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Abstract  17 

In ectothermic animals, physiological processes are highly sensitive to 18 

environmental temperatures. Developmental temperatures, in particular, have large and 19 

long-lasting impacts on ectotherm phenotypes. However, most phenotypic responses are 20 

studied in the laboratory, and may not accurately reflect ecological impacts in natural 21 

environments. In this study, we provide the first synthesis of natural oviposition site 22 

temperatures in wild ectothermic populations by collating and analysing 64 years (1958-23 

2022) of published data. First, we conducted a systematic review to explore the history 24 

and trends in the field. Second, we examined how the mean and among-site variation in 25 

temperatures varied across latitude, habitats (land/water), and taxonomic groups 26 

(arthropods, fish, amphibians, and reptiles). Third, we performed a meta-analysis to 27 

investigate the extent to which temperatures of natural oviposition sites influence the 28 

phenotypes of newly hatched ectotherms. We found a large taxonomic bias towards 29 

reptile model species, with few studies from fishes, amphibians, and arthropods. This 30 

bias towards reptile species can be explained by a historical focus on targeted research 31 

questions (e.g. temperature-dependent sex determination) and a lag in technological 32 

developments required to measure nest temperatures in other taxa (e.g. waterproof 33 

miniature dataloggers). We found no evidence for a correlation between mean 34 

oviposition site temperatures and latitude, but the temperature variability among 35 

oviposition sites within a population increases significantly with latitude. We also found 36 

that ectotherms laying eggs in water have a steeper decline in oviposition site 37 

temperatures with latitude than those that lay their eggs on land. These findings suggest 38 

that mothers select oviposition site temperatures that likely optimise embryonic 39 

development regardless of local climate, yet maternal selection behaviour may be less 40 

effective for those laying eggs in the water and at higher latitudes. Strikingly, studies 41 
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quantifying the impacts of natural oviposition site temperatures on hatchling 42 

development or hatching success are rare (N = 46 studies) and biased towards a few (N 43 

= 19) reptile or arthropod species. However, our meta-analysis revealed small-to-large 44 

negative correlations between oviposition site temperatures and incubation duration and 45 

hatching success (Zr = -0.580 and -0.076, respectively). This suggests that the widely 46 

reported impacts of developmental temperatures on hatchling phenotype described in 47 

laboratory studies will translate to impacts in the wild.  However, existing taxonomic 48 

biases challenge the generalisability of these findings across ectotherms. We provide 49 

recommendations and highlight novel technological advances that will help fill 50 

knowledge gaps and complement our understanding of the impacts of temperature on 51 

wild ectotherms. 52 
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Introduction 78 

The embryonic stage is a particularly vulnerable life stage for ectotherms, as the 79 

lack of post-oviposition parental care in most species leaves embryos exposed to 80 

unmodulated environmental conditions. Yet despite our appreciation that environmental 81 

temperatures vary considerably, we have only limited and species-specific 82 

understanding of natural developmental temperatures and the extent to which they 83 

impact offspring phenotype in the wild (e.g. Bowden et al., 2014). This means that 84 

knowledge regarding developmental plasticity and thermal adaptation gained from 85 

laboratory measurements (e.g. Pottier et al, 2022a; Hoffmann & Sgrò, 2011; Verberk et 86 

al., 2016; Noble et al., 2018) often has uncertain relevance for natural populations. 87 

Greater knowledge of variation in natural oviposition site temperatures and how they 88 

impact ectotherm development in the wild would help transfer knowledge acquired in 89 

the laboratory to natural environments, thus expanding our understanding of thermal 90 

ecology and adaptation. This knowledge expansion is particularly urgent given the 91 

current rate of climatic warming. 92 

Laboratory evidence shows that embryonic developmental temperatures have 93 

large and long-lasting impacts on future phenotypes of ectotherms, including hatching 94 

success, developmental time, physiology, morphology, and behaviour (Colinet et al., 95 

2015; Noble et al., 2018; Bodensteiner et al., 2021; Massey and Hutchings, 2020). 96 

However, phenotypic responses to constant or periodically fluctuating thermal regimes 97 

used in laboratory settings may not mirror phenotypic responses that occur in natural 98 

populations (Bowden et al., 2014; Hall and Warner, 2020; Paitz et al., 2010; Raynal et 99 

al., 2020). In nature, temperature can be highly variable within the developmental 100 

embryonic period, as well as among years and micro-habitats (Colinet et al., 2015; 101 

Booth, 2018; Bowden and Paitz, 2018; Suggitt et al., 2011). The increased frequency 102 
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and intensity of extreme weather events, such as heatwaves, cold snaps, or droughts, is 103 

likely to increase the environmental variation that embryos are exposed to in natural 104 

environments (Kikstra et al., 2022). Moreover, environmental conditions other than 105 

temperature (e.g. moisture, pH; Bowden et al., 2014; Frouz, 2000; Noble et al., 2018; 106 

Santi et al., 2020) can modulate the impact of temperature on phenotype. Thus, it cannot 107 

be assumed that results from controlled lab experiments translate directly to temperature 108 

effects occurring in the wild.  109 

If oviposition site temperature plays a role in shaping  hatching success in wild 110 

populations, then selection on ovipositing behaviour and life-history strategies may 111 

have occurred in response to temperature variation. First, maternal oviposition 112 

behaviour can help avoid exposure to suboptimal or stressful temperatures (Refsnider & 113 

Janzen, 2010). For example, mothers can oviposit in shadier sites or earlier in the 114 

breeding season to avoid exceeding thermal maxima in warmer environments, or expose 115 

eggs to greater solar radiation to reach warmer temperatures in cool environments 116 

(Angilletta et al., 2004; Bennett et al., 2015; Bose et al., 2019; Doody, 2009; 117 

Löwenborg et al., 2012; Radder and Shine, 2007; Rodrigues et al., 2020; Shine and 118 

Harlow, 1996; Wisenden et al., 2009). Second, geographic variation in temperature 119 

could lead to local adaptation of embryonic physiologies or life histories (Doody et al., 120 

2006; Laugen et al., 2003; Du and Shine, 2015). For example, populations from cooler 121 

environments often have faster developmental rates at a given temperature compared 122 

with populations from warmer environments, allowing embryos to complete 123 

development at low temperatures (i.e., countergradient developmental rate; Hourigan 124 

and Radtke, 1989; Laugen et al., 2003; Mitchell and Seymour, 2000; Shine, 1999; 125 

Thompson et al., 1996). Alternatively, prolonged developmental time (Danks, 2007; 126 

Shine, 2004), diapause (insects, fish and reptiles; Armbruster, 2016; Bale and Hayward, 127 
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2010; Danks, 2007; Thompson et al., 1996; Wourms, 1972), or over-wintering within 128 

the oviposition site (Costanzo et al., 1995) obviate the need to develop quickly. Despite 129 

the large literature examining global patterns of thermal adaptation (Angilletta et al., 130 

2004; Buckley et al., 2015; Hoffmann and Sgrò, 2011; Huey and Stevenson, 1979), 131 

there are very few geographic comparisons of thermal conditions of natural oviposition 132 

sites (Bennett et al., 2015; Bodensteiner et al., 2023; Carter et al., 2019; Doody et al., 133 

2006).  134 

In this study, we synthesised oviposition site temperatures globally and analysed 135 

their impacts on the phenotype of wild ectotherms. We performed a systematic review 136 

of the literature – the first to our knowledge – encompassing studies published in the 137 

last 64 years (1958-2022). Our synthesis provides novel insight into thermal ecology 138 

and adaptation through three objectives. First, we assess the history and trends in the 139 

literature on ectotherm oviposition sites using quantitative data from our collated 140 

dataset. This historical review describes the drivers dictating progress in the field, 141 

including the conceptual history behind research on oviposition site temperatures and 142 

the technological advances that opened avenues for new research questions and 143 

increased the quality, resolution, and quantity of data. 144 

Second, we analyse how ectotherm oviposition site temperatures vary with 145 

latitude, oviposition habitat (land vs. water), and between taxonomic groups (reptiles, 146 

fishes, amphibians, arthropods). Air temperatures are warmer and less variable (across 147 

days and seasons) at low absolute latitudes relative to higher latitudes (Mahlstein et al., 148 

2011). Therefore, we predicted that that oviposition site temperatures would decrease 149 

with latitude. Alternatively, adaptations in maternal site selection for optimal 150 

temperatures may reduce or mask the variation in oviposition site temperatures across 151 

latitudes. Additionally, aquatic ectotherms tend to experience lower and less variable 152 



 8 

temperatures than terrestrial ectotherms from similar geographical locations (Barber, 153 

