A popular solution to the problem of unknown nuisance dependencies is to include so-called
hidden states (Beaulieu et al., 2013; Beaulieu and O’Meara, 2016). Hidden states are akin to error
terms for phylogenetic models, metaphorical sponges that absorb additional process variation not
captured by the explicitly modeled nuisance and focal dependencies. Hidden state models ac-
commodate hidden process variation by expanding the state space of a standard Mk model. They
include an additional trait(s) with its own states in addition to the focal trait. The evolutionary
process of the focal trait depends in some way on the state of the hidden trait—perhaps the tran-
sition rates are different for different hidden states. Take the example of a binary trait with states
0, 1 with one transition rate between states (q):
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In a hidden-state variant of this model, we include an additional hidden binary trait h with

states A, B. The inclusion of the hidden state doubles the state space to 0A, 1A, 0B, 1B, where A, B
represent the influence of the hidden trait on 0, 1. The resulting model includes a rate for 0 ←→ 1
transitions when the hidden state is a (denoted qa), for when the hidden state is b (qb), and for
a←→ b transitions (qh). Simultaneous transitions between 0←→ 1 and a←→ b are set to 0.

Qh =

0A 1A 0B 1B
0A
1A
0B
1B


− qa qh 0
qa − 0 qh
qh 0 − qb
0 qh qb −


While introduced into the character evolution modeling world by Beaulieu et al. (2013), hid-

den states were first developed for implementation in phylogenetics for molecular evolution (e.g.,
the covarion model, Fitch and Markowitz 1970; Tuffley and Steel 1998). Since these initial de-
velopments, variants of hidden-state models have been proposed as solutions to various prob-
lems in phylogenetic modeling, including spurious associations in SSE models (Beaulieu and
O’Meara, 2016; Caetano et al., 2018), accommodating process variation while jointly modeling cor-
related evolution between discrete and continuous variables (Boyko et al., 2023), detecting mul-
tiple modes of state-dependent chromosome evolution (Tribble et al., 2025), and extending the
covarion model to accommodate lineage-specific variation via Markov-modulated CTMCs (Baele
et al., 2021).

Most hidden-state model implementations, such as the one described in the above Q-matrix,
use a single hidden binary trait. However, the decision to model a single hidden binary vari-
able is somewhat arbitrary, or based on computational limitations, rather than coming from our
interpretation of biological reality. Do we think that all the variation in evolutionary processes
of trait evolution can be most appropriately modeled by a single binary variable? One alterna-
tive approach is to vary the number of hidden traits and or hidden states in the model, as more
traits/states could accommodate more complex patterns of process variation. However, the classic
hidden-states model is only appropriate for discrete traits, and alternative solutions are necessary
for continuous traits. For example, MuSSCRat (discussed above) jointly models the evolution of
a discrete trait and a continuous trait, while also modeling hidden process variation (specifically,
continuous rate heterogeneity) via a relaxed clock model (May and Moore, 2020).

Uyeda et al. (2018) pointed out that appropriately modeling process variation is critical for all
comparative methods and is a key part of the solution to Maddison and Fitzjohn’s “unsolved chal-
lenge”: the impact of unreplicated events (evolutionary changes that occur singularly on the tree)
on accurate inference (Maddison and FitzJohn, 2015). Uyeda et al. (2018) argue that researchers
must account for unreplicated events while assessing relationships between focal traits and pro-
cesses or risk being misled by mistaken associations between variables. While Uyeda et al. (2018)
describe this as part of “phylogenetic natural history” (where do major shifts in tempo and mode
occur in the phylogeny?), the idea is largely congruent with our description of evolutionary pro-
cess variation. One important lesson from Uyeda et al. (2018) is that some forms of process vari-
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ation are more easily addressed than others. In particular, unreplicated events are challenging to
account for using standard hidden-state approaches.

More creative approaches to modeling hidden process variation are needed, especially meth-
ods that focus on biological realism, capture the underlying complexity of character macroevo-
lution. For example, Uyeda et al. (2018) suggest Bayesian mixture modeling as an alternative
method for modeling process variation. Computational limits—which have previously restricted
the state space of models or the number of parameters that can reasonably be inferred—are con-
tinuously relaxed as new hardware and better algorithms are developed. Large phylogenetic and
phenotypic datasets are increasingly available to inform estimation under complex models, and
we anticipate and encourage advances in modeling process variation given these datasets.

