
Persefone.jl: Modelling Biodiversity in
Dynamic Agricultural Landscapes

Daniel Vedder1,2,3*, Marco C. Matthies1,3, Gabriel Díaz Iturry1,3,4,
Guy Pe’er1,3

Agricultural landscapes are highly dynamic, constantly changing in space
and time due to the effects of farm management and environmental factors.
To forecast the effects of changes in agricultural systems on biodiversity, we
need to understand these landscape dynamics and how they impact different
species. Here, we present Persefone.jl, an open-source process-based model
of agricultural landscapes and animal species. The model simulates farm
management, crop growth, and two wildlife animal species (skylark Alauda
arvensis and marbled white Melanargia galathea) using daily time steps in
three German farming regions. We describe the model and show that it rep-
licates multiple qualitative and quantitative empirical patterns, as well as
discussing design principles and limitations of the software. Persefone.jl is a
modular and extensible agroecological model that can be used to study pop-
ulation dynamics of farmland wildlife species, and evaluate the biodiversity
impacts of new policies or other changes to agricultural systems.
Keywords: agricultural landscapes, farm management, biodiversity, policy,
individual-based model

1 Department of Biodiversity and People, Helmholtz Centre for Environmental Research - UFZ, Per-
moserstraße 15, 04318 Leipzig, Germany
2 Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Ger-
many
3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103
Leipzig, Germany
4 Departamento de Física, Universidad Mayor de San Simón, C. Sucre Esq. Parque La Torre, Cochabamba,
Bolivia

* corresponding author: daniel.vedder@idiv.de

1

mailto:daniel.vedder@idiv.de


1 Introduction1

Farm management affects biodiversity in multiple ways. Some effects are direct, such2

as disturbances created by tillage, harvest, or pesticide application. Others are indirect,3

as agriculture shapes a landscape over space and time, for instance through the choice4

of crop rotation, the creation or removal of semi-natural habitat, or changes in nutrient5

availability. Together, these effects create spatiotemporal patterns of resource availability6

and disturbance that influence all non-domestic species living in agricultural landscapes7

(Vasseur et al., 2013).8

In Europe, widespread declines of farmland species have been documented for taxa such9

as birds and butterflies (e.g. Rigal et al., 2023; van Swaay et al., 2019). These have10

prompted numerous conservation efforts seeking to establish “wildlife-friendly farming”11

(Batáry et al., 2015; Pywell et al., 2012). Many of these efforts are conducted at a12

policy level, using a combination of regulations and subsidies to enforce or encourage13

biodiversity-friendly practices. Of particular importance, due to its scope and volume, is14

the EU’s Common Agricultural Policy (CAP), although its practical benefits have been15

mixed (Pe’er et al., 2014; Pe’er et al., 2020).16

From an ecological perspective, there are at least three challenges associated with the17

design of effective agri-environmental measures. First, the measures must fit in with all18

the other things farmers do: they must be practicable, and not countered by other man-19

agement practices (Hölting et al., 2022). Second, they must take into account the varying20

ecological requirements and behavioural responses of different target species (Vickery et21

al., 2004). Third, they should keep in mind the landscape context, as different spatial22

configurations may make local measures more or less effective (le Clech et al., 2024).23

Simulation models can help to assess the likely consequences of changes in agricultural24

practice, whether policy-induced or otherwise (Topping et al., 2019). However, while25

economic simulation models are already widely used for agricultural policy assessments,26

this is not yet the case for biodiversity models (Reidsma et al., 2018). One reason for this27

is that there are very few models available that simulate the impact of farm management28

on biodiversity (e.g. Guillem et al., 2015; Topping et al., 2003; see Vedder et al. in review29

for a review).30

Here we present Persefone.jl, a model of animal populations in dynamic agricultural land-31

scapes. The model simulates management practices and crop growth on real landscapes,32

and combines this with a suite of individual-based models of wildlife animal species.33

This allows it to model the spatiotemporal population dynamics of its target species in34

response to environment and management. Its aim is to further ecological research into35

2



the interactions between agriculture and biodiversity, and to provide a platform for rapid36

policy assessment in the context of (particularly German) agricultural landscapes.37

2 Methods38

2.1 Model description39

Persefone.jl simulates farm management and crop growth at the landscape scale, using40

remote-sensing input maps for three different regions in Germany. Within these dynam-41

ically changing landscapes, the model can simulate multiple animal species. So far, the42

skylark, Alauda arvensis, and marbled white, Melanargia galathea, have been implemen-43

ted. The model is designed to be transferable to other regions and expandable to further44

management scenarios and animal species.45

The software is open-source and available online at https://persefone-model.eu. It is im-46

plemented in Julia, a programming language designed for performant scientific computing47

(Bezanson et al., 2017). Due to its significant computational demands, it is primarily48

intended to be run on a high-performance computing cluster (HPC). However, individual49

simulations can be run locally, and a simple graphical user interface is available for this50

purpose. For more details, see the user manual in Appendix A.51

The model is constructed using a modular architecture (Vedder et al., 2024), and consists52

of an infrastructural core as well as four model components (Fig. 1). These will be53

described in the following sections.54

2.1.1 World component55

The world component is responsible for reading in environmental input data for the56

simulated region. These are satellite-based land cover maps (10 m resolution), field geo-57

metries, soil type maps, and daily weather data. All required input data are publicly58

available for Germany (Table 1), and the model website documents how to acquire and59

process them for use with the software.60

Persefone.jl was developed within the research project CAP4GI, which worked together61

with farmers in six regions in Germany to develop recommendations for novel agri-62

environment measures in the CAP (Velten et al., 2023). The model has been set up to63

simulate the three Thuringian regions in this project: Jena, Eichsfeld, and the Thuringian64

Basin. These range in size between 270 km² and 370 km² and form a gradient of increas-65

ing land use intensity (based on the proportions of agricultural area and grassland; Fig.66

3

https://persefone-model.eu


landscape weather

world

Animal

nature

FarmPlot

crop

Farmer

farm

scheduling

output

settings

core

Figure 1: Model structure of Persefone.jl. The “core” component provides basic software
infrastructure such as the handling of configuration files, the scheduling of
processes, or utility functions for data output. The “world” component provides
the necessary environmental data for the rest of the model, including maps and
weather. The “farm”, “crop”, and “animal” components each simulate one agent
type, the actions and interactions of which produce the model output.

2). The model runs with a daily time step and can simulate the years 1991 – 2023.67

2.1.2 Farm component68

The farm component defines a Farmer agent who manages a collection of agricultural69

fields. In the current model version, a single agent is responsible for all fields in the70

region, and manages them using a set of configurable practices.71

Based on economic survey data from the three study regions (G. Theilen, pers. comm.),72

we selected a typical crop rotation that is carried out on all arable fields (with a random-73

ised starting point): oilseed rape, winter wheat, silage maize, winter barley. Grassland is74

managed either intensively (with 4-5 cuts per year) or extensively (with 2 cuts per year).75

The proportion of meadows managed extensively is configurable, as is the proportion of76

arable land left fallow. Currently, the management practices that are explicitly simulated77

are sowing and harvest/mowing. The dates on which these take place are partly taken78

from the literature, and partly calculated by the crop model (see below).79

4



Figure 2: Regions simulated by the model: a) Jena, b) Eichsfeld, c) Thuringian Basin.
Inset shows location of regions on a map of Germany. Landcover maps by
mundialis GmbH & Co. KG (2021).