2013; Mitchell and Seymour, 2000). Therefore, we predicted that the mean and 154 

variation in temperature among oviposition sites will be lower in aquatic environments 155 

compared with terrestrial environments.  156 

  Lastly, using a subset of our collated data we perform a meta-analysis to assess 157 

the correlation between natural oviposition site temperature and phenotypic traits of 158 

newly hatched ectotherms (development time, hatching success). Previous meta-159 

analyses using laboratory studies have demonstrated that higher constant incubation 160 

temperatures  reduce development time and hatching success (e.g., Noble et al., 2018; 161 

O’Dea et al., 2019). However, thermal fluctuations can influence the magnitude of 162 

responses to incubation temperatures, particularly at low or high mean temperatures 163 

(Noble et al. 2018; Raynal et al., 2022; but see Stocker et al., 2024). Therefore, we 164 

expect as temperatures increase in a natural setting, hatching success and incubation 165 

duration will decrease. We conclude with recommendations to fill existing knowledge 166 

gaps and increase our understanding of how temperature impacts ectotherms in the wild.  167 

Methods 168 

Literature search 169 

We conducted a systematic review of published studies that measured the 170 

oviposition site temperatures of ectotherms. Following PRISMA-EcoEvo guidelines 171 

(O’Dea et al. 2021), searches were conducted in both Web of Science (core collection) 172 

and Scopus using the University of New South Wales library subscription (Nakagawa, 173 

Ivimey-Cook, et al., 2023). The basic search string used was as follows: ("thermal*" OR 174 

"temperat*") AND ("oviposit*" OR "egg site" OR "nest" or “nests” OR "egg laying") 175 

(see supplement for full search string details). Additionally, certain categories were 176 

excluded to reduce the number of unrelated studies (see supplementary material). This 177 
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resulted in 4846 records from Web of Science and 5027 records from Scopus. These 178 

records were imported into Rayann (Ouzzani et al., 2016) and duplicates were removed 179 

(3030), leaving 6843 unique records that were screened (by RR) based on their title, 180 

abstract, and keywords (Figure S1). To check for inclusion accuracy, LS and RR 181 

independently analysed 100 abstracts in Rayann and were 95% aligned (Ouzzani et al., 182 

2016). One author (RR) screened 637 full-texts, of which 251 studies were included in 183 

the systematic historical review and comparative study, and 46 studies in the meta-184 

analysis (Figure S1). We included additional previously-unreported mean nest 185 

temperatures for several reptile species that were compiled by Schwanz et al (2020) (N 186 

= 7 studies).  187 

To be included in the systematic review and comparative macroecology 188 

analysis, studies must have recorded the temperature of fixed oviposition sites 189 

containing live eggs and reported the population mean oviposition site temperature (or 190 

minimum and maximum, see methods below for converting these to mean). We also 191 

included studies that reported a single temperature if only one temperature recording 192 

was made. The temperature must have been measured where the eggs were laid (not in 193 

the ground next to the oviposition site or the air temperature above the oviposition site). 194 

We included sea turtle egg relocation studies if the hatcheries were located on the same 195 

beach where the turtles naturally nest. In these cases, the temperatures included in the 196 

present study were the temperatures from the most natural treatment. Temperatures 197 

from treatments or studies where oviposition sites were manipulated with high levels of 198 

shading or water were not included.  199 

Most studies that matched our inclusion criteria measured multiple oviposition 200 

sites from a population, often recording a time-series of temperature measurements for 201 

each oviposition site and calculating a mean temperature for each site. Typically, these 202 
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studies then reported oviposition temperature as the population mean across sites and 203 

the standard deviation of individual oviposition site means. We extracted these values as 204 

the “mean temperature” and “standard deviation among sites” for each population. In 205 

addition, we extracted any data on the minimum and maximum site (mean) temperature 206 

for the population. Some studies measured temperature for only a single oviposition 207 

site, such that the standard deviation among sites was not available. Some studies 208 

reported data for multiple populations or for the same population across multiple years. 209 

These separate ‘sample populations’ were included as unique data points and hereafter 210 

referred to as ‘populations’ for simplicity. We additionally extracted the following 211 

information about each population: Taxonomic order, species, population location, and 212 

oviposition site habitat (terrestrial vs. aquatic). Data was extracted from both in-text and 213 

figures. These data were used for the systematic map and macroecological analysis.  214 

A subset of the above studies was used for the meta-analysis. To be included in 215 

the meta-analysis, animals must have spent at least 80% of their development in the 216 

oviposition site. When not reported in the included study, species average 217 

developmental times reported in the literature were used. Studies must have also 218 

reported a statistical relationship between oviposition site temperature and offspring 219 

outcome (incubation duration, hatching success, hatchling phenotype) and reported the 220 

sample size of oviposition sites.  We emailed authors of studies that reported 221 

correlations between mean oviposition site temperatures and hatchling phenotype to 222 

inquire regarding unpublished correlations with hatching success and incubation 223 

duration. As a result of these enquiries, we received unpublished correlations from W.S 224 

Huang and S. Kobayashi and raw data from K. Bonach, J. Riley, I. Reboul, G. González 225 

Desales and D. Booth. For all studies, we extracted correlation coefficients between 226 

mean site temperature and offspring outcome.  227 
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Systematic map 228 

To analyse which research topics motivate ectotherm oviposition site research 229 

for our historical review, we assessed each study in the systematic map to generate 230 

categories of topics that appear most commonly. We then assigned the following broad 231 

research categories to each paper: evolutionary transitions, thermoregulation, general 232 

ecology, climate change, and species management. Most of the studies in the dataset 233 

have multiple aims; therefore, categories were chosen based on the main perceived 234 

motivation of the paper.  235 

 236 

Macroecological patterns 237 

The goal of our macroecological analysis was to examine the variation in 238 

ectotherm oviposition site temperatures across latitude, habitat (terrestrial vs. aquatic), 239 

and taxa. This was to determine if local environmental conditions directly drive 240 

oviposition site temperatures, or if maternal oviposition behaviour limits the variation 241 

across latitudes. Some studies (N = 32) presented the minimum and maximum 242 

oviposition site temperature, rather than the overall mean. To include these in the 243 

analysis, we calculated the population mean temperature by averaging the minimum and 244 

maximum values presented. We verified that this approach was accurate using 20 245 

studies that presented minimum, maximum, and mean. Averaging the minimum and 246 

maximum temperatures from these studies predicted the population mean temperature 247 

accurately (r = 0.9863, slope = 1.06). For studies that did not report the latitude of the 248 

study population, these were obtained using the description of the location and Google 249 

Maps. 250 

All analyses were performed in R (Version 4.2.0) (R Core Team, 2020). First, 251 

we checked if the relationship between mean temperature and latitude was linear, by 252 

comparing the fit of a generalised additive model and a linear model using the mgcv 253 
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(Version 1.8.42) (Wood and Wood, 2015) and lme4 (Version 1.1.34) (Bates et al., 2014) 254 

packages, respectively. Using visual inspection and AIC model selection, we found that 255 

the linear model was a better fit to the data (ΔAIC = 223.8). We ran separate Bayesian 256 

linear mixed models using the MCMCglmm package (Version 2.35) (Hadfield, 2010) to 257 

examine the relationship between latitude (absolute value; predictor) and two measures 258 

of ectotherm oviposition site temperatures: mean temperature across oviposition sites 259 

and standard deviation among sites within each population. Due to standard deviation 260 

being bounded by 0 and having a right-skewed distribution, we natural-logged this 261 

variable before running the models. Model estimates and predictions were back-262 

transformed for visualisation. Additionally, we ran separate models to examine if the 263 

variation in oviposition site temperatures (mean or standard deviation) and latitude 264 

varied between taxonomic groups. We first created major groupings based on higher-265 

level taxonomy, though the groups are not monophyletic clades. The major groups were 266 

arthropods, fish, amphibians, and reptiles.  267 

Due to the much larger sample sizes of reptiles found in the literature, we also 268 

analysed reptile groups separately, by dividing this group into secondary categories: sea 269 

turtles, crocodilians, freshwater turtles (including tortoises), and squamates (snakes and 270 

lizards). Lastly, we categorised ectotherms based on whether they oviposit their eggs in 271 

the water or on land. All models included the random effects of study identity, species 272 

and the phylogeny. To create the phylogenetic tree containing all the species in the 273 

dataset, we used the Tree of Life (http://itol.embl.de/) via the rotl package (Version 274 

3.1.0) (Michonneau et al., 2016). Branch lengths were estimated using the 275 

‘compute.brlen’ function from the ape package (Paradis and Schliep, 2019). To analyse 276 

relationships with latitude among the different taxa, we ran separate models with each 277 

taxonomic group as the reference level. We generated predictions from statistical model 278 
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outputs using the ‘emmeans’ function from the emmeans package (Version 1.8.7) 279 

