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1 Introduction1

Farm management affects biodiversity in numerous ways. Some effects are direct, such2

as disturbances created by tillage, harvest, or pesticide application. Others are indirect,3

as agriculture shapes landscapes over space and time, both locally and regionally, for4

instance through the choice of crop rotation, the creation or removal of semi-natural5

habitat, or the flow of water and availability of nutrients. Together, these effects create6

spatiotemporal patterns of resource availability and disturbance that influence all non-7

domestic species living in agricultural landscapes (Vasseur et al., 2013). However, many8

of these impacts are hard to trace and understand, particularly as their effects are often9

context- and species-specific.10

In Europe, widespread declines of farmland species have been documented for taxa such11

as birds and butterflies (e.g. Rigal et al., 2023; van Swaay et al., 2019). These have12

prompted numerous conservation efforts seeking to establish approaches such as wildlife-13

friendly farming and agroecology (Pywell et al., 2012; Runhaar, 2021). Many of these14

efforts are conducted at a policy level, using a combination of regulations and subsidies to15

enforce or encourage agroecological practices. Of particular importance, due to its scope16

and volume, is the EU’s Common Agricultural Policy (CAP), although its practical17

benefits have been mixed (Pe’er et al., 2014; Pe’er et al., 2020).18

From an ecological perspective, there are at least three challenges associated with the19

design of effective agri-environmental measures. First, the measures must fit in with all20

the other things farmers do: they must be practicable, and not countered by other man-21

agement practices (Hölting et al., 2022). Second, they must take into account the varying22

ecological requirements and behavioural responses of different target species (Vickery et23

al., 2004). Third, they should be tailored to the bioclimatic and landscape contexts,24

as different contexts could enhance or reduce the effectiveness of any chosen measure25

(le Clech et al., 2024).26

Simulation models can help assess the likely consequences of changes in agricultural27

practice, whether policy-induced or otherwise (Topping et al., 2019). While economic28

simulation models are already widely used for agricultural policy assessments, this is29

not yet the case for biodiversity models (Reidsma et al., 2018). In a recent review, we30

identified several reasons that contribute to this (Vedder et al., 2025): First, many current31

biodiversity models are very abstract, often simulating virtual species and landscapes32

rather than specific agroecosystems. Second, few biodiversity models simulate the impact33

of farm management and the spatio-temporal dynamics of landscapes. Third, few models34

combine ecological and economic perspectives, for example through jointly considering35
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farmer decision-making, crop production, and biodiversity outcomes.36

Here we present Persefone.jl, a model of animal populations in dynamic agricultural37

landscapes that is intended to address these issues. The model simulates management38

practices and crop growth on real landscapes, and combines this with a suite of individual-39

based models of wildlife animal species. This allows it to model the spatiotemporal40

population dynamics of its target species in response to environment and management.41

Its aim is to further ecological research into the interactions between agriculture and42

biodiversity, and to provide a platform for rapid policy assessment in the context of43

European agricultural landscapes.44

2 Methods45

2.1 Model structure46

In the following, we describe the model structure of Persefone.jl using an abbreviated47

form of the ODD protocol (Grimm et al., 2006, 2010), following the guidance by Grimm48

et al. (2020) for large models. The full model documentation is available in the appendices49

and on the model website (https://persefone-model.eu), while a graphical summary of50

the model structure is provided in Fig. 1.51

Persefone.jl is designed to fulfil two purposes:52

1. To represent the spatiotemporal landscape dynamics created by arable farming53

in Europe, including crop rotations, plant growth, and yield formation.54

2. To reproduce the population dynamics of a selection of wildlife animal species55

in response to environmental conditions and agricultural management, considering56

especially movement, reproduction, and mortality.57

To this end, the model simulates three main entities, or agents: farmers, crop-growing58

fields, and wildlife animals. These are each represented by separate submodels, which are59

described in more detail in subsequent sections. All agents are located on and interact60

with the model landscape, which is created by reading in environmental input data for61

the simulated region. These include satellite-based land cover maps, field geometries,62

soil type maps, and daily weather data. All required input data are publicly available for63