Joint inference in divergence-time estimation

The classic approach to inferring a macroevolutionary timescale—a phylogeny with branch
lengths in units of time—is “node-dating”. In this approach a researcher, based on the age of
a fossil and on their implicit understanding of the processes of character evolution and of the
probability of fossil recovery, attaches a probability distribution (a “calibration density”) to the
age of particular nodes in a tree. In conjunction with a tree model and a clock model, this age
information can be propagated throughout the phylogeny, “time-calibrating” it. This approach is
very similar to a two-step PCM in that the focal data (here, the age data of the fossil) are superim-
posed on a more-or-less pre-existing phylogeny: the fossil ages “correct” the branch lengths of the
phylogeny rather than being incorporated with the character data to jointly infer the phylogeny
and the timescale of evolution.

In the last decade, so-called Bayesian “total-evidence dating” (TED, also known as tip dating
or combined-evidence dating; Ronquist et al., 2012) has emerged as an alternative to the node-
dating approach. In this framework, researchers estimate a dated phylogeny from a combined
dataset of extant and extinct species, with the extinct species treated as tips and their phylogenetic
position and branch lengths estimated from morphological character data. In turn, the fossil ages
provide the temporal data necessary to disentangle rate and time. Early applications of TED used
discrete morphological data (e.g., Ronquist et al., 2012; Arcila et al., 2015), but more recent studies
have begun to use continuous morphological traits as well (e.g., Álvarez-Carretero et al., 2019;
González-Ramı́rez et al., 2025).

TED approaches are generally discussed specifically in the the context of divergence-time es-
timation, where they have several key advantages over node-dating. First, TED frees us from
relying on a priori assignment of fossils to nodes in the extant subtree—the position of the fossils
(including the full uncertainty in that position) is inferred from the data instead of being fixed in
advance by the researcher. Second, and related, TED approaches allow us to infer the processes
of morphological evolution and, when incorporating a fossilized-birth-death tree model (Heath
et al., 2014), the process of fossilization, removing the need to specify a calibration density in ad-
vance of the analysis. Third, TED analyses can incorporate a richer array of fossil data than can
node-dating approaches, which are limited to including only the oldest fossil that is attributed to
any particular node (Sauquet et al., 2012). However, these advantages come at a cost, as the TED
model is complex, requiring the user to specify models of molecular evolution, morphological
evolution, and tree evolution (Warnock and Wright, 2020; May et al., 2021).

Less commonly discussed is the fact that the joint-inference nature of TED additionally pro-
vides for a series of inferences (beyond the divergence times themselves) that would not other-
wise be possible, including those directly pertaining to character macroevolution. For example,
by jointly inferring the placement of the fossils alongside the timescale of evolution and the pro-

20



cess of morphological change, there is an opportunity to infer that particular character states are
plesiomorphic instead of synapomorphic. A good illustration of this outcome comes from a study
of marattialean ferns (May et al., 2021) where a series of fossils long treated as members of the ex-
tant genus Marattia were included in a TED analysis. However, instead of being resolved in crown
Marattiales with Marattia, the TED joint inference strongly preferred a placement of these fossils
deep along the Marattiales stem branch. In conjunction with the different topological inference,
the TED analysis resulted in different conclusions of character evolution: Marattia and several
other extant genera exhibit a conserved suite of ancestral character states and the “early diverg-
ing” extant lineages Danaea and Christensenia are characterized primarily by apomorphies, rather
than the other way around. To rephrase this conclusion slightly, a fixed tree may bias the estimates
of morphological model parameters if the phylogenetic positions of fossils are incorrect; jointly es-
timating the tree not only allows more accurate placement of fossils, but may also provide more
reliable and realistic estimates of how the traits themselves have evolved (see also Lee et al., 2009).
Moreover, the novel macroevolutionary inferences enabled by the TED joint inference extend be-
yond phylogenetic relationships and patterns of character evolution. For example, TED analyses
can estimate patterns of species richness over deep geological time (the marattialean ferns are esti-
mated to have had a peak species richness of ≈2500 species, at the end of the Carboniferous—this
diversity declined precipitously with the onset of global drying in the Permian to the present ex-
tant diversity of ≈100 species; May et al., 2021) and variation in rates of fossilization (e.g., from
the marattialeans again, where fossilization rates are inferred to be dramatically higher in the
Carboniferous, coinciding with the period when “coal balls”, the primary source of marattialean
fossils, were formed; May and Rothfels, 2023).