(Lenth and Lenth, 2018). 280 

 281 

Meta-analysis  282 

Although we collected data on any offspring outcome from all ectotherm 283 

groups, only hatching success and incubation duration had sample sizes large enough 284 

for a meta-analytic approach. This resulted in the meta-analysis including data from 285 

only reptiles and amphibians.  286 

Correlations reported in studies were converted from F values, Chi square, 287 

Spearman’s rank correlation coefficient (ρ) and r2 values to Pearson’s correlation 288 

coefficients (r) as per Koricheva et al., (2013). Pearson’s correlation coefficients (r) 289 

were then converted to “Zr” effect sizes using the ‘escalc’ function from the metafor 290 

package (Version: 4.2.0) (Viechtbauer, 2010) to be used in meta-analytic models.  A 291 

phylogeny was created for the meta-analysis dataset using similar methods as for the 292 

macroecology analysis (see above).  293 

To obtain an overall estimate of how natural nest temperatures affect incubation 294 

duration and hatching success, we first ran a multi-level meta-analysis (MLMA) with all 295 

Zr effect sizes (N = 70, from N=46 studies overall) as the response variable (i.e., 296 

including both incubation duration and hatching success) and three random effects 297 

(effect size ID, species, and phylogeny). This model was estimated using residual 298 

maximum likelihood (REML) using the ‘rma.mv’ function from the metafor package. 299 

We then split the dataset between effects on incubation duration (N= 38 effect sizes) 300 

and hatching success (N= 32 effect sizes) and ran separate models for each trait using 301 

three random effects (effect size ID, species, and phylogeny). As only four studies 302 

contributed multiple effect sizes to each of these datasets, we chose to not include study 303 

ID as a random effect to avoid overfitting the models (14 studies contributed effect sizes 304 
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to both datasets). These separate models were used to calculate the amount of 305 

heterogeneity, I2, and the overall strength of the effect in each of the two datasets. I2 is 306 

the percentage of variance among effect sizes not explained by sampling error alone. 307 

Heterogeneity estimates over 75% are considered high, 50% medium, and 20% small 308 

(Higgins et al., 2003). However, large levels of heterogeneity (>90%) are common in 309 

multispecies analyses such as ours (Senior et al., 2016). We used the function 310 

‘orchard_plot’ from the orchard 2.0 package (Nakagawa et al., 2023) to back transform 311 

the Zr effect sizes to correlation coefficient (r) and plot the meta-analysis results. 312 

To test for publication bias over time in each dataset, we ran a model using the 313 

function ‘rma.mv’ from the metafor package (Viechtbauer, 2010) that included all 314 

moderators and random effects in each response variable’s full model along with Z-315 

transformed publication year and precision (wi, the inverse of the variance). We found 316 

no evidence of publication bias in the hatching success and incubation duration datasets. 317 

All data and R code used in these analyses can be found at: 318 

https://github.com/RRaynal/naturalnestsMA. 319 

 320 

Results 321 

Systematic map: History of the field of research 322 

Research that is conducted and published is driven by many factors, such as 323 

government policy and funding (Clark, 1993; Culumber et al., 2019), technology 324 

availability, model species suitability and availability (taxonomic bias; Jenner & Wills, 325 

2007; Kim & Byrne, 2006), publication bias (Dickersin & Min, 1993; Lortie et al., 326 

2007; Møller & Jennions, 2001), and choice of research topics (Kim & Byrne, 2006; 327 

Lortie et al., 2007; Møller & Jennions, 2001). Here, we review the history and current 328 

state of the field of natural oviposition site temperatures in the context of some of these 329 



 15 

drivers: technology availability, choice of research topics, and taxonomic bias. By 330 

identifying patterns within these areas, we aim to highlight recommendations to 331 

advance the field. 332 

 333 

Technology 334 

The early history of studying natural oviposition site temperatures was largely 335 

driven by the technology available at the time. Up until 1985, it was very common for 336 

oviposition temperatures to be measured rather erratically, with spot temperatures taken 337 

a few times a week, or even just once or twice in total (Greenwood, 1958; Magnusson, 338 

1979; Omo, 1977). Many of these earlier studies used thermographs or large wired 339 

dataloggers with probes. These tools required a person to be at the oviposition site to 340 

read the thermometer every time a measurement was recorded. This meant 341 

measurement intervals could be impacted by access to the site, number of research 342 

assistants available, weather, or parental guarding.  343 

The first record we found of a natural oviposition site temperature for an 344 

ectotherm was published in 1934 (McIlhenny, 1934). This study was not retrieved in 345 

our systematic search, highlighting the challenges of finding early literature with 346 

modern indexing tools. In McIlhenny’s study, the temperature of a single alligator nest 347 

(species unreported) was monitored using a double registering thermometer (with a 348 

bulb) buried in the nest (McIlhenny, 1934). The first study retrieved in our systematic 349 

search (from 1958) investigated the breeding habitats and nests of the East African 350 

lungfish (Protopterus aethiopicus) and used a simple thermometer to monitor natural 351 

developmental temperatures (Greenwood, 1958). For the next 25 years studies mainly 352 

used technology such as simple thermometers, thermistors, or thermocouples to monitor 353 

temperatures at natural egg sites (Jay & Frankson, 1972; Josens, 1971; Lévieux, 1972; 354 

Magnusson, 1979; Omo, 1977; Siefert, 1968).   355 
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In the mid-1980’s, great advances were made in monitoring temperature at many 356 

oviposition sites within a population and for longer timespans. For example, Bull (1985) 357 

monitored 75 map turtle (Graptemys geographica, G. ouachitensis, G. 358 

psuedogeographica) nests simultaneously with frequent datalogging, using a copper-359 

constant thermocouple with a datalogger that had 100 independent channels (arrow 1, 360 

figure 1). Similarly, Rosengren et al. (1987) continuously monitored the internal 361 

temperatures of a wood ant nest for 5 years, using a thermograph and 3 mercury 362 

sensors. However, these forms of technology still required wires and relatively large 363 

logger equipment to be left outside – either dug into holes near the oviposition site 364 

(Christian and Lawrence, 1991) or protected in a weatherproof container.  365 

In the mid-1990’s miniaturized, weather resistant dataloggers (such as iButtons 366 

and Hobo Pendants) were introduced (arrow 2, figure 1). These dataloggers were small 367 

enough (approximately 16.3mm diameter x 5.9mm tall) to be left within larger 368 

oviposition sites to record temperatures at pre-set intervals without any intervention 369 

from a researcher. This revolutionised the resolution of thermal data and facilitated a 370 

boom in research on the natural nest temperatures of turtles, which  quickly dominated 371 

the world of oviposition site thermal research (Figure 1). With the increased feasibility 372 

of oviposition site research, more sites could be monitored and with greater frequency 373 

of sampling and over longer periods of time. Animals were also not disturbed while 374 

attending their nest or laying additional eggs. Advances in technology had a defining 375 

role in research on oviposition sites temperatures by increasing the resolution and 376 

repeatability of research, which in turn increased the range of questions that could be 377 

addressed.  378 
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 379 
Figure 1. Number of published studies that investigate natural oviposition site 380 

temperatures in ectotherms over time. ‘1’ denotes the first found study that monitored 381 

multiple oviposition sites at the same time, ‘2’ denotes the first found study that used 382 

miniature dataloggers. Colours represent ectotherm groups (N = 251 studies). Tortoises 383 

are included in the Freshwater Turtle group. First paper for;  Arthropod: 1971, 384 

Fish:1958, Amphibian: 2000, Lizard/snake: 1988, Crocodilian: 1979, Freshwater Turtle: 385 

1988, Sea Turtle: 1982. Silhouette images obtained from PhyloPic 386 

(https://www.phylopic.org). 387 

 388 

Topics of research 389 

The motivations behind research, including emerging academic questions or 390 

applied outcomes often play a large role in shaping the progression of a field. Although 391 

most studies included in this systematic map were motivated by multiple questions and 392 

themes, there were a handful of primary motivating research topics that appeared 393 

frequently across taxa: evolutionary transitions, thermoregulation (including thermal 394 

tolerance and egg temperature regulation), general ecology, climate change and species 395 

management (Figure 2).  396 

1

2

A. All ectotherms

B.   Arthropods E.   ReptilesC.   Fish D.   Amphibians

Research topic

18% 26%

15%

21%

20%
100%

15% 20%

22%

26%

17%

56%30%

7%
7%

38%

12%

50%

2020200019801960

0

20

40

60

Publication year

N
u
m

b
e
r 
o
f 
st

u
d

ie
s Group

Arthropod

Fish

Amphibian

Lizard/snake

Sea Turtle

Crocodilian

Climate change

Evolutionary transitions

General ecology

Thermoregulation

Threatened species management

Freshwater Turtle



 18 

Ectotherm clades often serve as model clades for studying repeated evolutionary 397 

transitions between life-history strategies (e.g. oviparity-viviparity, level of sociality, 398 

sex-determining mechanism), as they facilitate addressing questions of adaptive 399 

evolution (Franks, 1989; Shine, 1995) (evolutionary transitions: N=41 studies). For 400 

example, the evolution of viviparity from oviparity has been studied in reptile taxa that 401 

have both viviparous and oviparous populations, and this phenomenon has been 402 

hypothesized to be driven by selection for modulation of embryonic developmental 403 

temperatures (Shine, 1995). Similarly, theories of the evolution of temperature-404 

dependent sex determination (TSD), where developmental temperatures directly affect 405 

the sex of individuals, posit that TSD is adaptive when oviposition site temperatures 406 

influence offspring fitness-related traits (e.g. hatching success and size) (Shine, 1995; 407 

