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Abstract 24 
 25 
Observing biodiversity across space and time is essential for advancing and verifying conservation efforts 26 
toward global biodiversity and sustainability goals. Spaceborne imaging spectroscopy has emerged as a 27 
revolutionary tool for quantifying and tracking forest diversity, yet its application at large spatial scales 28 
remains a central challenge. We develop a framework to map multiple dimensions of forest community 29 
composition and diversity by integrating imaging spectroscopy from two spaceborne sensors (DESIS and 30 
EMIT) with taxonomic, phylogenetic, and functional trait datasets, and 43,155 forest inventory plots 31 
across the Eastern United States. We find that spectral dissimilarity among forest communities is 32 
positively correlated with β-diversity matrices of compositional dissimilarity. We then show that imaging 33 
spectroscopy can be used to predict ordination axes of β-diversity and to map multiple dimensions of 34 
forest diversity at high spatial resolution (30 or 60 m). Predicted β-diversity axes can be used to model 35 
forest attributes, including forest types, plant lineages, and community plant traits. On average, β-diversity 36 
axes explain more than 48% of the variance—outperforming climatic and topographic predictors—and 37 
enable accurate mapping of 95 forest attributes. Our framework shows that spaceborne imaging 38 
spectroscopy, when combined with inventory data, allows indirect yet comprehensive observation of 39 
forest diversity attributes across broad spatial extents. This integrative approach sets the stage for 40 
scalable forest monitoring in support of global biodiversity conservation and forthcoming satellite 41 
missions. 42 
 43 
Keywords: β-diversity, biodiversity, plant lineages, functional traits, imaging spectroscopy 44 
 45 
Main Text 46 
Introduction 47 
 48 
Monitoring biodiversity and its changes across space and time represents a major societal challenge 49 
critical for sustainable management of our planet (1, 2). The accelerating loss of biodiversity and shifts in 50 
species composition resulting from human pressures and global change underscore the urgent need to 51 
develop effective approaches for biodiversity monitoring (3). Consequently, accurate and scalable 52 
monitoring is essential for verifying efforts towards the sustainability targets of the Convention on 53 
Biological Diversity and for assessing whether current actions are helping to “bend the curve” of 54 
biodiversity loss (4). Biodiversity observation and monitoring are particularly important in forest 55 
ecosystems, which provide essential ecosystem services and are highly vulnerable to deforestation, 56 
pests, pathogens, and abiotic stressors. Forest biomes in North America, in particular, represent a high-57 
priority region for monitoring given their vast extent and their critical role in supporting life systems and 58 
the economy (5). 59 
 60 
 Our capacity to observe biodiversity across broad spatial scales is hindered by the inherent spatial 61 
and sampling limitations of traditional field surveys. Furthermore, field surveys are also constrained by 62 
financial and logistical challenges, including inaccessibility of remote areas or private lands (6). As a 63 
result, imaging spectroscopy has been proposed as a transformative approach for observing biodiversity 64 
and advancing its conservation (7). In particular, spaceborne spectroscopy offers a promising avenue for 65 
mapping forest diversity due to its global coverage and spatial and spectral resolutions sufficient for 66 
biodiversity assessment (8, 9). Nonetheless, many current efforts to map plant diversity have relied on 67 
airborne or near-surface platforms (10–19). Compared to these platforms, spaceborne spectroscopy 68 
typically offers coarser spatial resolution (e.g., 30–60 meters), which tends to capture forest communities 69 
rather than individual trees or crowns. In addition, airborne and near-surface approaches often cover 70 
limited regions and ecosystems due to their restricted spatial extent. Consequently, there is a clear need 71 
for spaceborne spectroscopy to fill the gap of continuous forest diversity observations over extensive 72 
areas (20), but the capability of doing so along with the multiple dimensions of forest diversity remains a 73 
central challenge. 74 
 75 
 A growing body of literature demonstrates that spatial dissimilarity in species composition among 76 
communities—known as taxonomic beta (β)-diversity—is positively associated with spectral dissimilarity 77 



 

 

3 

 

(16, 21–24). This correspondence between compositional and spectral dissimilarity has been observed 78 
using both hyperspectral airborne data and vegetation indices derived from satellite imagery. Likewise, 79 
spectral dissimilarity among species has been shown to correlate with phylogenetic and functional 80 
differences, with more distantly related or functionally distinct species exhibiting greater spectral 81 
divergence (11, 18, 19). These findings might suggest that integrating spectral dissimilarity with measures 82 
of community dissimilarity may enable the remote observation of forest diversity at broad spatial scales, 83 
particularly in regions with well-characterized ground-based data. Moreover, community dissimilarity 84 
metrics provide both a comprehensive view of forest diversity dimensions as well as insights into species 85 
turnover and nestedness by partitioning β-diversity into its replacement and richness-difference 86 
components (25–27). 87 
 88 
 Here, we present a novel framework for mapping multiple dimensions of forest community 89 
composition—taxonomic, phylogenetic, and functional—at a large spatial extent using spaceborne 90 
spectroscopy (Fig. 1). Our framework further supports the characterization and mapping of forest types, 91 
plant lineages, and community-level plant traits at broad extents through the observation of forest 92 
community composition. To achieve this, we first evaluate the relationship between multiple dimensions 93 
of β-diversity and spectral dissimilarity among forest communities using satellite data from the Eastern 94 
U.S., specifically from the DLR Earth Sensing Imaging Spectrometer (DESIS), the Earth Surface Mineral 95 
Dust Source Investigation (EMIT), and field data from the USDA Forest Service Forest Inventory and 96 
Analysis (FIA) Program. We then assess the extent to which these spaceborne observations can predict 97 
β-diversity ordinations. Our general hypothesis is that forest communities with dissimilar taxonomic, 98 
phylogenetic, or functional composition exhibit higher spectral dissimilarity than communities with similar 99 
compositions. Finally, we test the use of spectral models based on β-diversity ordinations to predict the 100 
presence or absence of forest types and plant lineages, as well as to estimate community-weighted 101 
means (CWM) of plant traits. The study provides a novel approach for mapping forest biodiversity and its 102 
multiple dimensions over large spatial extents by leveraging satellite observations from two hyperspectral 103 
spaceborne sensors and high coverage forest inventories. 104 
 105 



 

 

4 

 

 106 
Figure 1. Framework for mapping forest community composition and its attributes using spaceborne 107 
imaging spectroscopy. Forest inventory locations are first used to extract pixels from scenes. Species 108 
abundance data from inventories are then used to calculate pairwise β-diversity matrices, which are then 109 
ordained using multi-dimensional scaling (MDS). The resulting axes of β-diversity are combined with 110 
spectral information to model and map forest community composition. These axes are also paired with 111 
climatic and topographic variables to map a range of forest attributes. Together, this framework enables 112 
spatial mapping of both forest community composition and associated forest attributes at large spatial 113 
extent. 114 
 115 
Results and Discussion 116 
 117 
Correspondence between β-diversity and spectral dissimilarity. We used data from 43,155 FIA plots 118 
across the Eastern United States, encompassing 15,550,151 individual trees representing 243 species, 119 
45 genera, and 23 families (Fig. S1). For each plot, we calculated taxonomic, phylogenetic, and functional 120 
abundance-weighted β total diversity (Tβtotal, Pβtotal, and Fβtotal, respectively), and their partitioning 121 
associated with differences in species identities (i.e., βreplacement) or species richness (i.e., βrichness). From 122 
these plots, we extracted 11,526 and 10,469 clear-sky pixels from DESIS and EMIT imagery, 123 
respectively, corresponding to locations with spatial overlap with forest inventory data. 124 
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 125 
 We first evaluated the relationships between spectral dissimilarity—derived using Spectral Angle 126 
Mapper (SAM)—and dimensions of βtotal, revealing that communities differing in composition also tend to 127 
exhibit dissimilar spectral signatures (Fig. 2). These associations were generally stronger in spaceborne 128 
observations from DESIS than from EMIT, as indicated by Mantel tests. Within the DESIS dataset, 129 
correlations with spectral dissimilarity were slightly stronger for Pβtotal and Fβtotal than Tβtotal. Furthermore, 130 
the correspondence between spectral dissimilarity and forest composition was more pronounced when 131 
using βtotal rather than their partitions (i.e., βreplacement or βrichness) (Fig. S2–S3). This suggests that the 132 
combined effects of βreplacement and βrichness—as captured by βtotal—are more spectrally distinguishable than 133 
either component alone. Overall, the correspondence of our community-level findings are consistent with 134 
previous species-level analyses using airborne spectroscopy (11, 14, 16, 24), reinforcing the potential of 135 
using βtotal dimensions as a framework for remotely sensed forest diversity through community 136 
dissimilarity. 137 
 138 