Germany (Table 1), and the model website documents how to acquire and process them64

in order to set up a new study region.65

In terms of processes, the farm submodel manages the fields in the landscape, choosing66

which crops to grow where and when to carry out management actions. The crop sub-67
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Figure 1: Graphical overview of Persefone.jl. The model contains three major submodels,
simulating farm management, crop growth, and animal life cycles.

model simulates the growth of the crop plants on these fields over time, based on the68

environmental input and farm management. Finally, the animal submodel models the69

behaviour and life cycle of different indicator species, the individuals of which perceive70

and interact with the changing landscape created by the other submodels. The model71

runs at a landscape scale, with a spatial resolution of 10 m and daily updates, and a72

typical extent (depending on the configuration) of around 300 km² and 10 years.73

The Persefone.jl software is open-source and can be downloaded via its website. It is im-74

plemented in Julia, a programming language designed for performant scientific computing75

(Bezanson et al., 2017). (The “.jl” suffix in the model name denotes that it is available76

as a Julia package.) Due to its significant computational demands, it is primarily in-77

tended to be run on a high-performance computing cluster (HPC). However, individual78

simulations can be run on a personal computer, and a simple graphical user interface is79

available for this purpose. For more details, see the user manual in Appendix A.80
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Table 1: Data sets used as input, for calibration, or for validation. All data are publicly
available for our study regions. For links to the sources, see the user manual in
Appendix A.

Data Description Purpose Source
Land cover Satellite-derived raster map of six

different land cover classes (10m
resolution, year 2020).

input mundialis
GmbH & Co.

KG
Field

geometries
Shape files of all fields registered in
the EU Land Parcel Information

System (LPIS; in Germany:
InVeKoS).

input Thüringer
Landesamt
für Land-
wirtschaft

und
Ländlichen

Raum
Soil types Shape file map of soil types (i.e.

different mixtures of clay, silt, and
sand).

input Bundesanstalt
für Geowis-
senschaften

und Rohstoffe
Weather Daily observations of standard

meteorological variables from the
closest weather station.

input Deutscher
Wetterdienst

Crop
phenology

Annual observations of the onset
of growth stages (e.g. emergence,
flowering, harvest) in different

plant species.

calibration /
validation

Deutscher
Wetterdienst

Crop yield Annual district-level average yields
per hectare.

calibration /
validation

Thüringer
Landesamt
für Statistik

Plant growth Measurements of crop parameters
(e.g. height, biomass) during the

course of the growing season.

calibration Reichenau
et al. (2020)

Butterfly
monitoring

Population trends of butterflies in
Germany.

validation Kühn et al.
(2024)

Common bird
monitoring

Population trends of common
breeding birds in Germany.

validation Busch et al.
(2020)
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2.1.1 Farm management81

The farm submodel defines a Farmer agent who manages a collection of agricultural82

fields. In the current model version, a single agent is responsible for all fields in the83

region, and manages them using a set of configurable practices related to crop rotations,84

fallows, and grassland management (cf. Table 2).85

Crop rotations are defined as a set of crops that are grown sequentially on a given86

field. Each crop is harvested when it is ripe (as determined by the crop submodel)87

and the next one sown according to its planting schedule (taken from the agronomic88

literature). Each year, a number of fields can be left fallow. Grassland is managed either89

intensively (with 4-5 cuts per year) or extensively (with 2 cuts per year). The proportion90

of meadows managed extensively is configurable, as is the proportion of arable land91

left fallow. Currently, management practices that are explicitly simulated are sowing,92

harvest, and mowing.93

2.1.2 Crop growth94

The purpose of the crop component is twofold: First, it simulates how agricultural land-95