Schwanz & Georges 2021). Indeed, the discovery of TSD in 1966 (Charnier, 1966) led 408 

to increased interest in monitoring the temperature of oviposition sites to look for TSD 409 

in other reptiles (Bull, 1985). Thus, interest in these two major evolutionary questions 410 

gave rise to studies on sex ratios, offspring phenotypes, and nest site selection. While 411 

many studies investigating TSD and viviparity are conducted in the laboratory, natural 412 

oviposition temperatures provide crucial information about processes occurring in wild 413 

populations. Therefore, it is not surprising such topics are well-represented in our 414 

systemic map.  415 

Interest in animal thermoregulation has driven studies investigating 416 

thermoregulation within ectotherm-constructed nests (N=54/56 studies), and to a lesser 417 

extent thermal tolerance of eggs (N=2/56 studies). Thermoregulation within the nests of 418 

eusocial insects make up the largest portion of studies on arthropods in our systematic 419 

map (Figure 2). These studies aim to understand the diverse strategies employed by 420 

social insects to maintain optimal brood temperatures in variable, cool, and hot 421 
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environments. For example, in very large colonies, the metabolism of thousands of 422 

workers maintains tolerable nest temperatures (Franks, 1989), while in some smaller 423 

colonies, behavioural adaptations such as fanning and foraging for water play similar 424 

roles (Jay and Frankson, 1972). In addition to investigating the thermal condition inside 425 

nests, many studies explore the role of nest-site selection on nest temperatures, such as 426 

nest spatial location, substrate type, and nest depth (Christian and Lawrence, 1991; 427 

Swiggs et al., 2018). For example, a study using water dragons (Intellagama lesueurii) 428 

across the east coast of Australia found that animals from warmer climates laid their 429 

eggs deeper to protect them from lethally high temperatures (Doody et al., 2006).   430 

Studies that fall within the general ecology topic include broad, natural history 431 

studies where the measurement of oviposition site temperature often takes a secondary 432 

role in the study (General ecology: N=64 studies). These studies generally gather 433 

foundational information on understudied amphibians, fish and reptile species (Amoah 434 

et al., 2021; Greenwood, 1958; McCarty et al., 2022; Poulin & FitzGerald, 1989). They 435 

aim to address knowledge gaps on overall breeding ecology, such as mating and nesting 436 

behaviours (Amoah et al., 2021; Antelo et al., 2010; Fischer, 2023; Nakao et al., 2006), 437 

embryonic development (Magalhaes et al., 2017; N. J. Mitchell & Seymour, 2000; 438 

Monsinjon et al., 2017), and how disease impacts reproduction and life history (Kraus et 439 

al., 1998; Tapilatu et al., 2020).  440 

Studies included in the climate change category are often motivated more 441 

narrowly on examining whether populations will be able to respond to climate change 442 

via trait plasticity or evolution, or whether population management is necessary 443 

(Climate change: N = 38 studies).  Studies investigating plasticity, such as changes in 444 

thermal reaction norms and nest site selection behaviours are particularly prevalent 445 

(Monsinjon et al., 2017; Tapilatu et al., 2020; Weisrock and Janzen, 1999). Research 446 
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projecting the impacts of climate change on biodiversity loss suggest the overall impact 447 

will be negative (Habibullah et al., 2022). However, studies on individual species have 448 

yielded variable findings. For example, studies suggest that some arthropod pest species 449 

respond to higher natural temperatures with increased fecundity, shorter generation 450 

times, and prolonged length of breeding seasons, in turn producing more clutches 451 

annually (Casañas-Arango et al., 1990, see also Colinet et al., 2015). Whether the effect 452 

of climate change will be positive or negative for certain taxa will likely be dependent 453 

on whether the temperatures experienced in nature are permissive or detrimental. 454 

Threatened species management has motivated many studies (N=52 studies), 455 

though these studies cross over with the topics of evolutionary transitions and climate 456 

change. Within this category, all of the studies focus on species that have been defined 457 

as threatened species at some point, have temperature-dependent sex determination, and 458 

are predicted to be substantially impacted by future climate predictions (Eisemberg et 459 

al., 2017; Escobedo-Galván et al., 2016; Pazira et al., 2016). Studies aiming to develop 460 

or refine management strategies for conserving endangered species in a changing 461 

climate often involve directly regulating oviposition site temperature in an attempt to 462 

stabilise sex ratios, such as egg relocations, nest shading and nest watering, or 463 

relocating populations to areas with more conducive oviposition site temperature 464 

options (Başkale and Kaska, 2005; Milton et al., 1997; Tuttle and Rostal, 2010). 465 

  466 



 21 

 467 
Figure 2. The percentages of each primary topic of inquiry (colour) within studies of 468 

ectotherm oviposition site temperatures included in the systematic review and 469 

macroecological analysis.  A) All ectotherms (N = 251 studies), B) Arthropods (N = 41 470 

studies), C) Fish (N = 8 studies), D) Amphibians (N = 8 studies), and E) Reptiles (N = 471 

194 studies). Silhouette images obtained from PhyloPic (https://www.phylopic.org).472 

 473 

Taxonomy and phenotype 474 

Reptiles make up the largest percentage of our dataset (77.3% of studies, N = 62 475 

species, Figure 3). Within reptiles, sea turtles (56% of reptile studies, N= 6 species) and 476 

freshwater turtles (18% of reptile studies, N= 18 species) make up the largest proportion 477 

of studies. Lizards (11% of reptile studies, N= 17 species) and crocodilians (9.2% of 478 

reptile studies, N = 11 species) constitute the next largest group followed by snakes (4% 479 

of reptile studies, N= 7 species) and tortoises (2% of reptile studies, N= 3 species). It is 480 

evident sea turtles are popular model species; however, most studies in our dataset use 481 

only two of the seven extant species: loggerhead turtle (18% of reptile studies, N = 46 482 

studies) and green turtle (20.6% of reptile studies, N = 41 studies). This highlights that 483 
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much of what is known about oviposition site temperatures of ectotherms originates 484 

from data on two reptile species from a small monophyletic group with large geographic 485 

distributions (29% of all studies; 38.7% of reptile studies).  486 

Arthropods constitute one of the most species diverse groups in the animal 487 

kingdom and represent the second largest group in our dataset (16.6% of studies, N = 36 488 

species, Figure 3). However, like the reptile dataset, we also found taxonomic biases 489 

within the arthropod group. Most studies on arthropods use eusocial insects as model 490 

species (84% of arthropods). Within arthropods, the largest group was ants (39%), 491 

followed by bees (22%), termites (13%) and wasps (10%). Other groups were only 492 

represented by a single or two studies each (butterflies, aquatic insects, moths, spiders 493 

and beetles; Figure 3).  494 

Amphibians are the most threatened group of vertebrates (see Luedtke et al., 495 

2023), but studies investigating the oviposition site temperatures of amphibians are rare 496 

(3% of studies, N = 8 studies, 8 species, Figure 3). Additionally, frogs were the only 497 

group of amphibians represented in this dataset (Figure 3). Studies on this taxon were 498 

only found starting from the year 2000 (Figure 1) and were broader studies in the 499 

general ecology topic category (Figure 2). Of the 8 species included in this dataset, 5 500 

build nests, suggesting that the construction of nests provides some opportunity or 501 

impetus for studying amphibian oviposition sites (Rodrigues et al. 2020; Mitchell et. al 502 

2000; Rodriguez et al. 2019; Shepard et al. 2005; Luza et al. 2005).  503 

Despite fish being diverse (>30,000 species), our search retrieved few studies 504 

that have investigated the temperature of their oviposition sites (3% of studies, N = 8 505 

studies, 7 species). Like amphibians, all studies using fish were motivated by the 506 

broader topic of general ecology (Figure 2). It is likely that the amphibian and fish 507 

studies included in this dataset needed to have broader aims due to lack of foundational 508 
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information on natural nest ecology. All fish model species included in our dataset build 509 

nests and often exhibit parental care via male guarding and/or oxygenating eggs (Bose 510 

et al., 2019; Greenwood, 1958; Nakao et al., 2006; Poulin and FitzGerald, 1989; Reebs 511 

et al., 1984; Siefert, 1968; Walters et al., 2000; Wisenden et al., 2009).  512 

Studying offspring phenotype is crucial in evolutionary biology and ecology as 513 

it provides insights into selection, adaptation, and impacts of environmental change. 514 