 139 
Figure 2. Relationship between spectral dissimilarity and dimensions of beta total diversity (βtotal) in 140 
relation to taxonomic (Tβtotal), phylogenetic (Pβtotal), and functional (Fβtotal) information. The black solid 141 
lines represent the average linear regression line when comparing dissimilarities from a target community 142 
with all communities. Extended figures are shown in Fig. S2–S3. 143 
 144 
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β-diversity patterns across the Eastern United States. To address the high dimensionality of the βtotal 145 
matrices for modeling purposes, we applied Multi-Dimensional Scaling (MDS) as a data reduction 146 
technique, reducing βtotal matrices into three axes. This approach revealed patterns of dissimilarity in 147 
forest community composition and their associated spatial distributions (Fig. 3). Although all ordinations 148 
were derived from the same inventory data, MDS axes based on Pβtotal and Fβtotal information exhibited 149 
stronger goodness-of-fit (R2 = 0.71 and 0.60, respectively) than MDS axes based on Tβtotal (R2 = 0.11), 150 
when correlating pairwise ordination distances with the original βtotal matrices (Fig. S4). These results 151 
suggest that the structure of forest community composition is more effectively captured when 152 
incorporating phylogenetic and functional dimensions, rather than relying solely on taxonomic identities. 153 
Nonetheless, MDS axes were highly correlated across diversity dimensions within the same ordination 154 
space (Fig. S5), indicating that the relative positioning of communities is largely consistent among the 155 
different dimensions of diversity. This convergence also implies that βtotal ordinations axes are capturing 156 
congruent patterns of community differentiation, where evolutionary history and ecological function are 157 
closely linked and likely shaped by shared underlying processes (27, 28). 158 
 159 

 160 
Figure 3. Multi-Dimensional Scaling (MDS) to ordinate forest communities according to their taxonomic 161 
(A and D), phylogenetic (B and E), and functional (C and F) β-diversity and their spatial variation across 162 
the Eastern U.S. Gray shadows (A-C) represent the projection of three-dimensional axes of β-diversity 163 
onto two-dimensional planes. 164 
 165 
 The projection of weighted average scores and the correlation of climatic and topographic variables 166 
with the MDS ordinations (Fig. S6–S9) revealed the presence of underlying climatic and topographic 167 
gradients that likely influence forest community compositional dissimilarity. Our analyses suggested that 168 
across all three ordinations, higher mean annual temperature (MAT) and lower values of temperature 169 
annual range (TAR) were associated with the higher values of the first MDS axes. In contrast, lower 170 
precipitation seasonality (PS) and higher mean annual precipitation (MAP) were associated with the 171 
second axes, while elevation and slope correlated with the third axes. The positive associations of the 172 
first two MDS axes with MAT and MAP are consistent with expectations based on the MDS rotation 173 
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procedure (see Materials and Methods for details). Furthermore, the MDS ordinations appeared to 174 
capture gradients in the CWM of plant traits and the relative abundances of plant lineages, as indicated 175 
by the projection of weighted average scores and correlations with MDS axes (Fig. S6 –S9). Collectively, 176 
these findings support the interpretation that the MDS ordinations of βtotal effectively capture dimensions 177 
of forest community composition across environmental gradients. 178 
 179 
Predicting ordinations of forest community composition from spectra. We developed a workflow 180 
(Fig. S10) to predict MDS ordination axes for each dimension of βtotal using observations from DESIS and 181 
EMIT and by applying repeated Partial Least Squares Regression (PLSR) within a machine learning 182 
framework. Our results demonstrate that it is feasible to predict MDS β-diversity axes across all 183 
ordinations (Fig. S11 – S14), highlighting the potential to map multiple dimensions of forest community 184 
composition at large spatial scales. Model performance varied considerably across diversity dimensions, 185 
MDS β-diversity axes, and sensors, with training and testing R² values ranging from 0.08 to 0.64 and 186 
percent RMSE (%RMSE) between 17% and 29% (Tables S2 and S3). Across all models, Axes 1 187 
consistently yielded higher R² than Axes 2 but not Axes 3. Predictions for Axes 1 required more latent 188 
components to achieve optimal predictions than Axes 2 or 3 (Fig. S15). Between sensors, models based 189 
on EMIT data often outperformed those based on DESIS (Table S2 and S2). 190 
 191 
 Despite the observed differences in model performance, the Variable Importance in Projection (VIP) 192 
revealed consistent spectral predictors across sensors, diversity dimensions, and MDS axes (Fig. 4). The 193 
similarity in VIP scores across both DESIS and EMIT sensors, as well as among the different MDS axes, 194 
underscores the robustness and generalizability of spectral-diversity relationships captured by our 195 
models. This convergence indicates that spectral regions—particularly those around 710, 790, and 1521 196 
nm—consistently contribute to the prediction of community composition across taxonomic, phylogenetic, 197 
and functional dimensions. These wavelengths are generally linked with vegetation greenness, forest 198 
structure, water content, respectively suggesting potential spectral features that underpin key biophysical 199 
and biochemical aspects of community composition (Table S4). The alignment of VIP profiles among 200 
sensors suggests that forest composition signals are not sensor-specific, but instead reflect key spectral 201 
regions that are broadly detectable from space. This finding highlights the potential for transferring 202 
models across sensors and supports the development of a unified, sensor-agnostic framework for large-203 
scale diversity monitoring. Furthermore, the consistency of VIP scores across MDS β-diversity axes 204 
points to ecologically meaningful gradients that are spectrally sensed, reinforcing the utility of 205 
spectroscopy information as a proxy for mapping forest composition. Collectively, these patterns 206 
strengthen the feasibility of operationalizing forest biodiversity monitoring using current and future 207 
spaceborne spectroscopy missions such as NASA’s SBG (Surface Biology and Geology) and ESA’s 208 
CHIME (Copernicus Hyperspectral Imaging Mission for the Environment). 209 
 210 
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 211 
Figure 4. Variable Importance of Projection across wavelengths of PLSR models to predict MDS axes of 212 
β-diversity at different dimensions using spaceborne observations of DESIS and EMIT. 213 
 214 
Predicting forest attributes. We integrated MDS axes with climatic and topographic variables using 215 
generalized linear models (GLMs), revealing that distinct forest attributes—including forest type, the 216 
presence or absence of plant lineages, and CWM of plant traits—can be effectively modeled and 217 
predicted (Fig. S16–S18). The average True Skill Statistic (TSS) for binomial models predicting 218 
presence/absence in testing datasets was 0.6868 ± 0.144 (Area Under the Curve [AUC] = 0.900 ± 0.066) 219 
across 59 forest types, while for 28 plant lineages the performance was slightly lower (TSS = 0.54 ± 0.19, 220 
AUC = 0.84 ± 0.10). Similarly, the average R² for continuous models predicting CWM of eight plant traits 221 
was 0.46 ± 0.20 (%RMSE = 15.18 ± 2.03). The relative importance of variables in these GLMs indicated 222 
that three MDS axes derived from βtotal dimensions accounted for more than 48% (±13.11%) of the total 223 
variable importance across forest attributes. In contrast, four climatic and three topographic variables 224 
contributed 36.48% (±11.35%) and 15.11% (±7.96%), respectively (Fig. S19–S21). The greater 225 
explanatory power of MDS β-diversity axes over climatic or topographic variables underscores the 226 
importance of community context for predicting forest attributes. By capturing β-diversity dimensions, 227 
MDS ordinations are likely to reflect not just environmental conditions but also the outcomes of species 228 
interactions and ecological filtering embedded within species distributions. These findings indicate that 229 
predictions of forest attributes are shaped more by community composition than by abiotic constraints 230 
alone, interpreting spectral signals based on realized species distributions and forest composition, rather 231 
than fundamental niches (29, 30). As a result, MDS axes of β-diversity provide an ecologically grounded 232 
basis for modeling and mapping forest attributes. 233 
 234 
 By applying GLM coefficients to MDS β-diversity axes predicted from spaceborne spectroscopy at 235 
the overlapping inventory locations, our workflow demonstrated that a wide array of forest attributes can 236 
be inferred from space (Fig. 5 and Fig. S22–S24). The accuracy of these predictions was evaluated by 237 
regressing expected probabilities (for categorical attributes) or CWMs (for continuous traits) from the GLM 238 
models against their predicted values. This validation approach revealed an average R² of 0.69 ± 0.23 239 
(%RMSE = 16.98 ± 5.51) for forest types, 0.70 ± 0.22 (%RMSE = 15.17 ± 7.58) for plant lineages, and 240 
0.49 ± 0.24 (%RMSE = 16.83 ± 3.16) for community plant traits across testing datasets, independent of 241 
sensor platform. Although sensor-specific performance varied for some forest attributes, overall model 242 
accuracy was relatively consistent between sensors. In general, these results highlight the potential of 243 
combining spectral data and βtotal ordinations to generate ecologically meaningful, spatially continuous 244 
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predictions of forest community composition—paving the way for scalable biodiversity assessments from 245 
space. 246 
 247 