scapes change ecologically over the course of a year, as different stages of crop growth96

provide different degrees of habitat quality to wildlife species. Second, it estimates yields,97

enabling Persefone.jl to provide economically-relevant output alongside the ecological98

simulation results.99

The crop submodel provides the FarmPlot entity, which is initialised for every arable and100

grassland field in the simulated region. The farmer (see above) decides when the field is101

to be sown with a given crop, and when it is to be harvested or mown. Between sowing102

and harvest (and year-round for grassland) the crop component models how the plants103

on the field grow. Specifically, it simulates four main output variables: plant height,104

canopy cover, crop maturity, and yield. These values are available to both the farm and105

the animal components, and can be used for instance to decide when to harvest or to106

calculate habitat suitability.107

To simulate these variables, Persefone.jl can use two different crop models. The primary108

crop model is AquaCrop, originally developed by the FAO and translated into Julia for109

use in Persefone.jl (Díaz Iturry et al., 2025). AquaCrop is an intermediate-complexity110

process-based crop model, which simulates plant growth and maturation based on water111

availability, meteorological parameters, and soil quality (Raes et al., 2009; Steduto et al.,112

2009). It has been used for numerous crops worldwide and is known to be quite reliable113
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Table 2: A selection of important model configuration parameters. The full list of para-
meters can be found in the user manual in Appendix A, species-specific para-
meters are given in Appendix C.

Parameter Default value Description
seed 2 The numeric value that is used to seed

the random number generator.
Simulation runs with identical

configuration will have identical
outcomes.

startdate 2011-01-01 Date on which to initialise the
simulation.

enddate 2020-12-31 Date on which to terminate the
simulation.

region "jena" Name of the region whose input files will
be loaded to create the model landscape.

farmmodel "BasicFarmer" Which implementation of the farm
submodel to use (currently, only one is

available).
croprotation ["winter wheat",

"winter rape",
"maize", "winter

barley"]

The name and order of crops to use as
the crop rotation on arable fields.

setaside 0.04 Proportion of arable land set aside as
annual fallow.

extensivegrassland 0.6 Proportion of grassland managed
extensively.

scenarios [ ] Names of scenarios to apply. (Scenarios
are functions that can change

configuration settings during the course
of a run, or otherwise modify the
behaviour of the farm submodel.)

fieldoutfreq "daily" Frequency with which to output data
related to field use and crop growth.

cropmodel "almass,aquacrop" Crop model(s) to use.
targetspecies ["MarbledWhite",

"Skylark"]
List of animal species to simulate.

popoutfreq "daily" Frequency with which to output
population-level data from the animal

submodel.
indoutfreq "monthly" Frequency with which to output

individual-level data from the animal
submodel.
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(Kostková et al., 2021; Mialyk et al., 2024). While there are default parameter values114

available for many crop types, to achieve maximum accuracy, the model needs to be115

calibrated with regionally-specific crop growth data. These can however be difficult to116

acquire.117

Therefore, Persefone.jl complements AquaCrop with a second crop model, namely the118

vegetation component of the ALMaSS ecosystem model (Topping et al., 2003; Topping119

& Duan, 2024). This is a simple correlative model, predicting plant growth based on120

growing-degree days (i.e. temperature) and time of the year. While it is much less exact121

than AquaCrop (not least because it does not incorporate rainfall), it has parameters122

available for a wide range of crop types, and can also simulate grassland and some non-123

crop vegetation types. We therefore use it as a fallback for those crops and plants for124

which AquaCrop parameters are not available.125

A fuller description of the two crop models, together with details about their calibration126

and validation, may be found in Appendix B.127

2.1.3 Animal species128

It is the animal submodel that produces the main ecological output of Persefone.jl, namely129

the abundance and distribution of the wildlife species over time and space. To do so, it130

models the behaviour, reproduction, and mortality of individual animals in the changing131

landscapes created by the other components.132

Each target species is represented by a separate individual-based model, custom-coded133

with its own set of rules and parameters. Within each species model, the life cycle of the134

species is decomposed into a series of “life phases”. These provide a conceptual framework135

to structure the differing behaviour and physiology of individuals across their lives, e.g.136

as a larva, on winter migration, or as a breeding adult (cf. Uchmański & Grimm, 1996).137