Despite the relatively large number of studies that measured oviposition site 515 

temperatures in nature, these studies rarely provide any direct links to offspring 516 

phenotypes.  Within the dataset, 59.8% (150/251) of studies measured an offspring 517 

outcome, of which 39.3% (59/150) statistically analysed the covariation between an 518 

outcome and oviposition site temperatures (Figure S2). Thus, fewer than a quarter of 519 

studies that measured oviposition site temperature also linked temperatures to offspring 520 

outcomes (23.9%; 60/251, i.e., hatching success, incubation duration, sex ratio, 521 

morphology and behaviour). Of the studies that statistically compared an offspring 522 

outcome to oviposition site temperature, 56 used reptiles, 2 used amphibians and 2 used 523 

arthropods as a model species.   524 
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 525 
Figure 3. Percentages of studies that were in included in the systematic review and 526 

macroecological analysis, presented as a function of their focal ectotherm taxa (colour; 527 

N=251 studies). Silhouette images obtained from PhyloPic (https://www.phylopic.org). 528 

 529 

Macroecological Patterns  530 

On a global scale, we found no relationship between oviposition site 531 

temperatures and absolute latitude (Figure 4; Table 1). Amphibian oviposition site 532 

temperatures decreased with latitude at a faster rate than the other major taxonomic 533 

groups (slope = -0.77, CI= -1.216, -0.353, P<0.05, Table 1, Figure 5). Similarly, 534 

ectotherms laying eggs in water had a steeper decline in oviposition site temperatures 535 

with latitude than those that lay their eggs on land (Table 1, Figure 5). All other 536 

comparisons of slope between major taxonomic groups were non-significant (all post-537 
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hoc pairwise comparisons P > 0.05). However, the results regarding latitudinal clines 538 

should be interpreted in the context of the availability of data across latitude. 539 

Specifically, the majority of amphibian (N=6/8) and fish (N=7/8) studies, as well as the 540 

majority of studies on aquatic egg-layers in general (N = 12/16), focused on populations 541 

that live above 30 degrees absolute latitude (Greenwood, 1958; Rodrigues et al., 2020; 542 

Shepard and Caldwell, 2005; Figure 5). In contrast, major reptile groups had much 543 

greater latitudinal representation (though sea turtle and crocodile populations were more 544 

equatorial in their distribution than freshwater turtle populations; Figure 5).  Finally, at 545 

0 degrees latitude (intercept), mean oviposition site temperatures of snakes and lizards 546 

were significantly lower, by about 8 degrees, than those of sea turtles (-8.08, CI= -17.4, 547 

-0.1; Table 1).  548 

Among-site standard deviation in temperatures (i.e. oviposition sites within a 549 

sample population) increased significantly with absolute latitude regardless of 550 

taxonomic group or habitat (Table 1, p <0.05, Figure 6). We found no significant 551 

interactions between taxonomic group and latitude for among-site standard deviation in 552 

oviposition site temperatures. 553 



Table 1. Results of Bayesian linear mixed models testing the relationship between the mean and standard deviation (among site) 554 

temperature of ectotherm oviposition sites and absolute latitude. We present posterior means (Post mean), lower and upper bound of the 555 

95% confidence interval (CI) and p-values for each fixed effect within each model. Significant effects are bolded. 556 

 557 

 558 

 559 

Mean 
 

ln(Standard Deviation)  

       Fixed effects Post 

mean 

L CI U CI P-value 
 

  Fixed effects Post 

mean 

L CI U CI P-value 

All taxa – taxonomic grouping 

(Intercept: Reptile) (N=309) 26.951 20.854 32.116 <0.001 
 

Intercept (Reptile) (N= 221) -0.475 -1.240 0.415 0.229 

Latitude (absolute) (N=392) 0.009 -0.018 0.037 0.534 
 

Latitude (absolute) (N=255) 0.019 0.007 0.033 0.004 

Amphibian (N=8) 15.139 -1.780 31.304 0.080 
 

Amphibian (N=5) -2.188 -5.471 1.427 0.206 

Fish (N=10) -3.142 -15.784 9.414 0.595 
 

Fish (N=5) -0.944 -8.809 6.096 0.802 

Arthropod (N=65) 1.097 -5.397 8.473 0.739 
 

Arthropod (N=24) -0.695 -2.346 0.980 0.379 

Lat*Amphibian -0.779 -1.234 -0.316 0.001 
 

Lat*Amphibian 0.051 -0.056 0.147 0.330 

Lat*Fish -0.132 -0.474 0.163 0.411 
 

Lat*Fish 0.031 -0.142 0.199 0.723 

Lat*Arthropod -0.054 -0.128 0.024 0.142 
 

Lat*Arthropod 0.008 -0.026 0.040 0.641 

Reptiles – taxonomic grouping 

Intercept (Sea turtle) (N=185) 30.818 24.234 38.203 <0.001 
 

Intercept (Sea turtle) (N=149) -0.754 -1.758 0.419 0.157 

Latitude (absolute) (N=309) 0.016 -0.010 0.044 0.241 
 

Latitude (absolute) (N=218) 0.016 0.000 0.031 0.043 

Crocodilian (N=18) -0.047 -8.245 8.513 0.990 
 

Crocodilian (N=12) 0.997 -1.180 3.058 0.365 

Freshwater turtle (N= 54) -3.002 -9.100 2.165 0.266 
 

Freshwater turtle (N=27) 0.261 -1.169 1.616 0.677 
           

Lizard/Snake (N=49) -8.080 -17.364 -0.104 0.049 
 

Lizard/Snake (N=30) -0.190 -1.924 1.333 0.821 

Lat*Crocodilian 0.044 -0.190 0.241 0.702 
 

Lat*Crocodilian -0.011 -0.124 0.086 0.839 

Lat*Freshwater turtle -0.047 -0.117 0.032 0.231 
 

Lat*Freshwater turtle 0.000 -0.032 0.040 0.982 

Lat*Lizard/snake 0.038 -0.066 0.150 0.496 
 

Lat*Lizard/snake 0.022 -0.018 0.061 0.305 

All taxa - Land/Water 

Intercept (Land, N=370) 26.948 20.412 32.139 <0.001 
 

Intercept (Land) (N=245) -0.621 -1.266 0.058 0.080 

Latitude (absolute) (N=392) 0.003 -0.025 0.031 0.846 
 

Latitude (absolute) (N=255) 0.020 0.009 0.032 <0.001 

Water (N=22) 2.775 -7.706 14.947 0.654 
 

Water (N=10) -2.082 -4.726 1.093 0.185 

Lat*Water -0.346 -0.640 -0.044 0.013 
 

Lat*Water 0.055 -0.019 0.129 0.167 
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Figure 4. Global distribution of mean oviposition site temperature (symbol colour) within ectotherm populations, separated by higher taxonomy 

(symbol shape; N=392 populations from 251 studies). Silhouette images obtained from PhyloPic (https://www.phylopic.org).
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 2 
Figure 5. Mean oviposition site temperature within a sample population as a function of 3 

absolute latitude for A) major ectotherm groups (N=392 populations from 251 studies), 4 

B) reptiles (N=309 data points), and C) ectotherms that lay their eggs in the water 5 

(N=22 data points) or on land (N=370 data points). Freshwater turtles include tortoises 6 

(N=4 data points). Trend lines and shaded error bars (Highest Posterior Density (HPD) 7 

intervals) were predicted from Bayesian linear mixed models. Histograms reflect the 8 

number of data points for each category across latitude. Silhouette images obtained 9 

from PhyloPic (https://www.phylopic.org).10 
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 11 
Figure 6. Standard deviation of temperatures among oviposition sites within each sample 12 

population as a function of absolute latitude of A) major ectotherm groups (N=255 13 

populations from 237 studies), B) reptile groups (N=218 data points) and C) ectotherms that 14 

lay their eggs in the water (n=10) or on land (n=245). Freshwater turtles include tortoises 15 

(N=4 data points). Trend lines and shaded error bars (Highest Posterior Density (HPD) 16 

intervals) were predicted from Bayesian linear mixed models, back-transformed from natural 17 

log. Histograms reflect the number of data points for each category across latitude. Silhouette 18 

images obtained from PhyloPic (https://www.phylopic.org). 19 
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Meta-analysis 20 

We used a meta-analytic approach to quantify the extent to which mean natural 21 

oviposition temperatures impact offspring outcome in ectotherms. Due to restrictions on the 22 

data available within the literature, only reptiles (n = 46 studies, n = 19 species) and 23 

amphibians (n = 2 studies, n = 2 species) were included in the meta-analysis. We found a 24 

large (|r| >0.5, (Cohen, 1988)) and significant association between increasing natural 25 

oviposition temperature and decreasing incubation duration (Table 2; Figure 7). We also 26 

found a small (r ~0.1, (Cohen, 1988)) but significant association between increasing natural 27 

oviposition site temperature and decreased hatching success (Table 2; Figure 7). By 28 

conventional measures, overall heterogeneity in the data was high (hatching success; 29 