 248 
Figure 5. Model performance for predicting attributes of forest composition from spaceborne observations 249 
from DESIS or EMIT. Each point represents an average of 100 repeated models. Horizontal lines 250 
represent the average performance for all forest attributes. Extended figures are shown in Fig. S22–S24. 251 
 252 
Mapping forest community composition and their attributes. We used hyperspectral scenes of 253 
DESIS and EMIT and applied model coefficients from the PLSR and GLM analyses to predict and map 254 
dimensions of forest composition across the eastern U.S. and to estimate a suite of associated forest 255 
attributes at moderately high spatial resolution (30 m or 60 m). Here, we illustrate our workflow using an 256 
EMIT L2A scene from the southern Appalachian Mountains, spanning parts of North Carolina and 257 
Tennessee, USA (Fig. 6). In this region, variation in forest community composition—captured by predicted 258 
MDS β-diversity axes—aligns closely with elevation gradients. Map values and color scales correspond to 259 
those in Fig. 3, enabling the back-projection of mapped communities within the ordination space. We 260 
computed the uncertainty of prediction for each pixel in these composition maps as the summed 261 
amplitude of predictions. In this particular scene, the uncertainty in the composition tends to co-vary 262 
across dimensions, where higher values are observed in lowland areas likely due to spectral mixing of 263 
frequent non-forest covers. Leveraging the maps of community composition in combination with climatic 264 
and topographic variables, we then generated spatial predictions of various forest attributes. For example, 265 
the probability of occurrence of specific forest types was modeled using taxonomic composition maps, 266 
while maps of phylogenetic composition informed predictions of plant lineage occurrence. Similarly, 267 
functional composition maps enabled spatial estimation of CWM of plant traits. In this region, the high 268 
abundance of broadleaf deciduous communities at lower elevations (i.e., below ~1,000 m a.s.l.) 269 
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corresponds with the high predicted occurrence of Quercus (oak) species and oak-dominated forest types 270 
in the scene. These areas are also characterized by elevated foliar nitrogen (N) concentrations and lower 271 
predicted values of leaf mass per area (LMA). In contrast, at higher elevations—primarily above 1,800 m 272 
a.s.l.—there is a greater prevalence of evergreen coniferous communities, marked by high predicted 273 
occurrence of Picea (spruce) species, high LMA values, and lower foliar N concentrations. Mid-274 
elevational zones exhibit a transitional pattern, with forest communities dominated by Acer saccharum 275 
(sugar maple), Betula alleghaniensis (yellow birch), and Fagus grandifolia (American beech) to mention 276 
some. Ultimately, these maps offer a scalable solution for capturing forest diversity and composition 277 
across multiple ecological dimensions and broad spatial scales, with significant potential to enhance our 278 
capacity to monitor and understand forest biodiversity in support of sustainability and stewardship goals. 279 
 280 