Practically, they are implemented as software functions that determine an individual’s138

daily behaviour during each part of its life history, and decide when and under which139

conditions it switches to a different phase.140

All species models can at any time access the full state of the simulation, such as the141

current weather, local land cover, or the state of crop plants in a given field. Individuals142

are notified of management actions affecting their current location, and can interact with143

other individuals, including those of different species. An integrated data logging system144

keeps track of a set of basic state variables, and can be extended by the species models145

to output more detailed information for model analysis.146
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2.2 Model setup147

Following the above description of the fundamental model structure, we now describe148

how we set up Persefone.jl for our first study. The aim of this study was to demonstrate149

that the model is capable of reproducing spatiotemporal landscape dynamics as well as150

individual- and population-level patterns of ecologically very different animal species.151

For this, we simulated a bird and a butterfly species in three regions in Central Europe.152

Persefone.jl was developed within the research project CAP4GI, which worked together153

with farmers in six regions in Germany to develop recommendations for novel agri-154

environment measures in the CAP (Velten et al., 2023). For the study we report here,155

the model has therefore been set up to simulate the three Thuringian regions in this156

project: Jena, Eichsfeld, and the Thuringian Basin. These range in size between 270 km²157

and 370 km² and form a gradient of increasing land use intensity (Fig. 2).158

We used economic survey data from our study regions (G. Theilen, pers. comm.) to159

select a typical cropping sequence that is by default carried out on all arable fields in the160

model (with a randomised starting point): oilseed rape, winter wheat, silage maize, and161

winter barley. We calibrated AquaCrop for these four crops for each region, while using162

ALMaSS to model grass growth.163

Next, we implemented and tested two animal species: the skylark Alauda arvensis and the164

marbled white Melanargia galathea. In both species, model design was kept deliberately165

simple, concentrating mainly on the environmental factors with the largest demographic166

impact, and the behavioural patterns directly affected by landscape and management.167

Other factors and behavioural patterns were ignored or strongly simplified, in order to168

keep the models to the minimum necessary complexity (Sun et al., 2016).169

The skylark is a common and charismatic species of agricultural landscapes, which breeds170

on the ground in open areas. Though still common, it has lost over 50 % of its population171

in Germany over the past decades, due to various factors related to agricultural intens-172

ification (Busch et al., 2020). Of particular concern is the increased mortality due to a173

higher frequency of mowing in grassland, coupled with the increased proportion of less-174

favoured winter cereals, which pushes skylarks to breed preferentially in the (frequently175

mown) grassland. This ecological trap has been observed repeatedly and discussed ex-176

tensively in the agroecological literature (e.g. Donald et al., 2002; Jenny, 1990; Poulsen177

et al., 1998).178

The phase cycle of the skylark model (Fig. 3a) begins in spring, when the birds return179

from their winter migration. Males return first and begin to look for a territory of suitable180

size and location. Females return a little later and proceed to look for an unmated male181
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Figure 2: Regions simulated in this study: a) Jena, b) Eichsfeld, c) Thuringian Basin. In-
set shows location of regions on a map of Germany. Landcover maps generated
with data by mundialis GmbH & Co. KG (2021).
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with a territory with whom they can partner. After mating, a female will build a nest182

in the male’s territory and raise a brood. If the brood has either fledged or is lost due183

to predation or harvest, she begins a new nest as long as the breeding season is not yet184

over. After the breeding season, skylarks forage non-territorially in small groups, before185

leaving for migration in autumn. Interaction with farm management thus revolves around186

breeding: crop growth affects territory and nesting site choice, and harvest/mowing is187

an important cause of mortality.188

Marbled white butterflies are univoltine grassland specialists that fly in June–August.189