5



2.1.3 Crop component80

The purpose of the crop component is twofold: First, it simulates how agricultural land-81

scapes change ecologically over the course of a year, as different stages of crop growth82

provide different degrees of habitat quality to wildlife species. Second, it estimates yields,83

enabling Persefone.jl to provide economically-relevant output alongside the ecological84

simulation results.85

The crop component provides a FarmPlot entity, which is initialised for every LPIS-86

registered field in the simulated region. The farm manager (see above) decides when the87

field is to be sown with a given crop, and when it is to be harvested/mown. Between88

sowing and harvest, and year-round for grassland, the crop component models how the89

plants on the field grow. Specifically, it simulates four main output variables: plant90

height, canopy cover, crop maturity, and yield. These values are available to both the91

farm and the animal components, and can be used for instance to decide when to harvest92

or to calculate habitat suitability.93

To simulate these variables, Persefone.jl uses two different crop models, depending on94

the crop type. The primary crop model is AquaCrop, originally developed by the FAO95

and translated into Julia for the purposes of our project (Díaz Iturry et al., 2025).96

AquaCrop is an intermediate-complexity process-based crop model, which simulates plant97

growth and maturation based on water availability, meteorological parameters, and soil98

quality (Raes et al., 2009; Steduto et al., 2009). It has been used for numerous crops99

worldwide and is known to be quite reliable (Kostková et al., 2021; Mialyk et al., 2024).100

However, parameterising it requires regionally-specific crop growth data, which for our101

study regions were only available for our four main crop types (oilseed rape, winter wheat,102

silage maize, winter barley).103

Therefore, we complemented AquaCrop with a second crop model, namely the vegetation104

component of the ALMaSS ecosystem model (Topping et al., 2003; Topping & Duan,105

2024). This is a simple correlative model, predicting plant growth based on growing-106

degree days (i.e. temperature) and time of the year. While it is much less exact than107

AquaCrop, it has parameters available for a wide range of crop types, and can also108

simulate grassland and some non-crop vegetation types. We therefore use it for grassland,109

and in (currently unused) scenarios with different crop rotations to the one described110

above.111

A fuller description of the two crop models, together with details about their paramet-112

erisation and validation, may be found in Appendix B.113

6



2.1.4 Animal component114

It is the animal component that produces the main ecological output of Persefone.jl,115

namely the abundance and distribution of the several target species over time and space.116

To do so, it models the behaviour of individual animals in the changing landscapes created117

by the other components.118

Each target species is represented by a separate individual-based model, though all spe-119

cies models can access the full state of the current simulation, and make use of a common120

set of utility functions. Each species is defined as a series of “life phases”, i.e. functions121

that determine an individual’s daily behaviour during one part of its life cycle (e.g. larva,122

or breeding adult). Individuals can interact with other individuals, including those of123

different species.124

So far, two species have been implemented: the skylark Alauda arvensis and the marbled125

white butterfly Melanargia galathea. In both species, model design was kept deliberately126

simple, concentrating mainly on the environmental factors with the largest demographic127

impact, and the behavioural patterns directly affected by landscape and management.128

Other factors and behavioural patterns were ignored or strongly simplified, in order to129

keep the models to the minimum necessary complexity (Sun et al., 2016).130

The skylark is a common and charismatic species of agricultural landscapes, which breeds131

on the ground in open areas. Though still common, it has lost over 50 % of its population132

in Germany over the past decades, due to various factors related to agricultural intens-133

ification (Busch et al., 2020). Of particular concern is the increased mortality due to a134

higher frequency of mowing in grassland, coupled with the increased proportion of less-135

favoured winter grains, which pushes skylarks to breed preferentially in the (frequently136

mown) grassland. This ecological trap has been observed repeatedly and discussed ex-137

tensively in the agroecological literature (e.g. Donald et al., 2002; Jenny, 1990; Poulsen138

et al., 1998).139

The phase cycle of the skylark model (Fig. 3a) begins in spring, when the birds return140

from their winter migration. Males return first and begin to look for a territory of suitable141

size and location. Females return a little later and proceed to look for an unmated male142

with a territory with whom they can partner. After mating, a female will build a nest143

in the male’s territory and raise a brood. If the brood has either fledged or is lost due144

to predation or harvest, she begins a new nest as long as the breeding season is not yet145

over. After the breeding season, skylarks forage non-territorially in small groups, before146

leaving for migration in autumn. Interaction with farm management thus revolves around147

breeding: crop growth affects territory and nesting site choice, and harvest/mowing is148

7



migra�on

non-breeding

occupa�on

nes�ng & breeding

territory
search

mate
search

off
sp
rin

g

unsuccessful

juvenile mortality
(preda�on, disturbance)

migra�on mortality

adult

juvenile mortality
(preda�on, disturbance)

pupa

larva

egg

°C

°C

m
ov
em

en
t

fe
cu
nd

ity

a b

Figure 3: Animal model phase charts: a) Skylark Alauda arvensis, b) Marbled White
Melanargia galathea.

an important cause of mortality.149

Marbled white butterflies are univoltine grassland specialists that fly in June–August.150

While highly abundant in some places, and showing a slight positive trend overall in151

Germany, they do not tolerate intensive grassland that is frequently mown (Reinhardt152

et al., 2021). They are also subject to strong population fluctuations caused by weather153

affecting their reproductive rate (Roy et al., 2001).154

In the model (Fig. 3b), adult marbled whites are presumed to move randomly across155

suitable habitat, with a certain chance of crossing into unsuitable habitat. Only females156

are simulated, which lay a number of eggs each day as they fly. The distance moved and157

the number of eggs laid each day is temperature-dependent. As eggs and larvae develop158

on the ground, mortality from mowing is low; most is caused by predation (represented159

stochastically in the model). Thus, their main interaction with farm management is160

indirect, as they avoid grassland that has been fertilised or recently mown.161

Detailed descriptions of both animal models are provided in Appendix C, following the162

ODD format (Grimm et al., 2006, 2020).163

2.2 Model validation164

Throughout the modelling process, we employed multiple techniques to ensure that the165

individual components and the complete model are adequate for their intended purpose166

(Troost et al., 2023). To this end, we define two purposes that Persefone.jl is intended167

to fulfil:168

8



1. To represent the spatiotemporal landscape dynamics created by arable farming,169

including crop rotations, plant growth, and yield formation.170

2. To predict the population dynamics of target species in response to environmental171

conditions and management, considering especially movement, reproduction, and172

mortality.173

The first purpose is addressed by the world, farm, and crop components; the second by174

the animal component and its interactions with the rest of the model.175

In addition to this scientific validation, we used software development best practices,176

including unit testing and code reviews, to verify the technical correctness of our software177