 281 
Figure 6. Mapping of multiple dimensions of forest diversity using EMIT across the southeast of the 282 
United States. Top panels represent a true color image (R: λ663, G: λ551, B: λ425) and the elevation model 283 
provided by NASA with EMIT imagery. Middle panels of community composition represent the mapping of 284 
MDS β-diversity axes based on different dimensions of diversity as well as their uncertainty. Bottom 285 
panels describe the mapping of forest attributes associated with the occurrence of forest types, plant 286 
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lineages, and CWM of plant traits using the predicted MDS β-diversity axes, climatic, and topographic 287 
variables. Each pixel value represents the average of 100 repeated models. 288 
 289 
Conclusions 290 
 291 
Our study presents a comprehensive methodological framework for mapping dimensions of forest 292 
diversity by integrating thousands of forest inventory plots with spaceborne imaging spectroscopy. 293 
Spaceborne spectroscopy offers considerable potential for enhancing our ability to observe and monitor 294 
forest biodiversity. Yet mapping forest diversity across large spatial extents—given diverse ecosystem 295 
patterns, high species richness, and major shifts in species composition—presents significant challenges. 296 
Our findings demonstrate that across the Eastern U.S., forest communities with dissimilar compositions 297 
(e.g., high β-diversity) exhibit corresponding spectral dissimilarities. The correspondence between 298 
spectral dissimilarity and compositional dissimilarity is consistent across multiple dimensions of β-diversity 299 
(i.e., taxonomic, phylogenetic, and functional), for both components of β-diversity partitioning (i.e., 300 
replacement and richness), and for spectral information from two spaceborne sensors (i.e., DESIS and 301 
EMIT), providing a solid foundation for using in situ β-diversity to remotely sense forest diversity from 302 
space. Due to their complexity and high dimensionality, however, pairwise β-diversity matrices are 303 
challenging to apply directly to modeling biodiversity from satellite spectra. To address this challenge, our 304 
framework employs ordinations of β-diversity, in which the combination of three axes captures spatial 305 
patterns of forest community composition. We show that ordination axes of β-diversity can readily be 306 
used to predict biodiversity from imaging spectroscopy, and that their application to satellite observations 307 
allows the spatial mapping of multiple dimensions of forest community composition from space. Moreover, 308 
our modeling approach reveals regions of the electromagnetic spectrum that are consistently important 309 
for predicting axes of β-diversity across multiple diversity dimensions and for both spaceborne sensors, 310 
underscore the potential for models based on imaging spectroscopy to capture signals of forest 311 
composition and to generate a sensor-agnostic framework for large-scale diversity mapping. By 312 
integrating a range of forest attributes with axes of β-diversity across different diversity dimensions, along 313 
with climate and topographic variables, we further demonstrate that our framework can effectively map 314 
forest types, plant lineages, and community plant traits. This approach reveals that forest community 315 
composition—captured through β-diversity axes—plays a stronger role than climate or topography, thus 316 
offering a more ecologically grounded basis for mapping species occurrence and functional traits. The 317 
effectiveness of our framework for mapping forest community composition and diverse forest attributes at 318 
high spatial resolution and across large spatial extents sets the stage for the verification of forest 319 
management efforts aimed at sustaining planetary biodiversity and resilience. 320 
 321 
Materials and Methods 322 
 323 
Study area. Our study was conducted in the Eastern continental U.S. region with an area close to 324 
2,593,107 km2 (Fig. S1). This region encompasses eight eco-climatic domains with distinct vegetation, 325 
landforms, and ecosystem dynamics defined by the National Ecological Observatory Network (NEON) 326 
(31). Despite its extension, this region presents a comparable timing in the peak of greenness (i.e., June 327 
through August) (32, 33), which can be used to restrict the phenological effects on the optical properties 328 
of forest communities. 329 
 330 
Forest inventory data. We used inventory data collected from the Forest Inventory and Analysis (FIA) 331 
program of the United States Department of Agriculture Forest Service (34). We used 43,155 forested 332 
plots in the region of interest collected between January 1st, 2018, and January 12th, 2023. Each inventory 333 
plot consists of a central circular subplot (7.31 m radius) surrounded by three circular subplots at 36.57 m 334 
from their centroids located at 0-, 120-, and 240-degree azimuths (35). Trees (> 12.7 cm diameter at 335 
breast height) from all the subplots were used to characterize local tree communities given the spatial 336 
resolution of the spaceborne observations. We estimate wood volume for each live tree assuming a 337 
cylinder shape using the diameter at breast height and tree height, and then expand its value to per-unit-338 
area using the FIA trees-per-acre expansion factor. The resulting wood volume per unit of area was then 339 
summed per species as a descriptor of species abundance for further analysis. We used the forest type 340 
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with the largest proportion of occurrence that is recorded on each FIA plot as a descriptor of the forest 341 
community for further analysis. More details about the selection of inventories and filtering of plots are 342 
shown in Methods S1. 343 
 344 
Taxonomic, phylogenetic, and functional β-diversity. We estimated β total diversity (βtotal) following 345 
improvements by (26) based on pioneering work by (25) as a framework to estimate the taxonomic, 346 
phylogenetic, and functional dissimilarities among tree communities. Within this framework, pairwise 347 
comparisons of communities were performed to partition β-diversity into components of replacement 348 
(βreplacement, i.e., diversity explained by replacement of species alone) and richness (βrichness, i.e., diversity 349 
explained by species loss/gain alone). These were used to compute β total diversity (βtotal) as the sum of 350 
βreplacement and βrichness (See more details in (26)). We used Jaccard dissimilarity weighted by the relative 351 
abundance of the wood volume per unit of area in all the estimations of β. Specifically, we used a pruned 352 
phylogenetic tree from (36) to estimate phylogenetic β (Pβ) (Fig. S25). The phylogenetic tree was 353 
obtained through the ‘phylo.maker’ function of the V.PhyloMaker2 package (37) in R (38) using its third 354 
scenario. Under the third scenario, V.PhyloMaker2 adds missing species to the half point of their parent 355 
branch and uses the BLADJ approach for branch length estimation. For functional β diversity (Fβ), we 356 
used eight plant traits for each species (Methods S2 and Fig. S25) to summarize their variation into three 357 
principal components (Fig. S26) and construct a dendrogram forced as a phylogeny. Taxonomic β 358 
diversity (Tβ) was estimated using species taxonomic names occurring in the plots. β values were 359 
estimated using a modification of the BAT package by (39) with  C++ and OpenMP as a backend to 360 
efficiently run a large number of pairwise comparisons between communities in parallel using high-361 
performance computing. 362 
 363 
Ordinations of β-diversity. To reduce the dimensionality of the taxonomic, phylogenetic and functional 364 
trait matrices created from the forest inventory data, we applied landmark Multi-Dimensional Scaling 365 
(MDS) to ordinate communities in three-dimensions (i.e., axes), according to their βtotal for each dimension 366 
of forest diversity. Each MDS was rotated to match mean annual temperature and annual precipitation 367 
gradients derived from Worldclim 2 (40), using a sequential orthogonal rotation procedure that aligns the 368 
ordination axes with the fitted environmental vectors via vector fitting and planar rotations. To evaluate 369 
each ordination and their meaning, we first calculated the goodness of fit as the proportion of variance 370 
(R2) of βtotal that is accounted for by euclidean distances in MDS β-diversity axes values between 371 
communities. Then, climatic, topographic, community weighted mean (CWM) of plant traits, and the 372 
relative abundance of major plant lineages (i.e., gymnosperms, angiosperms, arbuscular mycorrhizal-, 373 
ectomycorrhizal-symbiosis trees) were projected into these ordinations by computing the weighted means 374 
based on the axes using the ‘wascores’ function of vegan (41). We used MDS β-diversity axes to model 375 
dimensions of forest community composition from spaceborne observations, and to estimate then 376 
community plant traits and the occurrence probability forest types and plant lineages. 377 
 378 
Spaceborne hyperspectral data and processing. We used scenes from two imaging spectrometers 379 
that are docked to the International Space Station: the DLR Earth Sensing Imaging Spectrometer 380 
(DESIS) (i.e., 30 m pixel resolution) and the Earth Surface Mineral Dust Source Investigation (EMIT) (i.e., 381 
60 m pixel resolution).  For both sensors we used Level 2A hyperspectral scenes with less than 70% of 382 
cloud cover that provide surface reflectance data corrected by different means (e.g., (42, 43)). For DESIS, 383 
we only employed scenes (n = 3145) within the peak of the growing season between June 15th to August 384 
15th from 2019 to 2023. For EMIT, on the other hand, we only used scenes (n = 349) collected between 385 
June 1st to August 30th of 2023 and 2024. The spectral reflectance from both sensors were transformed 386 
using continuous wavelet transformation (CWT) in order to enhance absorption features, reduce 387 
angular/illumination effects, and smooth the spectral signal (44). For this, we first resample the 388 
reflectance spectra to a continuum band spacing (DESIS: 3.00 nm; EMIT: 7.43 nm) using the Full-Width-389 
Half-Maximum method. CWT was applied then on the resampled spectra by selecting different scales 390 