I2=87.5%, incubation duration; I2= 87.8%, Table 3)(Senior et al., 2016). The variance in the 30 

data for incubation duration can be explained by phylogenetic relatedness and differences 31 

between effect sizes (within-species or within-study variation), with negligible variance 32 

explained by differences between species (Table 2). The majority of the variance in the data 33 

for hatching success can be explained by differences between effect sizes (within-species or 34 

within-study variation), with negligible variance explained by differences between species 35 

and phylogenetic relatedness (Table 2).   36 



 31 

Table 2. Effect of correlations between nest temperature and phenotypic outcomes on reptiles 37 

and amphibians. The table shows parameter estimates with 95% confidence intervals (CI) and 38 

95% prediction intervals (PI) from the multi-level meta-analysis (MLMA). I2 represents the 39 

percentage of heterogeneity, Ne represents the number of effect sizes, Nst represents the 40 

number of studies and Nsp represents the number of species for each dataset.  41 

Trait Ne Nst Nsp Overall 

I2(%) 

Random effects 

I2 (%) 

Coefficients P value 

Incubation 

duration 

38 35 15 86.8 Total = 87.8 

Phylogeny = 45.3 

Species = 0  

Data ID = 42.4 

Zr = -0.580, 

CI = -1.071, -0.089,  

PI = -1.945, 0.785 

P = 0.021 

Hatching 

success 

32 27 14 87.5 Total = 87.0 

Phylogeny = 0 

Species = 0 

Data ID = 87.0 

Zr = -0.076,  

CI =-0.367, -0.076,  

PI = -0.926, 0.483 

P = 0.003 

 42 



 32 

 43 

Figure 7. The distribution of effect sizes, back-transformed from Zr effect sizes to correlation 44 

coefficient (r), representing the relationship between mean oviposition site temperature and 45 

offspring phenotypes of incubation duration and hatching success (modelled separately).  46 

Middle points are mean estimates, thick bars represent confidence intervals (CI), thin bars 47 

represent prediction intervals (PI), points are individual effect sizes scaled by precision 48 

(1/standard error), k is the number of effect sizes, number in brackets is number of studies.  49 
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Discussion  50 

In this study, we provide the first synthesis of over 60 years of research on natural 51 

thermal variation experienced by ectotherms during embryonic development. This synthesis 52 

is timely given the explosion of studies in the past 25 years and the urgency of increasing 53 

climate change. We examined patterns across latitude, environment type, and taxa, and 54 

analysed whether thermal variation within a population impacts ectotherm phenotype. Firstly, 55 

we found that there is an inherent taxonomic bias in the literature towards reptile species, 56 

likely influenced by technological availability and biases in areas of research. Secondly, we 57 

found little support for an association between mean oviposition site temperatures and 58 

latitude, but variation in temperatures among oviposition sites within a population was higher 59 

at higher latitudes. Lastly, our meta-analysis demonstrated an association between natural 60 

oviposition site temperature and offspring phenotype, with small-to-large negative 61 

correlations between mean oviposition site temperatures, incubation duration, and hatching 62 

success. Below, we first discuss the implications of the meta-analysis results, followed by 63 

considering them in light of the macroecological findings. We end by considering both sets of 64 

findings in the context of the history of the field, and what future avenues of research would 65 

help advance the field. 66 

 67 

Meta-analysis 68 

Our findings that incubation duration and hatching success both decrease with 69 

increasing oviposition site temperature are consistent with the effects of developmental 70 

temperatures on reptile hatchling phenotypes reported under laboratory conditions (e.g. Noble 71 

et al., 2018). Notably, Noble et al. (2018) found that the relationship between temperature 72 

and hatching success in the lab was not linear, peaking at intermediate temperatures and 73 

declining at both colder and hotter temperatures (see also Du and Shine 2015; Noble et al. 74 

2021). Therefore, the negative correlation we found between developmental temperatures and 75 
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hatching success suggests that the warmest oviposition sites within natural populations are 76 

similar to the warmer end of temperatures investigated in the laboratory. Such lethally-warm 77 

oviposition sites in nature suggests that some of the variation in temperatures among sites 78 

(e.g. among nests) is non-adaptive or shaped by competing ecological factors (e.g. 79 

competition or predation). Moreover, fluctuations around hot temperatures during 80 

development are known to decrease reptile hatching success in the lab (compared with 81 

constant temperatures; Raynal et al. 2022 but see Stocker et al., 2024), suggesting that any 82 

increase in within-site fluctuations in natural oviposition sites will likely reduce hatching 83 

success. Our finding that the effect of natural developmental temperatures on incubation 84 

duration was more than seven times as large as the effect on hatching success is also 85 

consistent with the same meta-analytic comparisons of laboratory incubation studies using 86 

reptiles (Noble et al., 2018; Raynal et al., 2022). While we did not recover sufficient data on 87 

phenotypes such as morphology, behaviour, or performance to include them in our analyses, 88 

extending findings from laboratory studies suggests that these phenotypes will also be 89 

affected by natural temperatures, though to a lesser magnitude than are hatching success and 90 

incubation duration (Elphick & Shine, 1998; Hall & Warner, 2020; Raynal et al., 2022). 91 

While hot constant temperatures and fluctuations in temperature have both been 92 

shown to negatively impact offspring phenotype in the lab, temperature fluctuations in 93 

natural oviposition sites could also reduce the impact of increasing mean temperature 94 

(Bowden et al., 2014). Indeed, in laboratory studies, phenotypic differences arising from 95 

changing the mean developmental temperature become less pronounced under fluctuating 96 

developmental temperatures (Bowden et al., 2014; Noble et al., 2018). Accordingly, one 97 

might predict that changes in mean oviposition site temperatures in nature (where 98 

temperature fluctuate) would have only a weak impact on offspring. Thus, our findings that 99 

incubation duration and hatching success decline with mean oviposition site temperature even 100 

in a natural setting is significant contrary evidence.  However, it is worth noting that, in our 101 
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study, most correlations between mean oviposition temperature and offspring phenotype 102 

originated from sea turtles, whose deep nests experience relatively minor temperatures 103 

fluctuations during the developmental period (Booth & Astill, 2001). Thus, it remains 104 

possible that changes in mean temperature in natural oviposition sites has comparatively 105 

smaller impact in species where eggs experience substantial temperature fluctuation (e.g. 106 

terrestrial arthropods or reptiles with shallow nests). In addition, other uncontrolled natural 107 

variables may be exacerbating the observed reduction in hatching success with temperature 108 

(e.g., concomitant changes in soil moisture; Bell et al., 2025). 109 

Most of the variance in our meta-analysis is explained by differences in phylogenetic 110 

relatedness and between effect sizes, with zero variance explained by differences between 111 

species. This indicates that our results are likely generalisable across species (at least 112 

reptiles). However, it must be noted that studies on two sea turtle species make up a large 113 

proportion of the effect sizes in our dataset (green sea turtles, 21.4%, and loggerhead sea 114 

turtles, 31.4%). As only four studies contributed more than one effect sizes to our dataset, the 115 

variance between effect sizes likely represents differences between studies and populations. 116 

Studies in this dataset range considerably in the types of technology used, research question 117 

(and therefore their methodological approach) and how many times temperatures were 118 

measured within an oviposition site. These factors also likely contribute to the overall high 119 

heterogeneity in the data, which is common in meta-analyses of multiple species with 120 

different ecologies (Senior et al., 2016). 121 

Through results from laboratory experiments, we know that the phenotype of 122 

arthropods, fishes, and amphibians can be strongly influenced by temperature (reviewed in 123 

Colinet et al., 2015; Massey and Hutchings, 2020). However, our systematic search retrieved 124 

only 9 studies (3 arthropod, 4 fish and 2 amphibian) that measured an offspring phenotype 125 

alongside natural oviposition site temperature in these taxa (Figure S1). Collecting data on 126 
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the association between natural developmental temperatures and offspring phenotype across a 127 

greater diversity of taxa is imperative to generalise our findings across ectotherms.  128 

 129 

Macroecological patterns 130 

Surprisingly, we found little evidence for a relationship between oviposition site 131 

temperature and latitude. Given the large differences in air temperatures across this range of 132 

latitudes (-43° (south) – 63° (north) latitude), our findings suggest that maternal behaviour is 133 

important for maintaining oviposition site temperatures near a standard, presumably optimal, 134 

temperature regardless of the local climate (Refsnider and Janzen 2010).  135 

The importance of maternal oviposition site selection has been explored in many 136 

ectothermic species, though commonly in contexts other than site temperature (Refsnider & 137 