(Ropella et al., 2002; Vedder et al., 2021).178

2.2.1 Landscape dynamics179

The only function of the world component is to make empirical input data available to180

the rest of the model. As these data were previously validated by their respective creators181

(Table 1), we only verify the technical correctness of this component as described above,182

without further validation steps.183

The function of the farm component is to carry out the crop rotation and sow, harvest,184

and mow fields at the appropriate time. This was verified using visual inspection of185

field-level summary statistics over time.186

The crop component is intended to produce reasonable estimates of crop growth and187

phenology under the given environmental conditions. We used publicly available data188

sets of district-level yield and phenology data from our study regions to calibrate the189

AquaCrop model, then used cross-validation to test the robustness of the calculated190

parameters. The ALMaSS crop model is currently only used to generate grass growth191

patterns, the sufficient correctness of which we confirmed visually. For more details on192

the calibration and validation of the crop component, see Appendix B.193

2.2.2 Population dynamics194

As is common in individual-based models, we were most concerned with the structural195

validation of our target species models, as our aim was to predict (at least qualitative)196

population dynamics from individual-level mechanisms (Troost et al., 2023). For this, we197

used pattern-oriented modelling, identifying for each species a set of patterns at different198

spatial, temporal, and organisational scales and comparing model output to known values199

derived from literature (Grimm & Railsback, 2011).200

9



Data Description Purpose Source
Land cover Satellite-derived raster map of six

different land cover classes (10m
resolution, year 2020).

input mundialis
GmbH & Co.

KG
Field

geometries
Shape files of all fields registered in
the EU Land Parcel Information

System (LPIS; in Germany:
InVeKoS).

input Thüringer
Landesamt
für Land-
wirtschaft

und
Ländlichen

Raum
Soil types Shape file map of soil types (i.e.

different mixtures of clay, silt, and
sand).

input Bundesanstalt
für Geowis-
senschaften

und Rohstoffe
Weather Daily observations of standard

meteorological variables from the
closest weather station.

input Deutscher
Wetterdienst

Crop
phenology

Annual observations of the onset
of growth stages (e.g. emergence,
flowering, harvest) in different

plant species.

calibration /
validation

Deutscher
Wetterdienst

Crop yield Annual district-level average yields
per hectare.

calibration /
validation

Thüringer
Landesamt
für Statistik

Plant growth Measurements of crop parameters
(e.g. height, biomass) during the

course of the growing season.

calibration Reichenau
et al. (2020)

Butterfly
monitoring

Population trends of butterflies in
Germany.

validation Kühn et al.
(2024)

Common bird
monitoring

Population trends of common
breeding birds in Germany.

validation Busch et al.
(2020)

Table 1: Data sets used as input, for calibration, or for validation. All data are publicly
available for our study regions. For links to the sources, see the user manual in
Appendix A.

10



For the skylarks, we looked at three different patterns. The first was the size of territories,201

which were generated procedurally in the model, and are known to vary depending on202

the landscape. The second was the choice of nesting habitat, which depends on the crops203

available and changes over the course of the breeding season. The third was the ecological204

trap described above, where the agricultural switch from spring to winter grains pushes205

skylark nest-building onto frequently-mown grassland, resulting in population declines.206

To study these patterns, we set up a simulation experiment with four different scenarios,207

varying the grassland usage intensity (20% or 80% intensive grassland) and the use of208

winter-sown crops (spring wheat and spring barley or winter wheat and winter barley in209

the crop rotation). Each scenario was run for each region from 2011–2020.210

For the marbled white, we considered several “simple” patterns: the number of eggs laid211

in a female’s lifetime, the proportion of time spent moving through different habitats, the212

local population density, and the lifetime displacement distance. In addition, we selected213

a “complex” pattern, namely the population development as recorded by the German214

butterfly monitoring scheme (Kühn et al., 2024). This shows a strongly fluctuating, but215

overall decreasing trend from 2006 to 2015, followed by an increasing trend from 2016216

to 2023. The fluctuations in the first period correlate with the previous year’s mean217

summer temperature. These patterns we tested by running five replicate simulations in218

each region from 2006–2022.219

Alongside this pattern-oriented modelling, we used exploratory simulations to test the220

response of the model to different parameter values and combinations, and to identify221

particularly sensitive parameters (see Appendix C for an overview of parameters and222

values tested).223

3 Results224

The model output shows how the internal landscape changes over time due to farm225

management and crop growth. Fig. 4 shows this at a landscape perspective, tracking226

how the proportion of different crops changes over the course of several years, and how227

the average plant height of each crop changes over the growing seasons. Fig. 5 gives228

a field-level perspective, showing the development of the other four AquaCrop output229

variables (canopy cover, biomass, phenological stage, yield) from sowing to harvest. Fig.230

6 shows validation of the AquaCrop model for silage maize, depicting goodness-of-fit of231

four output variables against empirical data from the three study regions. (For more232

details on the crop model validation, see Appendix B.)233

11



Figure 4: Field and crop dynamics over time, simulated in Jena from 2020–2022. Above:
proportion of agricultural land sown with each crop type. Below: average plant
height of crop. “No growth” refers to fields that are not currently sown with
any crop (at the start of the simulation or between harvest and re-sowing).

12



Canopy cover

%

Yield

to
nn
es
/h
a

Stage

Biomass

to
nn
es
/h
a

S
ta
ge

Figure 5: Output variables of the AquaCrop model, showing a simulation of winter wheat
in the Jena region. Blue lines show model output over time. Dashed lines show
empirically observed phenological dates from the region (green: emergence,
yellow: flowering, red: harvest).

13



emergence (days after sowing) flowering begin (days after sowing)

yield (tonnes/ha)harvest (days after sowing)

Figure 6: Output of the AquaCrop model compared to empirical data from the study
regions, shown here for silage maize. The red line is the x = y line, i.e. points
above the line are overestimated, points below the line underestimated by the
model.