(DESIS: 23, 24, and 25; EMIT: 22 and 23) that capture the combination of small and large reflectance 391 
features. These scales were summed to create a summed-wavelet spectra. Bands from the transformed 392 
spectra with potential noise, atmospheric contamination or close to the edge of the spectral range of the 393 
sensors were removed. We ended with scenes of 173 bands with a spectral range between 449 – 965 nm 394 
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for DESIS, while scenes of 179 bands with spectral ranges between 448 – 1236, 1521 – 1686, and 2053 395 
– 2421 nm for EMIT. Our analyses excluded pixels with Normalized Difference Vegetation Index (NDVI, 396 
~λ800 - ~λ680 / ~λ800 + ~λ680) and NIR values (~λ800 nm) lower than 0.4 and 0.3, respectively, to ensure that 397 
observations come from vegetated surfaces and exclude shadows, respectively. 398 
 399 
Relationship between β-diversity and spectral dissimilarity. We estimate spectral dissimilarity 400 
between plots in the inventory data using the Spectral Angle Mapper (SAM) method (45). Using SAM, 401 
reflectance spectra are n-dimensional vectors (i.e., number of bands) to estimate the spectral angle (i.e., 402 
0° – 90°) between two communities and then estimate a metric of dissimilarity (i.e., 0 – 1), where values 403 
close to 1 describe forest communities with contrasting spectra. Using each inventory as a reference, we 404 
computed pairwise matrices of spectral dissimilarity between all plots (Methods S3). We performed 405 
Mantel tests to assess the association between matrices of spectral dissimilarity and dimensions of β and 406 
their partitions using Pearson correlations and 999 permutations. Then, using each community as a 407 
reference, we fitted separate linear models of spectral dissimilarity against multiple dimensions of β and 408 
their partition (i.e., βtotal, βreplacement, βrichness), based on pairwise comparisons with all other communities. 409 
 410 
Modeling multiple dimensions of β-diversity. We modeled multiple dimensions of β-diversity using FIA 411 
plots that overlap with the available transformed hyperspectral scenes. For this, we extracted pixels to 412 
predict MDS scores for each dimension of βtotal using a modeling framework based on partial-least 413 
squares regression (PLSR). The extraction of pixels was done using the federally protected locations of 414 
FIA plots obtained from the National Information Management System internal to the FIA program. FIA 415 
plots may have multiple recorded plot locations from different remeasurement years (with GPS errors up 416 
to 10 m, (46)), so to link to the imagery, we calculated the mean latitude and longitude from all 417 
remeasurements (when available) of each individual FIA plot following (47). From DESIS scenes, we 418 
restrict the pixel extraction of overlapping inventories with less than ± 6 years of difference between the 419 
inventory and observation date. For each plot, we limit the number of extracted scene observations by 420 
selecting the clear-sky observation closest to the inventory date. For further analysis we employed a total 421 
of 11 526 and 10 469 pixels from DESIS and EMIT scenes, respectively (Fig. S1). 422 
 423 
 Our modeling framework consisted of repeated (n = 100) PLSRs using a spatial cross-validation 424 
strategy based on stratified random sampling. For this, we first randomly split 60% of the samples 425 
available per county for algorithm training. Then we applied spatial cross-validation models using a 426 
subset of training samples on each iteration. For each iteration and axis, we selected 85% of training 427 
samples, sampling randomly across histogram distributions to capture the range of axis variation along 428 
with nominal breaks. We used a 10-fold leave-locations-out cross-validation where a series of samples 429 
from counties are spatially excluded to train the model. This repeated framework helps us to compute the 430 
mean and SD of the model estimates, and thus the potential uncertainty of the predictions. Once the 431 
repeated models were computed, we determined the optimal number of components based on the spatial 432 
cross-validation error of the RMSE of prediction (48, 49). With the optimal number of components, we 433 
then estimate the model performance on both training and testing datasets by computing the coefficient of 434 
determination (R2), the bias, the root mean squared error (RMSE), and the percentage RMSE (%RMSE = 435 
RMSE/ range of 0.99 and 0.01 quantiles × 100). From these repeated models, we extracted variable 436 
importance in projection (VIP) scores to assess which spectral regions were most important for predicting 437 
MDS β-diversity axes, and PLSR coefficients to apply to spaceborne imagery for mapping forest 438 
community composition (Fig. S27). 439 
 440 
Modeling forest attributes. We modeled the occurrence of forest types and plant lineages, and the 441 
variation community weighted mean (CWM) of plant traits using MDS β-diversity axes, as well as climatic 442 
and topographic variables (Methods S4). To generate these models, we followed an approach similar to 443 
(50), but we focused on occurrence probabilities and CWM of plant traits. Specifically, we used Tβtotal-444 
base MDS ordinations to predict true presence or absence of forest types, Pβtotal-base MDS ordinations to 445 
predict the true presence or absence of a plant lineage (e.g., plant family, plant genus, or mycorrhizal 446 
symbiosis) within a community, and Fβtotal-base MDS ordinations to predict the CWM of plant traits. 447 
Forest types and plant lineages were treated as dependent binary variables, while the CWM of each plant 448 
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trait was treated as a dependent continuous (Gaussian) variable for the models. For this, we trained 449 
repeated generalized linear models (GLMs) following a similar machine learning framework for modeling 450 
β-diversity. Overall, we first randomly split 60% of all forest inventories available per county for training 451 
purposes. Then, we train GLMs (n = 100) using 10-fold cross-validation for each forest type, plant lineage 452 
or plant trait using 85% of the training samples on each iteration. To overcome the imbalance of 453 
observations of scarce forest types and plant lineages, we applied the random over-sampling examples 454 
technique (51) on each iteration to aid the binary classification. Once the models were trained, we 455 
assessed their performance using I) training and II) testing datasets, and using III) predicted MDS axes 456 
from spaceborne spectroscopy on datasets that were used to train previous PLSR models, and IV) 457 
predicted MDS axes from spaceborne spectroscopy on datasets that were used validate previous PLSR 458 
models. For I and II, categorical models of forest type and plant lineages were evaluated using true skill 459 
statistic (TSS), sensitivity, specificity, and the area under the curve (AUC) of the receiver operating 460 
characteristic curve (ROC), while continuous models of CWM of plant traits were evaluated using R2, 461 
bias, RMSE, and %RMSE. For III and IV, all models were evaluated using R2, bias, RMSE, and %RMSE 462 
through the observed-predicted occurrence probability of forest type or plant lineages as well as the 463 
observed-predicted CWM of plant traits. 464 
 465 
Mapping β-diversity and forest attributes. We applied our predictive models to map dimensions of 466 
forest community composition using scenes of DESIS and EMIT (i.e., Level 3 products), and then map 467 
forest attributes associated with the occurrence probability of forest types, lineages and CWM of plant 468 
traits (i.e., Level 4 products). We first applied the repeated PLSR models on DESIS and EMIT scenes to 469 
generate maps of the mean estimated MDS axes associated with dimensions of community composition. 470 
The uncertainty of these estimates per MDS β-diversity axis and dimension of diversity were mapped as 471 
the amplitude between the upper and lower limits of the confidence intervals at 95% of the predicted 472 
values following (52), as well as the sum of amplitudes among all axes from each dimension as a 473 
descriptor of the overall uncertainty. We then applied the coefficients from the repeated GLMs on these 474 
MDS maps in addition to climatic and topographic layers to generate maps of forest attributes and their 475 
uncertainties as described above. 476 
 477 
 We showcase an EMIT scene across the southern Appalachian Mountains in Tennessee and North 478 
Carolina to illustrate the potential of our workflow to map multiple dimensions of forest diversity. This 479 
scene encompasses sections of one of the most biodiverse areas of North America, including the Great 480 
Smoky Mountains National Park, Nantahala National Forest, and Frozen Head State Park. We highlight 481 
probability predictions of three of the most abundant forest types and plant lineages according to FIA 482 
plots in the region as well as predictions of CWM of leaf mass per area, wood density, and leaf nitrogen 483 
concentration. The application of our mapping efforts to all the scenes used from DESIS and EMIT are 484 
available at Harvard Dataverse. 485 
 486 
Data, Materials, and Software Availability 487 
 488 
Forest inventory data were obtained from the USDA Forest Service’s FIA Program and are available 489 
through the FIA DataMart (https://apps.fs.usda.gov/fia/datamart/datamart.html). However, as noted in the 490 
Methods, we used a federally protected version of the FIA database to access actual plot locations for our 491 
analyses (for more information on federally protected FIA data, see 492 
https://research.fs.usda.gov/programs/fia/sds). All code associated with this research is available on 493 
GitHub (https://github.com/Antguz/mapping-communities), and will be archived in Zenodo under version 494 
1.0 upon publication. Data that do not compromise federally protected information are being prepared for 495 
release in the Harvard Dataverse. The spaceborne data products developed in this research are also 496 
available through the Harvard Dataverse 497 
(https://dataverse.harvard.edu/previewurl.xhtml?token=cfb44b92-ec7f-4cd8-9c7c-c2b4b43612d6). 498 
 499 
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Supporting Information 633 