While highly abundant in some places, and showing a slight positive trend overall in190

Germany, they do not tolerate intensive grassland that is frequently mown (Reinhardt191

et al., 2021). They are also subject to strong population fluctuations caused by weather192

affecting their reproductive rate (Roy et al., 2001).193

In the model (Fig. 3b), adult marbled whites are presumed to move randomly across194

suitable habitat, with a certain chance of crossing into unsuitable habitat. Only females195

are simulated, which lay a number of eggs each day as they fly. The distance moved and196

the number of eggs laid each day is temperature-dependent. As eggs and larvae develop197

on the ground, mortality from mowing is low; most is caused by predation (represented as198

a constant probability in the model). Thus, their main interaction with farm management199

is indirect, as they avoid grassland that has been fertilised or recently mown.200

The full ODD documentation for both animal models is provided in Appendix C.201
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2.3 Model validation202

Throughout the modelling process, we employed multiple techniques to ensure that the203

individual submodels and the complete model are adequate for their intended purpose204

(Troost et al., 2023). In this case, the first purpose defined above (landscape dynamics)205

is addressed by the farm and crop submodels; the second (population dynamics) by the206

animal component and its interactions with the rest of the model.207

In addition to this scientific validation, we used software development best practices,208

including unit testing and code reviews, to verify the technical correctness of our software209

(Ropella et al., 2002; Vedder et al., 2021).210

2.3.1 Landscape dynamics211

The function of the farm submodel is to carry out the crop rotation and sow, harvest, and212

mow fields at the appropriate time. This was verified using visual inspection of field-level213

summary statistics, to track the sowing and harvest of the different crops over time.214

The crop submodel is intended to produce reasonable estimates of crop growth and215

phenology under the given environmental conditions. We used publicly available data216

sets of district-level yield and phenology data from our study regions to calibrate the217

AquaCrop model, then used cross-validation to test the robustness of the calculated218

parameters. The ALMaSS crop model is currently only used to generate grass growth219

patterns, the sufficient correctness of which we confirmed visually. For more details on220

the calibration and validation of the crop component, see Appendix B.221

2.3.2 Population dynamics222

As is common in individual-based models, we were most concerned with the structural223

validation of our target species models, as our aim was to reproduce population dynamics224

from individual-level mechanisms (Troost et al., 2023). For this, we used pattern-oriented225

modelling (Gallagher et al., 2021; Grimm & Railsback, 2011), using the empirical liter-226

ature to identify a set of ecological patterns at different spatial, temporal, and organisa-227

tional scales for each species. We then tested whether these patterns emerge from the228

model output mechanistically, i.e. without having been explicitly programmed in.229

For the skylarks, we looked at three different patterns. The first was the size of territories,230

which were generated procedurally in the model, and are known to vary depending on231

the landscape. The second was the choice of nesting habitat, which depends on the crops232

available and changes over the course of the breeding season. The third was the ecological233
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trap described above, where the agricultural switch from spring to winter cereals pushes234

skylark nest-building onto frequently-mown grassland, resulting in population declines.235

To study these patterns, we set up a simulation experiment with four different scenarios,236

varying the grassland usage intensity (20% or 80% intensive grassland) and the use of237

winter-sown crops (spring wheat and spring barley or winter wheat and winter barley in238

the crop rotation). Each scenario was run for each region from 2011–2020.239

For the marbled white, we considered multiple “simple” patterns: the number of eggs laid240

in a female’s lifetime, the proportion of time spent moving through different habitats, the241

local population density, and the lifetime displacement distance. In addition, we selected242

a “complex” pattern, namely the population development as recorded by the German243

butterfly monitoring scheme (Kühn et al., 2024). This shows a strongly fluctuating, but244