14



The skylark model conforms well to the patterns against which we tested it. Territory234

sizes in the most intensive scenario ranged from 0.38–24.76 ha, with a median of 1.09 ha235

and an interquartile range of 0.81–1.56 ha. This compares favourably with the observa-236

tions listed by Glutz von Blotzheim and Bauer (1985), which range between 0.17–46 ha,237

and are most commonly around 0.5–1.5 ha. We also observe the effect that territory sizes238

in extensively used farmland are smaller—the scenario with the lowest land use intensity239

gave an interquartile range of 0.74–1.26 ha and a median of 0.96 ha.240

Likewise, the choice of nesting habitat over the breeding season (Fig. 7) closely follows241

the description of Jenny (1990). In his observations, as in our model, grassland is always242

a favoured habitat; winter barley is almost never used, as it grows too quickly; winter243

wheat still occurs in the early breading season, but not in the late; while maize is more244

used in the later season. Overall, there is a decrease of nesting attempts towards the245

later breeding season, associated with a loss of suitable habitat.246

The ecological trap of agricultural intensification is also very visible (Fig. 8). Across247

regions, skylark population grow in the scenario with mostly extensive grassland usage248

and spring-sown crops, while they decline in the scenario with intensive grassland usage249

and winter-sown crops. Scenarios with either intensive grassland usage or winter crops250

show intermediate but landscape-dependent trends: skylarks in the almost entirely arable251

Thuringian Basin respond very strongly to spring or winter crops, but little to grassland252

usage intensity, while the response is more mixed in the other regions.253

For the marbled white, the collected lifetime variables also correspond well to known254

literature values (Fig. 9). Fecundity peaks at around 120 eggs/female, which is in the255

range given by Reinhardt et al. (2007). Lifetime displacement is usually below 1 km, but256

can reach up to 8 km, which agrees with the results of capture-mark-recapture studies257

(e.g. Vandewoestijne et al., 2004). In terms of movement, unmanaged and extensively258

managed grassland are the primary habitats used, although some dispersal movement259

through other habitat types also takes place (cf. Baguette et al., 2000; Lenda & Skórka,260

2010).261

In terms of the population development, the marbled white model replicates the Germany-262

wide trends to a certain extent (Fig. 10). As with the monitoring data, the model data263

too show an initial period of population decline, followed by stabilisation and (partly)264

increase. The effect of the weather can also be seen, with pronounced population peaks265

happening especially in 2007 and 2021, when a hot summer was followed by a cold one.266

However, the regionally-simulated populations do not follow the national monitoring data267

in detail: the year-to-year fluctuations are less pronounced in the model, and the degree268

15



July
June

M
a

y

extensive grassland fallow intensive grassland maize winter barley winter rape winter wheat

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

Habitat

F
re

q
u

e
n

cy
 o

f 
n

e
st

in
g

Figure 7: Habitat usage by nesting skylarks over the summer months. Data from a 10-
year simulation run (2011-2020) in Jena under the intensive grassland / winter
grain scenario (cf. Fig. 8).

16



Extensive grassland Intensive grassland

S
p

rin
g

 g
ra

in
s

W
in

te
r g

ra
in

s

Eichsfeld Jena Thüringer Becken Eichsfeld Jena Thüringer Becken

-50

-25

0

25

-50

-25

0

25

Region

P
o

p
u

la
tio

n
 t
re

n
d

 (
%

)

Figure 8: Skylark population trends in four different land-use scenarios in the three model
regions. Trends are given as percentage increase/decrease after 10 simulated
years (2011-2020).

17



E
gg

s/
F

em
al

e

0

50

100

Fecundity

In
di

vi
du

al
s/

H
ec

ta
re

0

100

200

300

400

Population density

K
ilo

m
et

er
s

0

5

10

Lifetime displacement

Unmanaged grassland Extensive grassland Fallow Intensive grassland Arable Other

%
 m

ov
ed

 th
ro

ug
h 

ha
bi

ta
t

0

50

100

Habitat use

Figure 9: Pattern-testing for the marbled white model, showing several lifetime variables.
Top left: Number of eggs laid by each female. Top center: Population density
experienced by each individual (i.e. number of conspecifics in the surrounding
hectare). Top right: Distance of the location at death from the location at birth
for each individual. Bottom: Proportion of movement steps taken in different
habitat types.

of stabilisation or recovery after 2015 diverges quite widely. Indeed, differences in the269

weather in the three regions (Eichsfeld is coolest, Jena warmest) lead to quite different270

population trajectories.271

4 Discussion272

4.1 Model purpose and design principles273

Persefone.jl’s primary purpose is to evaluate the impact of agricultural practice on wild-274

life population dynamics in Germany. To achieve this, it simulates the spatiotemporal275

dynamics of agricultural landscapes together with the behaviour and life cycle of target276

animal species. The intention is to use the combined model for ex ante and ex post277

assessments of changes in agricultural policy, but also to make it available as a software278

platform for agroecological research. To make these use cases feasible, also for other279

researchers, we have put great effort into making Persefone.jl reliable and extendable.280

Reliability refers to both the scientific and technical trustworthiness of the model software281

(Vedder et al., 2021). We seek to achieve scientific credibility through the avoidance of282

18



0

2

4

6

2010 2015 2020

Year

R
e

la
tiv

e
 p

o
p

u
la

tio
n

 s
iz

e

Region

Eichsfeld

Jena

Thüringer Becken

TMD

Figure 10: Marbled white population development in the three model regions from 2006
to 2022, compared with the national trend collected by the German butterfly
monitoring scheme (TMD). Each line shows mean population size of five rep-
licate simulation runs, relative to the population size in 2006; error bars show
maximum/minimum values. TMD data from Kühn et al. (2024).

19



unnecessary complexity, the use of empirical data and knowledge wherever possible, and283

the continuous application of pattern-oriented modelling (cf. Grimm et al., 2014). To284

maintain technical reliability, we provide extensive documentation along with the open285

source code, and conduct code reviews and apply unit and integration testing and to286

catch mistakes (Balaban et al., 2021; Ropella et al., 2002).287

Extensibility is part of the design of Persefone.jl in three directions. First, adding new288

regions to be simulated requires no code changes, merely the provision of the required289

map and weather input files. For Germany, all required data are publicly available, and290

the process required to import them into Persefone.jl is fully documented and partly291

automated. Second, adding new animal species can be done without changes to the292

model core, by adding a new species definition file that makes use of the existing interface293

functions in the animal component. To make these species definition files as clear and294

succinct as possible, we have used Julia’s macro system to create a custom domain-specific295

language for this purpose, documented in the manual (Holst & Belete, 2015). Third, both296

the farm and the crop component are designed to be replaceable by equivalent modules.297

As the communication between the model components takes place using defined function298

interfaces, new component implementations can be slotted in to replace or augment the299

current ones, as demonstrated by the two different crop models in use at the moment.300

4.2 Model evaluation301

Persefone.jl is a complex model with many interacting parts. Still, as the results above302

show, these parts both individually and together can emulate many dynamics of agri-303

cultural landscapes and ecosystems. The landscapes simulated by the model are based304

on high-resolution maps of real regions, whose temporal dynamics are captured using305

simulated farm management based on typical crop rotations. We use an established306

crop-growth model (AquaCrop) to track how different habitat parameters (such as plant307

height and canopy cover) change over time, and calibrated it to our study regions for308

maximum accuracy. The remaining uncertainty in the output is in line with what is to309

be expected from comparable models (Kostková et al., 2021).310

Pattern-oriented modelling shows that the animal models capture the relevant ecological311

mechanisms well. In particular the skylark model clearly replicates three well-known312

patterns, each of which requires the interplay of multiple ecological processes, without313

having needed extensive calibration and parameter testing. The results of the simulation314

of different land use scenarios show that Persefone.jl can indeed be used to evaluate the315

impact of changes in agricultural management on species populations, and that its output316