Janzen, 2010).  In reptiles where multiple species and populations have been investigated, 138 

nest temperatures are similar across latitude largely owing to among-population differences 139 

in the nest microhabitat or timing of oviposition (Blouin-Demers et al., 2004; Bodensteiner et 140 

al., 2023; Kolbe & Janzen, 2002; Mitchell et al., 2013; Pike et al., 2012; Shine, 2004; Shine 141 

& Harlow, 1996; Warner & Shine, 2008). In the current dataset, populations of sea turtles and 142 

crocodilians have notably flat mean oviposition site temperatures across latitude (Figure 5A).  143 

For crocodilians, among-population similarity in temperature is most likely due maternal nest 144 

attendance to regulate nest temperature (Hénaut and Charruau, 2012). Similarly, the few 145 

studies that have investigated the role of temperature in oviposition site selection in 146 

arthropods found that thermal microclimate plays a large role in oviposition site location 147 

(Pike et al., 2012; Potter et al., 2009; Sousa et al., 2022; Wilson et al., 2020). However,  nest-148 

site selection in relation to temperature is comparatively understudied in arthropods, fish and 149 

amphibians, with no studies found using fish and only one using amphibians (Luza et al., 150 

2015). Overall, maternal oviposition site selection has long been considered crucial in 151 

reproductive ecology, such that the near-complete lack of latitudinal trends in site 152 
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temperature is striking and provides impetus for greater geographical comparisons of 153 

maternal behaviour.  154 

Variation we observed in oviposition site temperatures suggests that maternal 155 

behaviour is less effective at selecting optimal oviposition site temperatures at high latitudes. 156 

In particular, at latitudes greater than 30-35 degrees, there was an apparent increase in 157 

variation in mean oviposition temperatures among populations (i.e. scatter in Figure 5), and a 158 

large increase in standard deviation within populations (Table 1, Figure 6). In many wild 159 

populations, variation in oviposition site temperatures is driven by variation in vegetation 160 

cover above the oviposition site and the time of year when eggs were oviposited (Schwanz 161 

and Janzen 2008, Schwanz et al., 2010; Bennett et al., 2015; Kolbe & Janzen, 2002; 162 

Pincebourde et al., 2016; Refsnider & Janzen, 2010; Telemeco et al., 2009). Thus, the 163 

increased variation above 30° latitude could reflect reduced choice of microhabitat 164 

temperatures (thus, more sub-optimal site temperatures) given that habitats at these latitudes 165 

are often arid or open-woodland (Georges, 1992; Jackson & Forster, 2010). In addition, if 166 

high-latitude, short-season populations are more constrained in their phenology, ovipositing 167 

individuals may accept sub-optimal temperatures to ensure developmental completion prior 168 

to winter. Moreover, we could not account for altitude in our models as most studies did not 169 

report it. Altitudinal variation could be contributing to some of the temperature variation at 170 

high latitudes, particularly within the arthropod group (Figure 6A). Regardless of the drivers, 171 

the increase in temperature variation within populations at higher latitudes could lead to 172 

suboptimal phenotypic outcomes (e.g. embryonic death).  173 

Alternatively, increased variation in oviposition site temperatures at high latitudes 174 

may also indicate that populations at higher latitudes have specific adaptations (e.g. broader 175 

thermal performance curves, diapause) that allow success despite a broader range of possible 176 

developmental temperatures. Embryonic adaptations for dealing with cooler or more variable 177 

oviposition site temperatures could reduce fitness costs associated with temperatures that are 178 
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detrimental in other populations as well as reduce the selective pressure on maternal 179 

oviposition behaviour (Bale & Hayward, 2010; Danks, 2010; Wourms, 1972).   180 

Variable sampling effort across latitude, taxa and studies led to challenges in 181 

interpreting our findings. There was substantial variation among studies in the numbers of 182 

oviposition sites sampled within each population and the number of temperature records per 183 

oviposition sites. However, the number of oviposition sites surveyed was not always clearly 184 

reported, so we could not account for the sampling variation in our statistical analyses. Small 185 

sample sizes can lead to inaccurate estimates of mean or among-site variation in 186 

developmental temperatures, thus it is critical that future studies report sample sizes. 187 

However, the most extreme mean temperatures (high latitude arthropods and amphibians), as 188 

well as the population with the greatest variability among sites (high latitude fish and 189 

arthropods) did not have conspicuously small sample sizes (N≥5 oviposition sites). In 190 

addition, latitudinal range varied among major taxa. Amphibian populations, in particular, 191 

were not sampled across a broad range of latitudes (Figure 5-6). Around 76% of amphibians 192 

inhabit tropical rainforests (Pillay et al., 2022), and our dataset only reflect observations from 193 

sub-tropical or temperate amphibians (>30 degrees of latitude), which likely partly explains 194 

why some frog studies recorded extremely low oviposition site temperatures (Frisbie et al., 195 

2000; Mitchell and Seymour, 2000).  196 

Many studies that appeared in our initial search assumed oviposition site temperatures 197 

using weather station data, or nearby ground temperatures. However, these proxies are often 198 

not accurate (Nowakowski et al., 2018; Woods et al., 2015). Indeed, we found significant 199 

variation in temperatures among oviposition sites within the same population, indicating that 200 

even climatic data with small spatial resolution are not sufficient to capture relevant variation 201 

in the temperatures experienced by embryos (Bodensteiner et al., 2023; Pincebourde et al., 202 

2016). For example, in tobacco hornworms (Manduca sexta), eggs are laid on leaves, and 203 

oviposition site temperatures depend on the size of the leaf (Potter et al., 2009). In fact, most 204 
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habitats experience large spatial variation in temperature across microhabitats (Barber, 2013; 205 

Nowakowski et al., 2018; Potter et al., 2013; Pincebourde & Casas, 2019). Therefore, coarse 206 

climatic data is unlikely to capture the cryptic microclimatic variation experienced by 207 

embryos during their development (Pincebourde et al., 2016).  208 

 209 

Systematic map 210 

Our systematic map showed that a combination of technology availability and 211 

research question focus has contributed to a large taxonomic bias towards reptile species in 212 

oviposition site temperature research. We found that most of the  arthropod, amphibian and 213 

fish species uncovered in our systematic search  construct nests for oviposition. The 214 

construction of nests makes eggs much easier to locate and often easier to monitor with 215 

miniature dataloggers. For example, eusocial insects dominate the arthropod group in our 216 

dataset, and often construct very large, conspicuous nests. While there were very few species 217 

of fish (N = 7 species) and amphibians (N = 8 species) included in our study; all fish, and 218 

63% of amphibians in our study construct nests. This likely reflects the technical difficulties 219 

in finding and measuring the temperature of eggs deposited in inconspicuous locations in 220 

nature, or with inconspicuous oviposition behaviours. Interestingly, fish and arthropods make 221 

up most of the studies in the first 20 years of studies retrieved in our search (Greenwood, 222 

1958; Jay and Frankson, 1972; Josens, 1971; Lévieux, 1972; Omo, 1977; Siefert, 1968), yet 223 

these taxa did not see increased interest in the 1980s and 1990s. A possible explanation for 224 

the lack of increased interest is that advances in laboratory technology (and decreasing 225 

prices) made laboratory experiments more feasible than studying the animals in nature. In 226 

many model amphibians, arthropods and fish, laboratory experiments have provided a large 227 

body of knowledge on thermal tolerance and developmental biology that could be bolstered 228 

by insights from natural oviposition site temperature data (Bull and Shepherd, 2003; Pottier et 229 

al., 2022b). 230 
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Additional potential explanations for the taxonomic bias are that many fish, 231 

arthropods, and amphibians have challenging reproductive biology, short embryonic 232 

development times and complex lifecycles where developmental forms go through several 233 

morphological and habitat modifications before reaching adulthood (Moran, 1994). Not only 234 

are complex life-cycles difficult to study in the field, but temperatures experienced during the 235 

short embryonic phase may have a transient or limited effect on phenotype compared with 236 

temperatures experienced during the juvenile or adult stage (but see, e.g., Pottier et al., 237 

2022a). Additionally, many invertebrate and fish species have inconspicuous reproductive 238 

strategies, including a small number of eggs, very small eggs, planktonic eggs, highly cryptic 239 

broods, or scattered eggs (Barber, 2013; Colinet et al., 2015). These eggs may be difficult to 240 

locate or simply do not have a singular, fixed ‘site’ at which to measure temperature. Even 241 

when oviposition sites can be identified, substantial technological challenges remain for 242 

measuring temperature in small, aquatic, or agglutinated egg masses. Indeed, the 243 

miniaturization of dataloggers (~1-3cm size) that was a boon for terrestrial nests of at least 244 