Indeed, TED analyses represent the current pinnacle of joint phylogenetic and macroevolution-
ary inference: by jointly estimating the phylogeny and the model of trait evolution, these anal-
yses naturally accommodate phylogenetic uncertainty about fossil placement, topology, branch
lengths, and all other relevant model parameters. Despite the apparent advantages of TED for
joint evolutionary inference, the communication between the subfields of divergence-time estima-
tion and phylogenetic comparative methods remains limited. TED analyses still tend to rely on
models that could be viewed as overly simplistic or uninteresting by the PCM community (e.g.,
simple Mk1 models of morphological change; Lewis, 2001), while most PCM analyses fail to co-
estimate the phylogeny jointly with the focal patterns of character evolution. To some degree, this
lack of communication may be due to the framing of TED as being specifically a method for es-
timating divergence times incorporating fossils, whereas most phylogenetic comparative studies
involve only extant species. However, there is nothing inherent to the total-evidence framework
that requires the use of fossils: practitioners may still jointly estimate the phylogeny and models of
morphological evolution for datasets of extant taxa. Additionally, the value of fossils in studies of
trait evolution has long been recognized (e.g., Cobbett et al., 2007; Mongiardino Koch and Parry,
2020; Mongiardino Koch et al., 2021; Hand et al., 2023), and TED (with a fossilized-birth-death
tree model) offers a coherent way to include fossils when they might be helpful. As more flexible
computational frameworks for joint phylogenetic analysis continue to emerge and mature (e.g.,
RevBayes, BEAST; Höhna et al., 2016; Bouckaert et al., 2019), we foresee great opportunity for the
merging of complex models of morphological evolution and phylogenetic inference in one com-
mon framework, including using complex state-dependent diversification models as tree priors.

Joint inference of tree and ancestral character states

Inference of ancestral states, whether they be of morphological characters or nucleotides/amino
acids (ancestral-sequence inference), is still often undertaken in a two-step PCM framework,
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where first a phylogeny is inferred and subsequently that phylogeny is used to “reconstruct”
the evolution of the specific characters of choice. This two-step approach runs afoul of the issues
described earlier (see Box 2): given that this two-step approach assumes that the focal charac-
ters evolved on the phylogeny, information in those characters should be allowed to influence the
topology through joint inference. However, ancestral-state estimation additionally presents some
specific challenges. While early PCM researchers treated ancestral states as parameters, which
could thus be subject to hypothesis-testing via likelihood ratio tests (e.g., Pagel, 1999b) this treat-
ment is incorrect (e.g., see Yang et al., 1995). Ancestral states are not parameters—“settings” of the
evolutionary model that produced our data—rather they are data themselves (random variables
produced by the model): if we were to travel back in time we could even determine what those
states were! Unfortunately, we cannot know those states and must treat them as unobserved (just
as we might treat character data as “missing” for an extant sample that we were not able to score).

Given that a likelihood-ratio-based approach is inappropriate, we have three main options to
infer ancestral states. The first approach is referred to as marginal estimation (Yang et al., 1995;
Koshi and Goldstein, 1996). For each character (each site in the case of molecular data) and each
internal node we can compute the probability of each possible state given the tree, model, and
data. The state with the highest probability is typically considered the best point estimate of the
ancestral state. Alternatively, we can summarize the probabilities of all states visually, e.g., using
pie charts with wedges proportional to the probability of each state. This approach is named
“marginal” estimation because the state estimate at a given node averages over the states at all
other nodes.

The second approach is referred to as joint estimation. Here we compute the probabilities of
states across multiple nodes simultaneously; e.g., what is the probability that ancestral node A
is in state 0 and ancestral node B is in state 1? In principle, we can evaluate the probability of
all possible combinations of ancestral states across nodes, but often researchers will restrict their
consideration to the joint probabilities of states at a subset of nodes of particular biological interest.
The joint ancestral state point estimate is then the set of states at these nodes that has the highest
probability. Note that the joint estimate of the ancestral state for a particular node may differ from
the marginal estimate, using the same data—the highest probability configuration of ancestral
states when considering all nodes simultaneously may be different from the highest probability
state for a node considered in isolation (Yang, 2006; Revell, 2025).

Third, we can take a stochastic mapping approach (see above; Huelsenbeck et al., 2003). Here
we simulate many character histories under a chosen model (Q matrix) and track how often each
node is in each state. A distinct advantage of this approach is that we obtain character histories
along the branches rather than just at the nodes (Fig. 2). As the number of stochastic character
maps approaches ∞, the frequencies of states at a particular node will converge to the marginal
estimate, while the frequencies of combinations of states at sets of nodes will converge to the joint
estimate; in other words, both types of ancestral-state estimates can be equivalent to estimates
derived from stochastic character mapping (Revell, 2025).