20



aligns with empirical observations. The marbled white model also captures most of its317

patterns well, and qualitatively replicates the observed population trend over the past318

20 years. However, the strong quantitative divergence between the regions suggest that319

there are still secondary influences on the population dynamics which this species model320

does not yet capture.321

4.3 Limitations322

We are well aware that Persefone.jl has a number of important limitations; some fun-323

damental, some practical. A fundamental and unremovable limitation concerns the un-324

certainty of the model output, due to the inherent complexity and stochasticity of eco-325

systems. While we have integrated the best available knowledge on our target species’326

ecology into our model, and the validation shows that the model can reproduce multiple327

empirical patterns, (agro-)ecological dynamics are known to be highly context sensitive328

(e.g. le Clech et al., 2024). Thus, our model output is not to be understood as precise329

predictions, but rather as an expected trend, given current knowledge.330

Another fundamental limitation, which may or may not be remediable in future, has to331

do with the land cover map. We used the highest-resolution map that is available for all332

of Germany (mundialis GmbH & Co. KG, 2021), to ensure the feasibility of simulating333

multiple regions. However, its spatial resolution of 10 m is still too coarse for a number of334

linear landscape features (such as flowering strips), which are ecologically very important.335

In addition, it only provides six land cover classes (Fig. 2), making the differentiation336

between ecologically distinct types of semi-natural habitat effectively impossible (e.g.337

calcareous grassland vs. peat land, hedgerow vs. tree line). For our current purposes,338

we consider the map to be good enough and the best available, but we are looking into339

possible ways to address these shortcomings in future releases.340

A current limitation that will be improved in future is the minimal implementation of the341

farm model. At the moment, the only farm management actions we simulate are sowing,342

harvest, and mowing, while crop rotations are fixed. This will be expanded significantly343

in a follow-up research project, to include not only more management actions but also344

dynamic, agent-based farmer decision making.345

4.4 Contribution to the current research context346

A recent review showed that many existing individual-based models of biodiversity in347

agricultural landscapes are very conceptual in their approach and often don’t consider348

21



the effects of agricultural management (Vedder et al., in review). With Persefone.jl, we349

wanted to build an applied model that simulates real species in real landscapes, and350

considers both the direct and indirect impacts of agricultural practice.351

The most similar model available today is ALMaSS, which has a long track record of use352

in agroecological research (e.g. Topping et al., 2003; Topping et al., 2019). While the353

aim and design of Persefone.jl and ALMaSS are quite similar (and we make use of their354

vegetation submodel), we understand our model to be a complement to ALMaSS in three355

ways. First, it is important for a research community to have multiple models studying356

the same question, as this leads to more robust understanding and predictions (Hooftman357

et al., 2022; Rosenzweig et al., 2013). Second, our modelling approaches differ: while AL-358

MaSS embraces complexity and consistently chooses the highest-realism implementation359

option possible, Persefone.jl pursues a policy of minimum-necessary complexity, leaving360

out any details that are not significantly important to the modelling purpose. And third,361

Persefone.jl gives a much greater priority to ease of use, transferability, and extensibility,362

with the intention that the software can be used by researchers independent of our own363

group.364

Beyond the immediate modelling context, Persefone.jl contributes to agroecological re-365

search by drawing attention to the importance of temporal dynamics. While spatial366

composition and configuration have long been the focus of landscape ecology, temporal367

patterns and effects have received much less attention (Marrec et al., 2022). This is368

particularly critical in agroecosystems, where farm management creates regular disturb-369

ances and resource fluctuations in constantly changing landscapes (Vasseur et al., 2013).370

These dynamics are not visible on the annual land cover maps used for many ecological371

studies, and capturing them empirically is not trivial (Katna et al., 2023). Thanks to372

its high temporal and spatial resolution, Persefone.jl is well-placed as a tool to study the373

effects of these spatiotemporal dynamics on a range of animal species. In addition, its374

farm and crop components could be used in joint empirical-modelling studies as a way375

of interpolating the state of a landscape over the course of a year.376

4.5 Conclusion377

We present Persefone.jl, a process-based model of wildlife animal populations in dynamic378

agricultural landscapes. By simulating farm management, crop growth, and animal beha-379

viour, we capture both direct and indirect effects of agriculture on species’ demographics.380

Pattern-oriented modelling confirms that our mechanistic approach can reproduce empir-381

ically observed phenomena. We therefore make Persefone.jl available as a tool for policy382

22



evaluation and a platform for agroecological research.383

Acknowledgements384

The authors warmly thank the other members of the CAP4GI consortium for their excellent collab-385

oration throughout the project. DV, MM, and GDI are funded through the project CAP4GI by the386

Federal Ministry of Education and Research (BMBF), within the framework of the Strategy, Research387

for Sustainability (FONA, www.fona.de/en) as part of its Social-Ecological Research funding priority,388

funding no. 01UT2102A. Responsibility for the content of this publication lies with the authors. DV,389

MM, and GP gratefully acknowledge the support of iDiv, funded by the German Research Foundation390

(DFG–FZT 118, 202548816).391

Data availability392

The Persefone.jl source code and relevant input files are archived on Zenodo (https://doi.org/10.5281/zenodo.16993215).393

The development version is available at https://git.idiv.de/persefone/persefone-model.394

Author contributions (CRediT)395

DV: Conceptualization, Formal Analysis, Investigation, Methodology, Software, Visualization, Writing396

– original draft, Writing – review & editing; MCM: Formal Analysis, Investigation, Software, Writing397

– review & editing; GDI: Formal Analysis, Investigation, Software, Writing – review & editing; GP:398

Conceptualization, Methodology, Funding acquisition, Supervision, Writing – review & editing399

References400

Baguette, M., Petit, S., & Quéva, F. (2000). Population spatial structure and migration401

of three butterfly species within the same habitat network: Consequences for402

conservation. Journal of Applied Ecology, 37 (1), 100–108. https://doi.org/10.403

1046/j.1365-2664.2000.00478.x404

Balaban, G., Grytten, I., Rand, K. D., Scheffer, L., & Sandve, G. K. (2021). Ten simple405

rules for quick and dirty scientific programming. PLOS Computational Biology,406

17 (3), e1008549. https://doi.org/10.1371/journal.pcbi.1008549407

Batáry, P., Dicks, L. V., Kleijn, D., & Sutherland, W. J. (2015). The role of agri-408

environment schemes in conservation and environmental management. Conser-409

vation Biology, 29 (4), 1006–1016. https://doi.org/10.1111/cobi.12536410

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A Fresh Approach411

to Numerical Computing. SIAM Review, 59 (1), 65–98. https://doi.org/10.1137/412

141000671413

23

https://doi.org/10.5281/zenodo.16993215
https://git.idiv.de/persefone/persefone-model
https://doi.org/10.1046/j.1365-2664.2000.00478.x
https://doi.org/10.1046/j.1365-2664.2000.00478.x
https://doi.org/10.1046/j.1365-2664.2000.00478.x
https://doi.org/10.1371/journal.pcbi.1008549
https://doi.org/10.1111/cobi.12536
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671