overall decreasing trend from 2006 to 2015, followed by an increasing trend from 2016245

to 2023. The fluctuations in the first period correlate with the previous year’s mean246

summer temperature. These patterns we tested by running five replicate simulations in247

each region from 2006–2022.248

Alongside this pattern-oriented modelling, we used exploratory simulations to test the249

response of the model to different parameter values and combinations, and to identify250

particularly sensitive parameters (see Appendix C for an overview of parameters and251

values tested).252

3 Results253

The model output shows how the modelled landscape changes over time due to farm254

management and crop growth. Fig. 4 shows this at a landscape perspective, tracking255

how the proportion of different crops changes over the course of several years, and how256

the average plant height of each crop changes over the growing seasons. Fig. 5 gives257

a field-level perspective, showing the development of the other four AquaCrop output258

variables (canopy cover, biomass, phenological stage, yield) from sowing to harvest. Fig.259

6 shows validation of the AquaCrop model for silage maize, depicting goodness-of-fit of260

four output variables against empirical data from the three study regions. (For more261

details on the crop model validation, see Appendix B.)262

The skylark model conforms well to the patterns against which we tested it. Territory263

sizes in the most intensive scenario ranged from 0.38–24.76 ha, with a median of 1.09 ha264

and an interquartile range of 0.81–1.56 ha. These values are coherent with the observa-265

tions listed by Glutz von Blotzheim and Bauer (1985), which range between 0.17–46 ha,266
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Figure 4: Field and crop dynamics generated by Persefone.jl, simulated in Jena from
2020–2022. Above: area of agricultural land sown with each crop type over
time. Below: average plant height of crops over time. “No growth” refers to
fields that are not currently sown with any crop (at the start of the simulation
or between harvest and re-sowing).
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Figure 6: Output of the AquaCrop model compared to empirical data from the study
regions, shown here for silage maize. The red line is the x = y line, i.e. points
above the line are overestimated, points below the line underestimated by the
model.
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and are most commonly around 0.5–1.5 ha. We also observe the effect that territory267

sizes in extensively used farmland are smaller—the scenario with the lowest land use268

intensity gave an interquartile range of 0.74–1.26 ha and a median of 0.96 ha. Thus, the269

species model successfully reproduces both the general size of territories as well as their270

landscape dependence.271

Likewise, the choice of nesting habitat over the breeding season (Fig. 7) closely follows272

the description of Jenny (1990). In his observations, as in our model, grassland is always273

a favoured habitat; winter barley is almost never used, as it grows too quickly; winter274

wheat still occurs early in the breading season, but disappears later; while maize is more275

used in the later season. Overall, there is a decrease of nesting attempts towards the later276

breeding season, associated with a loss of suitable habitat. This shows that the species277

model’s simple rules, in which nest site selection is primarily based on vegetation height,278

interacts with the crop submodel to recreate empirically observed patterns of nesting279

habitat.280

The ecological trap of agricultural intensification is also very visible (Fig. 8). Across281

regions, skylark population grow in the scenario with mostly extensive grassland usage282

and spring-sown crops, while they decline in the scenario with intensive grassland usage283

and winter-sown crops. Scenarios with either intensive grassland usage or winter crops284

show intermediate but landscape-dependent trends: skylarks in the almost entirely arable285

Thuringian Basin respond very strongly to spring or winter crops, but little to grassland286

usage intensity, while the response is more mixed in the other regions.287

For the marbled white, the collected lifetime variables also correspond well to known288

literature values (Fig. 9). Fecundity peaks at around 120 eggs/female, which is in the289

range given by Reinhardt et al. (2007). Lifetime displacement is usually below 1 km, but290

can reach up to 8 km, which agrees with the results of capture-mark-recapture studies291