Supplementary methods 634 

 635 
Methods S1. Selection of inventoried plots from the Forest Inventory and Analysis (FIA) program across 636 
the Eastern U.S. 637 
 638 
The FIA program currently conducts inventories using an annualized inventory system, collecting data on 639 
a subset of plots each year, generally 1/7 to 1/5 of plots in the Eastern U.S., leading to a 5- or 7-year 640 
inventory cycle. We selected FIA plots from Eastern U.S. states by FIA evaluation ID (EVALID) with 641 
inventory cycles ending in 2018-2022, the most recent inventories available as of the data query on 27 April 642 
2023 (Table S1). We limited our query to plots with at least one forested condition. From these plots, we 643 
selected all live trees > 12.7 cm diameter at breast height (DBH) that are sampled on four circular 7.31 m 644 
radius subplots. Tree diameter and height were used to estimate wood volume assuming a cylinder shape, 645 
and volume was converted to abundance per unit area by multiplying by FIA trees-per-acre adjustment 646 
factor (TPA_UNADJ), which is based on the ratio of the subplot sampling area to one acre of land. We used 647 
the National Ecological Observatory Network (NEON) ecoregion map (1) to further filter plots from forested 648 
ecoregions.  649 
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Methods S2. Integration of plant functional traits. 650 
 651 
We collected data for eight plant functional traits: tree maximum height (H), tree slenderness (S), wood 652 
density (WD), shade tolerance index (STI), drought tolerance index (DTI), waterlogging tolerance index 653 
(WTI), leaf mass per area (LMA), and nitrogen content (N). H (m) was estimated as the 95-quantile value 654 
of tree height per species among all the FIA plots that were used. S was estimated as the 50-quantile value 655 
of the ratio between tree height and diameter at the breast height for all the trees per species among all the 656 
FIA plots that were used. Wood density (g m-3) was obtained directly from the FIA database per each 657 
species. STI, DTI, and WTI were obtained from (2). LMA (g m-2) and N (mg g-1) were obtained from the 658 
Botanical Information and Ecology Network (BIEN) database through R (3), accessed on April 6, 2024. 659 
Data were missing for some species for traits gathered from (2) and BIEN, and therefore, we imputed them 660 
using a phylogenetic approach following (4). We used a pruned phylogenetic tree from (5) to generate a 661 
phylogenetic distance matrix of ten orthogonal eigenvectors using the ‘PVRdecomp’ function of the PVR 662 
package of R (6). All plant traits with missing values and the ten orthogonal eigenvectors were integrated 663 
into the ‘missForest’ function (7) using 500 iterations and 100 trees to impute missing values. The resulting 664 
imputed values were used to fill in missing traits (e.g., Fig. S25).  665 

 666 
 We applied a principal components analysis (PCA) to the complete set of plant traits per species 667 
to summarize the variation of traits among species into three principal components. The first, second, and 668 
third principal components explained 24.28, 17.88, and 16.32% of the variation in plant traits (Fig. S26), 669 
respectively. We then extracted PCA scores of the first three principal components per species to construct 670 
a functional trait dendrogram using euclidean distances among species. Finally, the functional trait 671 
dendrogram was transformed into a  phylogenetic tree class in R using the “as.phylogeny” command in 672 
APE (8) to generate functional dissimilarity values for the calculation of functional beta diversity.  673 
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Methods S3. Estimation of spectral dissimilarity and its regression with dimensions of beta diversity. 674 
 675 
We compared pairwise spectral dissimilarity values among communities on selected clear-sky spaceborne 676 
observations of FIA plots. These pairwise comparisons were calculated using smoothed reflectance 677 
spectra, not on wavelet transformations of spectra. To smooth the reflectance spectra, we applied a 678 
Savitzky-Golay smoothing filter on the extracted pixels from the FIA plots. This filter was applied using a 679 
first order and two neighboring bands of length from the target bands (i.e., n = 5). The application of the 680 
Savitzky-Golay filter was done using the ‘sgolayfilt’ function of the signal package in R (9). We then removed 681 
bands on the resulting smoothed spectra to match spectral regions used in our modelling efforts (ie., DESIS: 682 
449 – 965 nm; EMIT: 447 – 1265, 1488 – 1710, and 2015 – 2424 nm).  683 
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Methods S4. Climatic and topographic datasets. 684 
 685 
We used well-established climatic and topographic datasets at 1 km of spatial resolution to rotate MDS β-686 
diversity axes and predict forest attributes. Specifically, we employed historic climatic datasets for mean 687 
annual temperature (MAT), temperature seasonality (TS), temperature annual range (TAR), mean annual 688 
precipitation (MAP), and precipitation seasonality (PS) derived from Worldclim 2 (10). Likewise, we 689 
employed topographic datasets associated with the elevation (ELE), slope (SL), and compound topographic 690 
index (CTI) (e.g., wetness index) derived from HYDRO1k (11). The extraction of pixels from these datasets 691 
were conducted using publicly available coordinates of FIA plots given their coarse resolution. To integrate 692 
these climatic and topographic datasets with scenes of forest community composition to map forest 693 
attributes, we extracted values using the centroid location of pixels from spaceborne observations.   694 
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Supplementary tables 695 

 696 
Table S1. Inventory end years, states, and FIA evaluation IDs (EVALIDs) included in this study. 697 
 698 

Inventory end year States EVALIDs 

2018 Kentucky 211801 

2019 
Florida, Louisiana, 

Massachusetts, New York, Ohio, 
Oklahoma, Tennessee 

121901, 221901, 251901, 
361901, 391901, 401901, 

471901 

2020 
Kansas, Maryland, Michigan, 

Minnesota, New Jersey, Vermont, 
West Virginia 

202001, 242001, 262001, 
272001, 342001, 502001, 

542001 

2021 

Arkansas, Connecticut, Delaware, 
Georgia, Illinois, Indiana, Maine, 

Mississippi, Missouri, New 
Hampshire, North Carolina, 
Pennsylvania, Rhode Island, 

South Carolina, Texas, Virginia, 
Wisconsin 

52101, 92101, 102101, 
132101, 172101, 182101,  
232101, 282101, 292101, 
332101, 372101, 422101, 
442101, 452101, 482121, 

512101, 552101 

2022 Alabama 12201 

  699 
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Table S2. Performance summary of repeated Partial Least Square Regression models using spaceborne 700 
observations of DESIS to predict Multi-Dimensional Scaling (MDS) axes based on matrices of dimensions 701 
of beta diversity. Performance metrics are described by the coefficient of determination (R2), bias, the Root 702 
Mean Square Error (RMSE), and the percentage of RMSE (%RMSE) based on the data range. Values 703 
represent the mean and standard deviation of 100 models. 704 
 705 