Busch, M., Katzenberger, J., Trautmann, S., Gerlach, B., Dröschmeister, R., & Sudfeldt,414

C. (2020). Drivers of population change in common farmland birds in Germany.415

Bird Conservation International, 30 (3), 335–354. https : / / doi . org / 10 . 1017 /416

S0959270919000480417

Díaz Iturry, G., Matthies, M. C., Pe’er, G., & Vedder, D. (2025). AquaCrop.jl: A Process-418

Based Model of Crop Growth. Journal of Open Source Software, 10 (110), 7944.419

https://doi.org/10.21105/joss.07944420

Donald, P. F., Evans, A. D., Muirhead, L. B., Buckingham, D. L., Kirby, W. B., &421

Schmitt, S. I. A. (2002). Survival rates, causes of failure and productivity of422

Skylark Alauda arvensis nests on lowland farmland. Ibis, 144 (4), 652–664. https:423

//doi.org/10.1046/j.1474-919X.2002.00101.x424

Glutz von Blotzheim, U. N., & Bauer, K. M. (Eds.). (1985). Handbuch der Vögel Mit-425

teleuropas (10,1 : Passeriformes ; T. 1); [Alaudidae - Hirundinidae]. AULA-Verl.426

Grimm, V., Augusiak, J., Focks, A., Frank, B. M., Gabsi, F., Johnston, A. S., Liu, C.,427

Martin, B. T., Meli, M., Radchuk, V., Thorbek, P., & Railsback, S. F. (2014).428

Towards better modelling and decision support: Documenting model develop-429

ment, testing, and analysis using TRACE. Ecological Modelling, 280, 129–139.430

https://doi.org/10.1016/j.ecolmodel.2014.01.018431

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard,432

J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C.,433

Mooij, W. M., Müller, B., Pe’er, G., Piou, C., Railsback, S. F., Robbins, A. M.,434

. . . DeAngelis, D. L. (2006). A standard protocol for describing individual-based435

and agent-based models. Ecological Modelling, 198 (1–2), 115–126. https://doi.436

org/10.1016/j.ecolmodel.2006.04.023437

Grimm, V., & Railsback, S. F. (2011). Pattern-oriented modelling: A ‘multi-scope’ for438

predictive systems ecology. Philosophical Transactions of the Royal Society B,439

367 (1586), 298–310. https://doi.org/10.1098/rstb.2011.0180440

Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C., DeAngelis, D. L.,441

Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A. S. A., Milles, A.,442

Nabe-Nielsen, J., Polhill, J. G., Radchuk, V., Rohwäder, M.-S., Stillman, R. A.,443

Thiele, J. C., & Ayllón, D. (2020). The ODD Protocol for Describing Agent-Based444

and Other Simulation Models: A Second Update to Improve Clarity, Replication,445

and Structural Realism. Journal of Artificial Societies and Social Simulation,446

23 (2), 7. https://doi.org/10.18564/jasss.4259447

Guillem, E., Murray-Rust, D., Robinson, D., Barnes, A., & Rounsevell, M. (2015). Mod-448

elling farmer decision-making to anticipate tradeoffs between provisioning eco-449

24

https://doi.org/10.1017/S0959270919000480
https://doi.org/10.1017/S0959270919000480
https://doi.org/10.1017/S0959270919000480
https://doi.org/10.21105/joss.07944
https://doi.org/10.1046/j.1474-919X.2002.00101.x
https://doi.org/10.1046/j.1474-919X.2002.00101.x
https://doi.org/10.1046/j.1474-919X.2002.00101.x
https://doi.org/10.1016/j.ecolmodel.2014.01.018
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1098/rstb.2011.0180
https://doi.org/10.18564/jasss.4259


system services and biodiversity. Agricultural Systems, 137, 12–23. https://doi.450

org/10.1016/j.agsy.2015.03.006451

Holst, N., & Belete, G. F. (2015). Domain-specific languages for ecological modelling.452

Ecological Informatics, 27, 26–38. https://doi.org/10.1016/j.ecoinf.2015.02.005453

Hölting, L., Busse, M., Bülow, S., Engler, J. O., Hagemann, N., Joormann, I., Kernecker,454

M. L., Larondelle, N., Sturm, A., Turkelboom, F., Wätzold, F., & Cord, A. F.455

(2022). Co-design: Working with farmers in Europe to halt the loss of biological456

diversity. Ecological Solutions and Evidence, 3 (3). https://doi.org/10.1002/2688-457

8319.12169458

Hooftman, D. A., Bullock, J. M., Jones, L., Eigenbrod, F., Barredo, J. I., Forrest, M.,459

Kindermann, G., Thomas, A., & Willcock, S. (2022). Reducing uncertainty in460

ecosystem service modelling through weighted ensembles. Ecosystem Services,461

53, 101398. https://doi.org/10.1016/j.ecoser.2021.101398462

Jenny, M. (1990). Territorialität und Brutbiologie der FeldlercheAlauda arvensis in einer463

intensiv genutzten Agrarlandschaft. Journal für Ornithologie, 131 (3), 241–265.464

https://doi.org/10.1007/BF01640998465

Katna, A., Thaker, M., & Vanak, A. T. (2023). How fast do landscapes change? A work-466

flow to analyze temporal changes in human-dominated landscapes. Landscape467

Ecology, 38 (8), 2145–2155. https://doi.org/10.1007/s10980-023-01686-y468

Kostková, M., Hlavinka, P., Pohanková, E., Kersebaum, K. C., Nendel, C., Gobin, A.,469

Olesen, J. E., Ferrise, R., Dibari, C., Takáč, J., Topaj, A., Medvedev, S., Hoff-470

mann, M. P., Stella, T., Balek, J., Ruiz-Ramos, M., Rodríguez, A., Hoogenboom,471

G., Shelia, V., . . . Trnka, M. (2021). Performance of 13 crop simulation mod-472

els and their ensemble for simulating four field crops in Central Europe. The473

Journal of Agricultural Science, 159 (1–2), 69–89. https : / /doi . org / 10 . 1017/474

S0021859621000216475

Kühn, E., Musche, M., Harpke, A., Feldmann, R., & Settele, J. (2024). Tagfalter-Monitoring476

Deutschland: Auswertung 2005-2023. Oedippus, 42, 12–45. https://www.ufz.de/477

export/data/6/298835_298188_Oedippus_42_klein.pdf478

le Clech, S., van Bussel, L. G. J., Lof, M. E., de Knegt, B., Szentirmai, I., & Andersen,479

E. (2024). Effects of linear landscape elements on multiple ecosystem services480

in contrasting agricultural landscapes. Ecosystem Services, 67, 101616. https :481