(e.g. Vandewoestijne et al., 2004). In terms of movement, unmanaged and extensively292

managed grassland are the primary habitats used, although some dispersal movement293

through other habitat types also takes place (cf. Baguette et al., 2000; Lenda & Skórka,294

2010).295

In terms of the population development, the marbled white model replicates the Germany-296

wide trends to a certain extent (Fig. 10). As with the monitoring data, the model data297

too show an initial period of population decline, followed by stabilisation and (partly)298

increase. The effect of the weather can also be seen, with pronounced population peaks299

happening especially in 2007 and 2021, when a hot summer was followed by a cold one.300

However, the regionally-simulated populations do not follow the national monitoring data301
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in detail: the year-to-year fluctuations are less pronounced in the model, and the degree302

of stabilisation or recovery after 2015 diverges quite widely. Indeed, differences in the303

weather in the three regions (Eichsfeld is coolest, Jena warmest) lead to quite different304

population trajectories. This suggests that the national trend hides significant regional305

variation, a hypothesis that could be tested with more detailed empirical data.306

4 Discussion307

4.1 Key features of Persefone.jl308

Vedder et al. (2025) identified a need for new agroecological models that simulate real309

species and landscapes, explicitly represent farm management and landscape dynamics,310

and link ecological and economic perspectives. Persefone.jl is designed to fill this niche, in311

order to provide a model that can give insights into the interactions between agricultural312

management and wildlife species in European landscapes.313

As the study results above show, Persefone.jl can successfully reproduce both landscape314

dynamics and population dynamics of real agroecosystems. One feature of the model315
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that is particularly important to both of these aims is the inclusion of the crop growth316

submodel. As Vedder et al. (2025) argued, modelling crop growth is crucial for linking317

the human and natural domains of agriculture. One the one hand, explicitly modelling318

crops allows the model to track intra-annual changes to habitats and resources in the319

landscape, as well as disturbance events caused by farm management (Marrec et al.,320

2022; Vasseur et al., 2013). The importance of this for biodiversity is seen clearly in the321

example of the skylark model above. On the other hand, crop growth is the foundation of322

arable agriculture, and therefore key to including agronomic and economic perspectives.323

Modelling crops allows the farm submodel to take management decisions (e.g. date of324

harvest) dynamically, depending on annual conditions and not just a preset schedule.325

It also allows the model to collect data on yields, enabling an economic comparison of326

scenario outcomes as well as an ecological one. For these reasons, integrating crop growth327

in agroecological models is a major step towards a truly social-ecological modelling of328

agriculture.329

Here, it should be noted that a comparable model to Persefone.jl is already available.330

This is ALMaSS, which has a long track record of use in agroecological research (e.g.331

Topping et al., 2003; Topping et al., 2019). While the aim and design of Persefone.jl and332

ALMaSS are quite similar (and we make use of their vegetation submodel), we understand333

our model to be a complement to ALMaSS in three ways. First, it is important for a334

research community to have multiple models studying the same question, as this leads335

to more robust understanding and predictions (Hooftman et al., 2022; Rosenzweig et al.,336

2013). Second, our modelling approaches differ: while ALMaSS embraces complexity and337

consistently chooses the highest-realism implementation option possible (cf. Topping et338

al., 2015), Persefone.jl pursues a policy of minimum-necessary complexity, leaving out any339

details that are not significantly important to the modelling purpose (Sun et al., 2016).340

And third, Persefone.jl gives a much greater priority to ease of use, transferability, and341

extensibility, with the intention that the software can be used by researchers independent342

of our own group.343

This last point is important, as another feature of Persefone.jl is its strong focus on344

modularity and extensibility. The model is designed to be readily adaptable in three345

dimensions. First, configuring the model for a new study region can be done within a346

few hours, given the publicly available input data and the semi-automated import process347