Dimension Dataset Axes 

Performance metric 

R2 BIAS (x10-5) RMSE %RMSE 

Taxonomic 

Training 

Axis 1 0.38 ± 0.00 -6.9 ± 51.71 0.17 ± 0.00 21.84 ± 0.01 

Axis 2 0.14 ± 0.00 -3.3 ± 33.15 0.15 ± 0.00 25.29 ± 0.01 

Axis 3 0.08 ± 0.00 14.6 ± 20.27 0.12 ± 0.00 18.25 ± 0.00 

Testing 

Axis 1 0.36 ± 0.00 402.7 ± 53.60 0.16 ± 0.00 21.87 ± 0.02 

Axis 2 0.11 ± 0.00 -320.6 ± 36.32 0.16 ± 0.00 25.92 ± 0.02 

Axis 3 0.07 ± 0.00 377.6 ± 23.62 0.12 ± 0.00 18.90 ± 0.01 

Phylogenetic 

Training 

Axis 1 0.17 ± 0.00 2.2 ± 32.86 0.14 ± 0.00 20.70 ± 0.01 

Axis 2 0.20 ± 0.00 15 ± 43.89 0.19 ± 0.00 20.33 ± 0.01 

Axis 3 0.33 ± 0.00 -7.3 ± 72.08 0.26 ± 0.00 27.15 ± 0.01 

Testing 

Axis 1 0.15 ± 0.00 -156.7 ± 36.13 0.14 ± 0.00 21.29 ± 0.02 

Axis 2 0.17 ± 0.00 631.3 ± 45.19 0.18 ± 0.00 20.33 ± 0.01 

Axis 3 0.31 ± 0.00 1265.3 ± 72.83 0.26 ± 0.00 27.36 ± 0.02 

Functional 

Training 

Axis 1 0.30 ± 0.00 0.4 ± 48.43 0.19 ± 0.00 23.28 ± 0.01 

Axis 2 0.16 ± 0.00 19.3 ± 30.56 0.16 ± 0.00 20.03 ± 0.00 

Axis 3 0.30 ± 0.00 13.8 ± 60.67 0.20 ± 0.00 22.08 ± 0.01 

Testing 

Axis 1 0.27 ± 0.00 112.3 ± 51.48 0.19 ± 0.00 23.31 ± 0.02 

Axis 2 0.13 ± 0.00 378 ± 31.04 0.15 ± 0.00 20.25 ± 0.01 

Axis 3 0.29 ± 0.00 731.1 ± 63.07 0.20 ± 0.00 22.51 ± 0.01 

  706 
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Table S3. Performance summary of repeated Partial Least Square Regression models using spaceborne 707 
observations of EMIT to predict Multi-Dimensional Scaling (MDS) axes based on matrices of dimensions of 708 
beta diversity. Performance metrics are described by the coefficient of determination (R2), bias, the Root 709 
Mean Square Error (RMSE), and the percentage of RMSE (%RMSE) based on the data range. Values 710 
represent the mean and standard deviation of 100 models. 711 
 712 

Dimension Evaluation Axes 

Performance metric 

R2 BIAS (x10-5) RMSE %RMSE 

Taxonomic 

Training 

Axis 1 0.64 ± 0.00 -3.90 ± 58.41 0.13 ± 0.00 17.07 ± 0.01 

Axis 2 0.14 ± 0.00 -1.70 ± 28.04 0.14 ± 0.00 23.84 ± 0.01 

Axis 3 0.33 ± 0.00 32.50 ± 54.22 0.17 ± 0.00 18.88 ± 0.01 

Testing 

Axis 1 0.61 ± 0.00 212.30 ± 59.32 0.13 ± 0.00 17.40 ± 0.02 

Axis 2 0.13 ± 0.00 -290.50 ± 31.28 0.15 ± 0.00 24.30 ± 0.01 

Axis 3 0.31 ± 0.00 96.80 ± 55.58 0.18 ± 0.00 19.60 ± 0.02 

Phylogenetic 

Training 

Axis 1 0.27 ± 0.00 2.90 ± 34.71 0.12 ± 0.00 19.56 ± 0.01 

Axis 2 0.10 ± 0.00 20.40 ± 32.47 0.19 ± 0.00 21.24 ± 0.00 

Axis 3 0.27 ± 0.00 7.90 ± 74.02 0.29 ± 0.00 29.46 ± 0.01 

Testing 

Axis 1 0.24 ± 0.00 -578.90 ± 36.46 0.13 ± 0.00 20.55 ± 0.02 

Axis 2 0.08 ± 0.00 349.00 ± 32.36 0.19 ± 0.00 20.67 ± 0.01 

Axis 3 0.24 ± 0.00 483.00 ± 77.06 0.29 ± 0.00 29.63 ± 0.02 

Functional 

Training 

Axis 1 0.50 ± 0.00 -3.60 ± 59.64 0.17 ± 0.00 19.49 ± 0.01 

Axis 2 0.07 ± 0.00 13.40 ± 24.05 0.15 ± 0.00 20.55 ± 0.01 

Axis 3 0.31 ± 0.00 10.40 ± 65.01 0.23 ± 0.00 24.07 ± 0.01 

Testing 

Axis 1 0.46 ± 0.00 261.90 ± 60.66 0.17 ± 0.00 20.15 ± 0.02 

Axis 2 0.05 ± 0.00 229.30 ± 25.63 0.15 ± 0.00 20.39 ± 0.02 

Axis 3 0.30 ± 0.00 32.10 ± 64.04 0.23 ± 0.00 24.47 ± 0.02 

713 
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Table S4. Detailed list of spectral regions, its sensitivity, and potential ecological meaning with influence 714 
for predicting MDS β-diversity axes of multiple dimensions of diversity using spaceborne observations of 715 
DESIS and EMIT. 716 
 717 

Wavelengths  
(nm) 

Biophysical/biochemical 
sensitivity 

Potential meaning associated with plant 
communities 

553 
Reflectance peak due to low 
absorption by chlorophyll 

Proxy for variation in chlorophyll content and 
canopy health among communities 

710 
Chlorophyll absorption 
shoulder 

Photosynthetic capacity and leaf nitrogen 
content among communities 

720 
Start of the near red-edge 
inflection 

Sensitive to chlorophyll and canopy stress; early 
sign of senescence 

756 Near red-edge inflection 
Strong in vegetation indices; indicates species 
differences 

790 Canopy structure 
Sensitive to variations in leaf area index, canopy 
density, and leaf scattering properties among 
communities 

973 Water absorption Community-level water content 

1116 
Leaf structural traits and dry 
matter 

Associated with dry matter, LMA, and some 
lignin/cellulose content 

1161 
Continuation of dry matter 
region 

Tracks cell structure, leaf dry matter; functionally 
differentiates among communities 

1521 Strong water absorption Community-level water content 

2226 Dry matter, protein, cellulose 
Strong absorption by lignin, cellulose, protein; 
reflects C:N ratio, functional type, successional 
status 

  718 
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Supplementary figures 719 

 720 

 721 
Fig S1. Spatial distribution of blurred plot locations from the Forest Inventory Analysis program and the 722 
availability of clear sky observations from DESIS and EMIT spaceborne observations.  723 
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 724 