All three approaches typically condition on a fixed Q matrix, inferred from the trait data. Im-
portantly, this feature means that we are conditioning on both a pre-estimated phylogeny and
Q matrix. A partial solution to this problem is fully hierarchical Bayesian approaches, which
jointly sample parameters in the Q matrix and ancestral states (Huelsenbeck and Bollback, 2001);
nonetheless, these approaches are still two-step, as charter evolution is studied on a known tree.
One common approach to the mitigate the risk associated with conditioning on a single tree is
to take into account tree uncertainty by fitting the character-evolution model on a distribution of
trees (a reflection our tree uncertainty). In a Bayesian framework it it common to use a posterior
distribution of trees as a prior distribution of trees for our model of character evolution. Here
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the probability of a particular state at a given node is conditional on the frequency of the node
in the posterior distribution of trees (Pagel et al., 2004). Put another way, the posterior proba-
bility of a node existing represents an upper limit on the probability of a state at the node; if a
node is only present in 50% of the trees the probability of a state at that node can maximally be
50%. While this approach allows us to take into account uncertainty in our tree estimate it is not
a fully joint inference, as inference of the tree(s) and patterns of trait evolution are separated. As
a result, the posterior estimates of the character model are influenced by the posterior estimate of
the tree model but not vice-versa. To jointly sample the character history and the tree we need to
co-estimate the tree and character histories together (see Box 2; Fig. 7).
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Figure 7: Joint simulation of a two-state character (the states are red and blue) and a four-tip phylogeny.
The gray panels are simulations where the character histories match the observed tip states (tips a–b are
orange; tip d is blue). Note that the clade (b,c) is present in 2/3 of the simulated histories that match the
data (i.e., its posterior probability is estimated to be 2/3).

Joint inference of alignment and phylogeny

One particularly foundational area where joint inference can be applied is in the inference of align-
ments. The vast majority of phylogenetic studies take a two-step approach by applying a piece of
“progressive alignment” software to their sequences (reviewed in Löytynoja and Goldman, 2005;
Katoh et al., 2009; Kemena and Notredame, 2009; Chatzou et al., 2016) and subsequently treating
those alignments as if they were data. But those alignments are not data—they are inferences, esti-
mates of homology—and as with all estimates, they have associated uncertainties. In addition to
the failure to account for alignment uncertainty, which can compromise downstream phylogenetic
inferences (e.g., Vialle et al., 2018), this two-step approach has several major weaknesses. First, the
alignment evolved on the phylogeny (substitutions and insertion and deletion events happened
along the branches of the phylogeny) and, as we repeatedly emphasize in this review, that calls for
joint estimation: the phylogeny contains information about the alignment and vice-versa and so
the two “data sources” need to be able to influence each other. Second, and more practically, phy-
logenetic inference with multiple sequence alignments generated by progressive alignment can be
biased (towards the guide tree; Thorne and Kishino, 1992). Third, the score-based approach gen-
erally underlying alignment algorithms is not informed by evolutionary relationships—indels are
repeatably penalized when it may be more appropriate to penalize them once, at their apomorphic
origin (Löytynoja and Goldman, 2005). Finally, progressive alignment does not mechanistically
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Figure 8: Sequences simulated with a joint model of insertion-deletion and nucleotide substitution.
A–C) Simulations of representative nucleotides sequences under an model of indel and nucleotide sub-
stitution, conditioned on the root sequence (TAG) and observed sequences on different phylogenies. Tip
sequences (top) are shown unaligned and (bottom) aligned given the history of sequence evolution. Tree
topologies indicate events mapped along branches with tick marks: Blue ticks corresponds to deletions, or-
ange to insertions, and green to substitutions. Colored alignment positions represent the event with respect
to the ancestral sequence. A progressive aligner (e.g., mafft) would likely infer a different alignment (a:
GAG, b: TA-, and c: TG-) than the indel model because the indel model coestimates the alignment with the
tree.

model the processes that generated the data—it is not possible to derive inferences about, e.g.,
insertion rates or other aspects of the process that generated the alignment (Wong et al., 2008).