//doi.org/10.1016/j.ecoser.2024.101616482

Lenda, M., & Skórka, P. (2010). Patch occupancy, number of individuals and popula-483

tion density of the Marbled White in a changing agricultural landscape. Acta484

Oecologica, 36 (5), 497–506. https://doi.org/10.1016/j.actao.2010.07.002485

25

https://doi.org/10.1016/j.agsy.2015.03.006
https://doi.org/10.1016/j.agsy.2015.03.006
https://doi.org/10.1016/j.agsy.2015.03.006
https://doi.org/10.1016/j.ecoinf.2015.02.005
https://doi.org/10.1002/2688-8319.12169
https://doi.org/10.1002/2688-8319.12169
https://doi.org/10.1002/2688-8319.12169
https://doi.org/10.1016/j.ecoser.2021.101398
https://doi.org/10.1007/BF01640998
https://doi.org/10.1007/s10980-023-01686-y
https://doi.org/10.1017/S0021859621000216
https://doi.org/10.1017/S0021859621000216
https://doi.org/10.1017/S0021859621000216
https://www.ufz.de/export/data/6/298835_298188_Oedippus_42_klein.pdf
https://www.ufz.de/export/data/6/298835_298188_Oedippus_42_klein.pdf
https://www.ufz.de/export/data/6/298835_298188_Oedippus_42_klein.pdf
https://doi.org/10.1016/j.ecoser.2024.101616
https://doi.org/10.1016/j.ecoser.2024.101616
https://doi.org/10.1016/j.ecoser.2024.101616
https://doi.org/10.1016/j.actao.2010.07.002


Marrec, R., Brusse, T., & Caro, G. (2022). Biodiversity-friendly agricultural landscapes486

– integrating farming practices and spatiotemporal dynamics. Trends in Ecology487

& Evolution, 37 (9), 731–733. https://doi.org/10.1016/j.tree.2022.05.004488

Mialyk, O., Schyns, J. F., Booij, M. J., Su, H., Hogeboom, R. J., & Berger, M. (2024).489

Water footprints and crop water use of 175 individual crops for 1990–2019 simu-490

lated with a global crop model. Scientific Data, 11 (1), 206. https://doi.org/10.491

1038/s41597-024-03051-3492

mundialis GmbH & Co. KG. (2021). Landcover classification map of Germany 2020493

based on Sentinel-2 data (Geoscientific Information). Geoscientific Information.494

Retrieved August 5, 2025, from https://data.mundialis.de/geonetwork/srv/eng/495

catalog.search#/metadata/9246503f-6adf-460b-a31e-73a649182d07496

Pe’er, G., Dicks, L. V., Visconti, P., Arlettaz, R., Báldi, A., Benton, T. G., Collins, S.,497

Dieterich, M., Gregory, R. D., Hartig, F., Henle, K., Hobson, P. R., Kleijn, D.,498

Neumann, R. K., Robijns, T., Schmidt, J., Shwartz, A., Sutherland, W. J., Turbé,499

A., . . . Scott, A. V. (2014). EU agricultural reform fails on biodiversity. Science,500

344 (6188), 1090–1092. https://doi.org/10.1126/science.1253425501

Pe’er, G., Bonn, A., Bruelheide, H., Dieker, P., Eisenhauer, N., Feindt, P. H., Hagedorn,502

G., Hansjürgens, B., Herzon, I., Lomba, Â., Marquard, E., Moreira, F., Nitsch,503

H., Oppermann, R., Perino, A., Röder, N., Schleyer, C., Schindler, S., Wolf, C.,504

. . . Lakner, S. (2020). Action needed for the EU Common Agricultural Policy505

to address sustainability challenges (K. Gaston, Ed.). People and Nature, 2 (2),506

305–316. https://doi.org/10.1002/pan3.10080507

Poulsen, J. G., Sotherton, N. W., & Aebischer, N. J. (1998). Comparative nesting and508

feeding ecology of skylarks Alauda arvensis on arable farmland in southern Eng-509

land with special reference to set-aside. Journal of Applied Ecology, 35 (1), 131–510

147. https://doi.org/10.1046/j.1365-2664.1998.00289.x511

Pywell, R. F., Heard, M. S., Bradbury, R. B., Hinsley, S., Nowakowski, M., Walker, K. J.,512

& Bullock, J. M. (2012). Wildlife-friendly farming benefits rare birds, bees and513

plants. Biology Letters, 8 (5), 772–775. https://doi.org/10.1098/rsbl.2012.0367514

Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). AquaCrop—The FAO Crop515

Model to Simulate Yield Response to Water: II. Main Algorithms and Software516

Description. Agronomy Journal, 101 (3), 438–447. https : / /doi . org / 10 . 2134/517

agronj2008.0140s518

Reichenau, T. G., Korres, W., Schmidt, M., Graf, A., Welp, G., Meyer, N., Stadler, A.,519

Brogi, C., & Schneider, K. (2020). A comprehensive dataset of vegetation states,520

fluxes of matter and energy, weather, agricultural management, and soil prop-521

26

https://doi.org/10.1016/j.tree.2022.05.004
https://doi.org/10.1038/s41597-024-03051-3
https://doi.org/10.1038/s41597-024-03051-3
https://doi.org/10.1038/s41597-024-03051-3
https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/9246503f-6adf-460b-a31e-73a649182d07
https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/9246503f-6adf-460b-a31e-73a649182d07
https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/9246503f-6adf-460b-a31e-73a649182d07
https://doi.org/10.1126/science.1253425
https://doi.org/10.1002/pan3.10080
https://doi.org/10.1046/j.1365-2664.1998.00289.x
https://doi.org/10.1098/rsbl.2012.0367
https://doi.org/10.2134/agronj2008.0140s
https://doi.org/10.2134/agronj2008.0140s
https://doi.org/10.2134/agronj2008.0140s


erties from intensively monitored crop sites in western Germany. Earth System522

Science Data, 12 (4), 2333–2364. https://doi.org/10.5194/essd-12-2333-2020523

Reidsma, P., Janssen, S., Jansen, J., & van Ittersum, M. K. (2018). On the development524

and use of farm models for policy impact assessment in the European Union – A525

review. Agricultural Systems, 159, 111–125. https://doi.org/10.1016/j.agsy.2017.526

10.012527

Reinhardt, R., Sbieschne, H., Settele, J., Fischer, U., & Fiedler, G. (2007). Tagfalter528

von Sachsen (B. Klausnitzer & R. Reinhardt, typeredactors). Entomofauna529

Saxonica.530

Reinhardt, R., Harpke, A., Caspari, S., Dolek, M., Kühn, E., Musche, M., Trusch, R.,531

Wiemers, M., & Settele, J. (2021). Verbreitungsatlas der Tagfalter und Widder-532

chen Deutschlands (1., korrigierter Nachdruck). Eugen Ulmer KG.533

Rigal, S., Dakos, V., Alonso, H., Aunin, š, A., Benkő, Z., Brotons, L., Chodkiewicz, T.,534

Chylarecki, P., de Carli, E., del Moral, J. C., Domşa, C., Escandell, V., Fontaine,535

B., Foppen, R., Gregory, R., Harris, S., Herrando, S., Husby, M., Ieronymidou,536