 725 
Fig S2. Relationships between beta diversity (β) and spectral dissimilarity from DESIS observations among 726 
communities. Horizontal panels describe the dimensions of β diversity, including taxonomic (Tβ), 727 
phylogenetic (Pβ), and functional (Fβ) diversity. Vertical panels describe the partition of beta total diversity 728 
(βtotal) into replacement (βreplacement) and richness (βrichness). The black solid lines represent the average linear 729 
regression line when regressing dissimilarities from a target community with all communities.  730 
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 731 
Fig S3. Relationship between beta diversity (β) and spectral dissimilarity from EMIT observations among 732 
communities. Horizontal panels describe the dimensions of β diversity, including taxonomic (Tβ), 733 
phylogenetic (Pβ), and functional (Fβ) diversity. Vertical panels describe the partition of beta total diversity 734 
(βtotal) into replacement (βreplacement) and richness (βrichness). The black solid lines represent the average linear 735 
regression line when regressing dissimilarities from a target community with all communities.  736 
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 737 
Fig. S4. Scatterplot between ordination distances derived from the Multi-Dimensional Scaling analyses and 738 
the dimensions of beta total diversity based on taxonomic (A), phylogenetic (B), and functional (C) 739 
information. The black solid lines represent the average linear regression line when regressing distances 740 
between a target community and all other communities. Dotted lines represent the 1:1 line. The goodness-741 
of-fit is calculated from the coefficient of determination of correlations between ordination axes values and 742 
beta distances.  743 
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 744 
Fig S5. Correlation coefficients between MDS axes of ordination for three dimensions beta diversity, 745 
including taxonomic, phylogenetic, and functional beta diversity.  746 
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 747 
Fig S6. Three-dimensional projection of weighted average scores of climatic and topography 748 
characteristics, community-weighted mean of plant traits, and relative abundance of major plant lineages 749 
of communities within Multi-Dimensional Scaling ordinations derived from taxonomic, phylogenetic, and 750 
functional beta diversity. Acronyms represent, mean annual temperature (MAT), temperature seasonality 751 
(TS), temperature annual range (TAR), annual precipitation (MAP), precipitation seasonality (PS), elevation 752 
(ELE), slope (SLO), and compound topographic index (CTI), tree maximum height (H), tree slenderness 753 
(SL), wood density (WD), shade tolerance index (STI), drought tolerance index (DTI), waterlogging 754 
tolerance index (WTI), leaf mass per area (LMA), nitrogen content (N), gymnosperms (Gymno.), 755 
angiosperms (Angio.), ectomycorrhizal symbiosis (ECM), arbuscular mycorrhizal symbiosis (AM).  756 
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 757 
Fig S7. Correlation between axes of Multi-Dimensional Scaling ordinations derived from taxonomic, 758 
phylogenetic, and functional beta diversity and climatic and topographic variables of forest communities. 759 
Acronyms represent: mean annual temperature (MAT), temperature seasonality (TS), temperature annual 760 
range (TAR), annual precipitation (AP), precipitation seasonality (PS), elevation (ELE), slope (SL), and 761 
compound topographic index (CTI).  762 
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 763 
Fig S8. Correlation between axes of Multi-Dimensional Scaling ordinations derived from taxonomic, 764 
phylogenetic, and functional beta diversity and community-weighted mean of plant traits of forest 765 
communities.  766 
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 767 
Fig S9. Correlation between axes of Multi-Dimensional Scaling ordinations derived from taxonomic, 768 
phylogenetic, and functional beta diversity and the relative abundance of plant lineages within forest 769 
communities.  770 
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 771 
Fig. S10. Schematic representation of the workflow used to map multiple dimensions of forest diversity.  772 
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 773 
Fig S11. Performance of training datasets of PLSR models that predict ordination axes of multiple 774 
dimensions of tree diversity using spaceborne observations from DESIS. Values represent the mean and 775 
standard deviation of 100 models.  776 
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 777 
Fig 12. Performance of testing datasets of PLSR models that predict ordination axes of multiple dimensions 778 
of tree diversity using spaceborne observations from DESIS. Values represent the mean and standard 779 
deviation of 100 models.  780 
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 781 
Fig S13. Performance of training datasets of PLSR models that predict ordination axes of multiple 782 
dimensions of tree diversity using spaceborne observations from EMIT. Values represent the mean and 783 
standard deviation of 100 models.  784 
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 785 
Fig S14. Performance of testing datasets of PLSR models that predict ordination axes of multiple 786 
dimensions of tree diversity using spaceborne observations from EMIT. Values represent the mean and 787 
standard deviation of 100 models.  788 
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 789 
Fig. S15. Root Mean Squared Error of Prediction (RMSEP) from cross-validation derived from PLSR 790 
models that predict ordination axes of multiple dimensions of tree diversity using spaceborne observations 791 
from DESIS and EMIT. Each solid line represents the average of the 100 iterations, while the shade around 792 
each line is its standard deviation. Horizontal dotted lines represent the optimal number of components 793 
selected for each axis.  794 
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 795 
Fig S27. PLSR coefficients of the models that predict ordination axes of multiple dimensions of tree diversity 796 
using wavelet-transformed spaceborne reflectance from DESIS and EMIT. Each line represents an average 797 
of 100 iterations, while the shade around each line represents the standard deviation.  798 
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 799 
Fig S16. Performance of binary generalized linear models to predict labels of forest types from the Forest 800 
Inventory and Analysis program using ordination axes of beta diversity based on taxonomic information, 801 
climatic, and topographic data. Each point represents the mean estimate of 100 models.  802 
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 803 
Fig S17. Performance of binary generalized linear models to predict the presence / absence of plant 804 
lineages within inventories from the Forest Inventory and Analysis program using ordination axes of beta 805 
diversity based on phylogenetic information, climatic, and topographic data. Each point represents the 806 
mean estimate of 100 models.  807 
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 808 
Fig S18. Performance of generalized linear models to predict community-weighted mean of plant traits 809 
within inventories from the Forest Inventory and Analysis program using ordination axes of beta diversity 810 
based on functional information, climatic, and topographic data. Each point represents the mean estimate 811 
of 100 models.  812 
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 813 
Fig S19. Relative importance of variables used in binary generalized linear models to predict 814 
presence/absence of forest types within the Forest Inventory and Analysis program through axes of forest 815 
composition, climatic, and topographic information. Axes (i.e., Axis 1, Axis 2, and Axis 3) describe the 816 
potential forest composition from a MDS ordination of beta diversity based on taxonomic information. 817 
Climatic variables are described by the mean annual temperature (MAT), the temperature seasonality (TS), 818 
temperature annual range (TAR), annual precipitation (AP), and precipitation seasonality (PS). Topographic 819 
information is described by elevation (ELE), slope (SL), and compound topographic index (CTI).  820 
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 821 
Fig S20. Relative importance of variables used in binary generalized linear models to predict 822 
presence/absence of plant lineages within inventories of the Forest Inventory and Analysis program through 823 
axes of forest composition, climatic, and topographic information. Axes (i.e., Axis 1, Axis 2, and Axis 3) 824 
describe the potential forest composition from a MDS ordination of beta diversity based on phylogenetic 825 
information. Climatic variables are described by the mean annual temperature (MAT), the temperature 826 
seasonality (TS), temperature annual range (TAR), annual precipitation (AP), and precipitation seasonality 827 
(PS). Topographic information is described by elevation (ELE), slope (SL), and compound topographic 828 
index (CTI).  829 
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 830 
Fig S21. Relative importance of variables used in generalized linear models to predict the community-831 
weighted mean of plant traits within inventories from the Forest Inventory and Analysis program through 832 
axes of forest composition, climatic, and topographic information. Axes (i.e., Axis 1, Axis 2, and Axis 3) 833 
describe the potential forest composition from a MDS ordination of beta diversity based on functional 834 
information. Climatic variables are described by the mean annual temperature (MAT), the temperature 835 
seasonality (TS), temperature annual range (TAR), annual precipitation (AP), and precipitation seasonality 836 
(PS). Topographic information is described by elevation (ELE), slope (SL), and compound topographic 837 
index (CTI).  838 
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 839 
Fig S22. Performance to predict the probability of forest types of inventories within the Forest Inventory and 840 
Analysis program using climatic and topographic information as well as predicted MDS axes of dimensions 841 
of beta diversity based on spaceborne observations of DESIS or EMIT.  842 
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 843 
Fig S23. Performance to predict the probability of presence of plant lineages within inventories of the Forest 844 
Inventory and Analysis program using climatic and topographic information as well as predicted MDS axes 845 
of dimensions of beta diversity based on spaceborne observations of DESIS or EMIT. Each point represents 846 
the mean estimate of 100 models.  847 
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 848 
Fig S24. Performance to predict the community-weighted mean of plant traits within inventories of the 849 
Forest Inventory and Analysis program using climatic and topographic information as well as predicted 850 
MDS axes of dimensions of beta diversity based on spaceborne observations of DESIS or EMIT. Each 851 
point represents the mean estimate of 100 models.  852 
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 853 
Fig S25. Plant phylogenetic tree and its functional traits of inventoried species from the Forest Inventory 854 
and Analysis program across the Eastern U.S.  855 
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 856 
Fig S26. Principal component analysis to summarize the variability of eight plant traits among species. 857 
Panels A, B, and C describe the biplot projections among the first three principal components, while panel 858 
D describes the proportion of variance explained by each component.  859 
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