(at least for regions within Germany). Second, implementing new animal species is doable348

in a matter of weeks. For this purpose, the animal submodel provides a domain-specific349

language (Holst & Belete, 2015) that has a succinct and readable syntax for defining350

new species, and also offers a set of inbuilt functions for common tasks. Third, the farm351
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and crop submodels can be extended with new crop species and management scenarios,352

or even replaced with other equivalent submodels. The modular structure of the source353

code means that different implementations of these submodels can be slotted in, as long354

as they conform to a basic software interface (Vedder et al., 2024). This also opens up355

the possibility of coupling Persefone.jl to other agricultural or environmental models,356

such as models of farmer decision-making or soil processes. For all of these use cases, an357

emphasis on software quality and documentation is meant to ensure that the model can358

be successfully used by other researchers (McIntire et al., 2022; Vedder et al., 2021).359

4.2 Potential for future research360

With its integrated modelling of farm management, crop growth, and animal life cycles,361

Persefone.jl offers wide-ranging possibilities for agroecological research, spanning the con-362

tinuum of basic to applied research.363

In terms of basic research, Persefone.jl can provide a platform for modelling individual364

animal species in agricultural landscapes. For instance, the marbled white species model365

presented above could be used to further investigate the physiological mechanisms of366

temperature-dependence in butterfly population dynamics, ideally in a study that com-367

bines modelling with empirical work (as envisaged by Stillman et al., 2015). Other368

ecological modellers may also find the existing structure of Persefone.jl a useful basis to369

build their own species models on. Furthermore, the model’s use of weather data means370

that questions related to climate change can be addressed by importing weather forecasts371

generated by climate models (Cabral et al., 2023), while the model’s dynamic landscapes372

enable studies looking into the effects of intra-annual resource fluctuations and habitat373

changes (Katna et al., 2023; Schellhorn et al., 2015).374

Beyond purely ecological research, Persefone.jl has the potential to become a tool for375

social-ecological research. Future expansions of the farm submodel (for example by coup-376

ling with existing agent-based models) can complement the model’s biodiversity focus377

with a socio-economic perspective. This would allow pursuing new research questions,378

for instance tracing the impact of global market changes or behavioural factors on farmer379

decision-making and agroecosystems (cf. Drechsler, 2020). The simulation of crop growth380

in Persefone.jl also opens up the possibility of using it to study the feedback of biod-381

iversity on food production through the action of ecosystem services, although this is382

currently still a major research challenge (Alexandridis et al., 2022; Seppelt et al., 2020).383

Looking at more applied research questions, the ability to quickly set up new regions384

and management scenarios in Persefone.jl make it a promising instrument for policy385
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advice. This, indeed, was one of our major reasons for creating the model, as currently386

there are few biodiversity models in active use in the EU policy arena (Candel, 2022;387

Reidsma et al., 2018). Here, the aim is to be able to provide rapid forecasts of the likely388

ecological effects of proposed policy changes (e.g. the recent derogation of the CAP’s389

fallows regulation, or new agri-environment schemes), in order to support scientists and390

policy makers working on agricultural policy (cf. Pe’er et al., 2025; Will et al., 2021).391

In outlook, our two highest priorities for the further development of Persefone.jl are the392

implementation of further animal species models and the integration of an economic farm393

submodel. Our aim is to build up a portfolio of indicator species models: wildlife species394

that cover a broad range of complementary niches, and can be considered representative395

of typical Central European agroecosystems. In addition, we will couple Persefone.jl396

to a socio-economic model of farmer decision-making, in order to explore some of the397

social-ecological and policy questions outlined above.398

4.3 Conclusion399

We present Persefone.jl, a process-based model of wildlife animal populations in dynamic400

agricultural landscapes. By simulating farm management, crop growth, and animal beha-401

viour, we capture both direct and indirect effects of agriculture on species’ demographics.402

Pattern-oriented modelling confirms that our mechanistic approach can reproduce em-403

pirically observed phenomena. We therefore make Persefone.jl available as a tool for404

agroecological research and policy evaluation.405
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