However, joint estimation of the alignment and phylogeny is possible thanks to the devel-
opment of models of insertion and deletion (“indel models”, reviewed in Redelings et al., 2024).
These indel models aim to describe the molecular processes that can produce variation in the
length of homologous loci; they generally include parameters for insertion rate, deletion rate,
length distribution of indels, and total alignment length (see Fig. 8 for how this approach works
in a simulation; Thorne et al., 1991; Holmes and Bruno, 2001; Miklós et al., 2004; Redelings and
Suchard, 2005). The joint estimation of alignment and phylogeny allows users to account for align-
ment uncertainty and thus to avoid conditioning their phylogenetic inferences on a single homol-
ogy estimate (a single alignment; e.g., Gaya et al., 2011; Westesson et al., 2012), to produce more
accurate point estimates of alignment and/or phylogeny (including producing point estimates of
the alignment for other downstream applications in situations where two-step tree inference is
unreliable, e.g., Rothfels and Schuettpelz, 2014), and provides mechanistic inferences relating to
the indel process, thus allowing, for example, for the inference of ancestral gaps in DNA sequence
data (see ancestral state estimation section, above).

Conclusion

In this review, we argue that the systematics community has gradually moved away from study-
ing character evolution via a classical two-step “phylogenetic comparative methods” approach
where the focal character(s) of interest are analyzed on a fixed pre-estimated phylogeny, and to-
wards a joint-inference paradigm, where all data are incorporated to jointly infer details of the
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generating process; this approach integrates the historically separate subfields of phylogenetic in-
ference and phylogenetic comparative methods. We further argue that joint inference is generally
more conceptually sound and accurate than the canonical two-step approach, and that it opens up
entirely new types of analyses that are not possible under the two-step PCM paradigm. Related to
the movement towards joint inference is a more general movement towards inference (estimation)
and away from more “Popperian” and hypothesis-testing related approaches, which we believe
has conceptual and practical advantages (e.g., by focusing more on parameter estimation than
model comparison we can mitigate some of the issues raised by Maddison and FitzJohn (2015)).

It is important to acknowledge, however, that this joint inference paradigm is not the be-all
and end-all. There are many situations in which parameters of interest may be non-identifiable
(e.g., Dos Reis and Yang, 2013; Louca and Pennell, 2020; May et al., 2021) and the structure of
our models may preclude particular inferences (e.g., May and Rothfels, 2023). Perhaps most rele-
vantly, there are many evolutionary processes that are difficult to model accurately (e.g., ancestral
transcriptome reconstruction, biogeography, among others, Mika et al., 2022; Mantica et al., 2024;
Thompson et al., 2024; Swiston and Landis, 2025) and questions that are effectively inaccessible
given the data at hand (Quental and Marshall, 2010, see discussion in Losos (2011)). Moreover,
from an practical perspective, there are relatively few “pre-packaged” joint models available and
developing a bespoke model for a particular application is beyond the reach of most systematic
biologists. Fortunately, in many cases we can expect any inaccuracies introduced by adopting a
two-step PCM approach to be minimal: given the size of the sequence datasets typically applied
to tree inference, the exclusion of a small set of focal characters from that inference will mostly
likely have a negligible impact.

However, we anticipate that the barriers introduced by these practical issues to decline with
time, and that the trends that have promoted joint inference—trends in the conceptualization of
phylogenetics and increases in computation power, data availability, and model complexity—will
continue. Already, platforms like RevBayes (Höhna et al., 2016) and BEAST (Bouckaert et al., 2019)
provide relatively easy access to a wide variety of flexible joint-inference models, and emerg-
ing platforms like TreePPL (a so-called “universal probabilistic programming language”, or PPL;
Senderov et al., 2024) promise to increase the range of joint phylogenetic models even further.
As access to these methods expands, joint inference will enable testing increasingly complex hy-
potheses of the interconnections among diversification dynamics, character evolution, molecular
evolution, and more. For example, a joint model of phylogeny, nucleotide sequences, and mor-
phological characters could infer correlated evolution between morphology, genes, and specia-
tion rates. Joint inference positions statistical systematics as a unified framework for integrating
diverse organismal data and building a more complete understanding of complex macroevolu-
tionary processes.
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Swofford, Will Freyman, Stacey Smith, Josef Uyeda, Luke Harmon, Rosana Zenil-Ferguson, and
the Berkeley, Beer, and Biosystematics crew for discussions that have informed our understanding
of this topic, the SSB Legacy Committee for inviting us to contribute this article, and XXX review-
ers for their helpful comments. This material is based on work supported by the NSF Postdoctoral
Research Fellowships in Biology Program under Grant No. 2209159 to JM-G.

25



References
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align? Resolving species complexes within the Caloplaca saxicola group as a case study. Mycologia, 103(2):361–378.



Goldberg, E. E. and Foo, J. (2020). Memory in trait macroevolution. The American Naturalist, 195(2):300–314.
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