10cm diameter provided no improvement over smaller-tip thermocouple probes (~1-2m) for 245 

oviposition sites of many ectotherms. This means that only a portion of these taxa may be 246 

suitable model species for studying how oviposition site temperatures in particular impact 247 

offspring phenotype.  248 

It is unfortunate that many of the insights gained from the most frequent taxa in our 249 

systematic search – sea turtles – are not directly applicable to other ectotherms, and likely not 250 

even other reptiles, due to their deep nests relative to other species. The taxonomic bias 251 

towards sea turtles is likely driven by their charismatic nature, conspicuous nesting 252 

behaviours, temperature-dependent sex determination, and populations being at high risk of 253 

anthropogenic impacts such as climate change (Miguel et al., 2022). These factors together 254 

likely make funding easier to obtain and make studies easier to publish and more likely to 255 

reach a wider audience (Hayer et al., 2013).  256 
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There is significant pressure for scientists to produce novel research with impactful 257 

outcomes, with an emphasis on fashionable topics or species (Hayer et al., 2013; Møller & 258 

Jennions, 2001; Sutton, 2009). Funding and time constraints facilitate using well-studied 259 

model species with established protocols, equipment, and reliability (Peirson et al., 2017). 260 

However, choosing understudied model species to research ecology and evolution topics can 261 

clarify concepts that remain elusive in their generality (Jenner & Wills, 2007). For example, 262 

from relatively extensive research using reptile model species, we still do not have an 263 

evolutionary explanation for the occurrence of temperature-dependent sex determination 264 

(Schwanz & Georges, 2021). However, there are many unstudied species of reptiles, fishes, 265 

anurans, and arthropods that exhibit forms of temperature-dependent sex determination and 266 

live in habitats that will be impacted by future climate change projections (Conover, 1984; 267 

IPCC, 2014; Korpelainen, 1990; Ruiz-García et al., 2021). Studying evolutionary transitions 268 

across taxa and species would offer a comparative view that is currently missing by using 269 

well-studied model species. Additionally, such data may be important for the conservation of 270 

understudied and endangered species and may in-turn enhance our conservation efforts across 271 

taxa in the face of climate change (Culumber et al., 2019). 272 

  273 
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Recommendations 274 

There are many challenges to recording natural oviposition site temperatures. 275 

However, our systematic review paints a compelling picture of the taxa, habitats and latitudes 276 

where data are markedly lacking. Through our systematic review, we discovered that 277 

technological advances and the motivating questions underpinning research have resulted in a 278 

major reptilian bias in the data available on oviposition site temperatures and their influence 279 

on ectotherm phenotypes. Furthermore, a restricted geographical (i.e. latitudinal) range of 280 

studies on non-reptilian taxa limit our power to test ecological and evolutionary hypotheses 281 

related to oviposition site temperatures. Here we make recommendations to minimise 282 

obstacles and obtain data from diverse taxa.  283 

Ecologists are often innovative and creative when it comes to manipulating the 284 

technology available to suit their research needs (Lovegrove, 2009; Virens and Cree, 2018). 285 

As such, improvements to temperature dataloggers may encourage research in a greater 286 

number of natural habitats. While the development of mini-dataloggers in the 1990’s 287 

encouraged more research on developmental temperatures in the wild, technological 288 

improvements have been relatively slow ever since. Waterproofing and the battery size of 289 

dataloggers remain limitations for their deployment in some oviposition sites. Self-contained, 290 

programmable dataloggers (e.g., iButtons and Hobo pendants) cannot be deployed in very 291 

small or fragile oviposition sites (e.g. spider egg sacs, frog or fish egg masses) because their 292 

in-device battery and memory chip currently require too much physical space. Instead, 293 

weather- or water-proof dataloggers with small-tip thermocouple probes would be incredibly 294 

useful for small eggs and clutches, as the small probes can be inserted into egg masses or 295 

affixed to oviposition site surfaces (e.g. underside of a leaf). Currently, dataloggers with 296 

probes are expensive and not always waterproof, limiting the number of units that can be 297 

deployed, and requiring additional waterproof casings.  298 
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In the absence of technological advances, many possible target species construct 299 

highly conspicuous nests or egg masses that could be accessed and measured using current 300 

technology. Fish are one of the most common model species used in studies investigating the 301 

evolution of nest construction (second only to birds; Barber, 2013). For example, salmon 302 

(Buxton et al., 2015), sticklebacks (Rushbrook et al., 2010), Antarctic icefish (Purser et al., 303 

2022), and chubs (Svensson & Kvarnemo, 2023) build complex nests that can host a 304 

datalogger. While eusocial insects make some of the most impressive and conspicuous nests 305 

from the arthropod group, several other arthropod taxa have conspicuous oviposition 306 

behaviours which could be leveraged to locate eggs. For example, many species of spiders 307 

and beetles make visible nests (silk egg sacs and brood balls) where thermocouple probes 308 

attached to a datalogger could be inserted (Cambefort and Hanski, 1991; Sethy and Ahi, 309 

2022). For arthropod species that do not make nests or lay easily identifiable eggs, some 310 

consistently lay eggs in certain substrates, which could aid in locating egg clutches to 311 

measure the temperature using thermocouples (Bennett et al., 2015). For example, many 312 

butterfly species lay eggs on specific host plant species and some Tephrioidae flies oviposit 313 

in fruit and vegetables (Bennett et al., 2015; Díaz-Fleischer et al., 2001). Additionally, many 314 

insects lay phenotypically unique eggs, such as stink bugs (Abram et al., 2015), eastern tent 315 

caterpillar moth (Koval and Binnie, 1999) and tabanid flies (Graham and Stoffolano, 1983). 316 

These are just few examples of taxa that could be used as model species to understand how 317 

temperature impacts development in nature. 318 

Due to the ongoing threats faced by amphibians (Luedtke et al., 2023), a greater 319 

understanding of their embryonic thermal ecology would not only complement fundamental 320 

knowledge but also potentially inform conservation. Moreover, amphibians are an excellent 321 

taxon for comparative evolutionary biology, exhibiting a wide range of reproductive modes 322 

including aquatic and terrestrial eggs, oviparity and viviparity, and singular nests or 323 

communal egg laying (Shepard and Caldwell, 2005; Liedtke et al., 2022). Many amphibians 324 
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lay terrestrial eggs inside foam nests created by mucous secretions or mud basin nests, or egg 325 

masses in aquatic systems (Gould, 2021; Schäfer et al., 2019; Lietdke et al., 2022). The size 326 

and location of these nests vary, but many are placed in recognisable locations (e.g., water’s 327 

edge, attached to tree branches leaning over water) that would be relatively simple to locate 328 

(Cooper et al., 2017; Fischer, 2023; Gould, 2021). 329 

Incubation duration and hatching success were almost never measured in studies 330 

focused on fish and arthropods. These two offspring outcomes are likely the easiest to 331 

measure in the field and are important for understanding population phenology, demography, 332 

and fitness. Similarly, other fitness-related traits such as sex ratio, morphology, and 333 

behaviour are sensitive to temperatures in the laboratory (Noble et al., 2018) yet rarely 334 

studied in the field. While it may be difficult to capture small hatchlings for phenotypic 335 

measurements, it is still possible. Hatching success of small terrestrial animals could be 336 

measured using motion sensitive camera traps set up at oviposition sites, or by using Malaise 337 

or adhesive traps for flying and crawling animals, respectively (Lo et al., 2019; Uhler et al., 338 

2022). Technology used by marine researchers to study population dynamics, such as baited 339 

remote underwater video (BRUV), could be adapted to monitor incubation duration and 340 

hatching underwater (Lowry et al., 2011). Additionally, artificial intelligence software could 341 

be used to take automated morphological or behavioural measurements (da Silva et al., 2023). 342 

We are hopeful that combining knowledge from natural history and laboratory experiments 343 

with emerging field and computational technologies will offer interesting avenues for 344 

understanding the influence of natural developmental environments on ectotherm phenotypes.  345 

Conclusion: 346 

1. Our meta-analysis revealed that increases in mean developmental temperatures are  347 

negatively correlated with developmental time and hatching success. This is 348 
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consistent with evidence from laboratory studies, attesting to the ecological relevance 349 

of laboratory studies.  350 

2. We found no evidence for an association between natural oviposition site 351 

temperatures and latitude, suggesting that maternal ovipositing behaviour maintains 352 

embryonic development within a narrow thermal range, regardless of local climate. 353 

However, maternal ovipositing behaviour is less effective at higher latitudes, as 354 

evidenced by larger variation in oviposition site temperatures among nests within 355 

populations at higher latitudes compared with lower latitudes. 356 

3. We found large taxonomic biases in the literature, challenging the generalisability of 357 

our findings to all ectothermic species. Little data could be obtained from certain 358 

latitudes and most of the data came from studies on reptiles. 359 

4. This taxonomic bias is likely explained by a confluence of technology availability and 360 

research question focus, which has been amplified over time. 361 

5. Recent technological developments and knowledge of the natural history of 362 

ectothermic species provides compelling opportunities to increase taxonomic breadth.  363 
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