C., . . . Devictor, V. (2023). Farmland practices are driving bird population de-537

cline across Europe. Proceedings of the National Academy of Sciences, 120 (21),538

e2216573120. https://doi.org/10.1073/pnas.2216573120539

Ropella, G. E., Railsback, S. F., & Jackson, S. K. (2002). Software Engineering Consid-540

erations for Individual-Based Models. Natural Resource Modeling, 15 (1), 5–22.541

https://doi.org/10.1111/j.1939-7445.2002.tb00077.x542

Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P.,543

Antle, J. M., Nelson, G. C., Porter, C., Janssen, S., Asseng, S., Basso, B., Ewert,544

F., Wallach, D., Baigorria, G., & Winter, J. M. (2013). The Agricultural Model545

Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies.546

Agricultural and Forest Meteorology, 170, 166–182. https://doi.org/10.1016/j.547

agrformet.2012.09.011548

Roy, D. B., Rothery, P., Moss, D., Pollard, E., & Thomas, J. A. (2001). Butterfly numbers549

and weather: Predicting historical trends in abundance and the future effects of550

climate change. Journal of Animal Ecology, 70 (2), 201–217. https://doi.org/10.551

1111/j.1365-2656.2001.00480.x552

Steduto, P., Hsiao, T. C., Raes, D., & Fereres, E. (2009). AquaCrop—The FAO Crop553

Model to Simulate Yield Response to Water: I. Concepts and Underlying Prin-554

ciples. Agronomy Journal, 101 (3), 426–437. https://doi.org/10.2134/agronj2008.555

0139s556

27

https://doi.org/10.5194/essd-12-2333-2020
https://doi.org/10.1016/j.agsy.2017.10.012
https://doi.org/10.1016/j.agsy.2017.10.012
https://doi.org/10.1016/j.agsy.2017.10.012
https://doi.org/10.1073/pnas.2216573120
https://doi.org/10.1111/j.1939-7445.2002.tb00077.x
https://doi.org/10.1016/j.agrformet.2012.09.011
https://doi.org/10.1016/j.agrformet.2012.09.011
https://doi.org/10.1016/j.agrformet.2012.09.011
https://doi.org/10.1111/j.1365-2656.2001.00480.x
https://doi.org/10.1111/j.1365-2656.2001.00480.x
https://doi.org/10.1111/j.1365-2656.2001.00480.x
https://doi.org/10.2134/agronj2008.0139s
https://doi.org/10.2134/agronj2008.0139s
https://doi.org/10.2134/agronj2008.0139s


Sun, Z., Lorscheid, I., Millington, J. D., Lauf, S., Magliocca, N. R., Groeneveld, J., Balbi,557

S., Nolzen, H., Müller, B., Schulze, J., & Buchmann, C. M. (2016). Simple or558

complicated agent-based models? A complicated issue. Environmental Modelling559

& Software, 86, 56–67. https://doi.org/10.1016/j.envsoft.2016.09.006560

Topping, C. J., Hansen, T. S., Jensen, T. S., Jepsen, J. U., Nikolajsen, F., & Odderskær,561

P. (2003). ALMaSS, an agent-based model for animals in temperate European562

landscapes. Ecological Modelling, 167 (1), 65–82. https://doi.org/10.1016/S0304-563

3800(03)00173-X564

Topping, C. J., Dalby, L., & Valdez, J. W. (2019). Landscape-scale simulations as a tool in565

multi-criteria decision making to support agri-environment schemes. Agricultural566

Systems, 176, 102671. https://doi.org/10.1016/j.agsy.2019.102671567

Topping, C. J., & Duan, X. (2024). ALMaSS Landscape and Farming Simulation: Soft-568

ware classes and methods. Food and Ecological Systems Modelling Journal, 5,569

e121215. https://doi.org/10.3897/fmj.5.121215570

Troost, C., Huber, R., Bell, A. R., Van Delden, H., Filatova, T., Le, Q. B., Lippe, M.,571

Niamir, L., Polhill, J. G., Sun, Z., & Berger, T. (2023). How to keep it adequate: A572

protocol for ensuring validity in agent-based simulation. Environmental Modelling573

& Software, 159, 105559. https://doi.org/10.1016/j.envsoft.2022.105559574

Vandewoestijne, S., Martin, T., Liégeois, S., & Baguette, M. (2004). Dispersal, landscape575

occupancy and population structure in the butterfly Melanargia galathea. Basic576

and Applied Ecology, 5 (6), 581–591. https://doi.org/10.1016/j.baae.2004.07.004577

van Swaay, C. A. M., Dennis, E. B., Schmucki, R., Sevilleja, C., Balalaikins, M., Botham,578

M., Bourn, N., Brereton, T., Cancela, J., Carlisle, B., Chambers, P., Collins,579

S., Dopagne, C., Escobés, R., Feldmann, R., Fernández-García, J., Fontaine, B.,580

Gracianteparaluceta, A., Harrower, C., . . . Roy, D. B. (2019). The EU Butterfly581

Indicator for Grassland species: 1990-2017 (Technical Report). Butterfly Conser-582

vation Europe. www.butterfly-monitoring.net583

Vasseur, C., Joannon, A., Aviron, S., Burel, F., Meynard, J.-M., & Baudry, J. (2013).584

The cropping systems mosaic: How does the hidden heterogeneity of agricul-585

tural landscapes drive arthropod populations? Agriculture, Ecosystems & Envir-586

onment, 166, 3–14. https://doi.org/10.1016/j.agee.2012.08.013587

Vedder, D., Ankenbrand, M., & Cabral, J. S. (2021). Dealing with software complexity in588

individual-based models. Methods in Ecology and Evolution, 12 (12), 2324–2333.589

https://doi.org/10.1111/2041-210X.13716590

28

https://doi.org/10.1016/j.envsoft.2016.09.006
https://doi.org/10.1016/S0304-3800(03)00173-X
https://doi.org/10.1016/S0304-3800(03)00173-X
https://doi.org/10.1016/S0304-3800(03)00173-X
https://doi.org/10.1016/j.agsy.2019.102671
https://doi.org/10.3897/fmj.5.121215
https://doi.org/10.1016/j.envsoft.2022.105559
https://doi.org/10.1016/j.baae.2004.07.004
www.butterfly-monitoring.net
https://doi.org/10.1016/j.agee.2012.08.013
https://doi.org/10.1111/2041-210X.13716


Vedder, D., Fischer, S. M., Wiegand, K., & Pe’er, G. (2024). Developing multidisciplinary591

mechanistic models: Challenges and approaches. Socio-Environmental Systems592

Modelling, 6, 18701. https://doi.org/10.18174/sesmo.18701593

Velten, S., Kewes, C., Brudler, R., Marsden, K., & Theilen, G. (2023). Multi-level Ex-594

change Platforms for Biodiversity Conservation in Agricultural Landscapes. So-595

cial Innovations Journal, 22. Retrieved January 9, 2024, from https://socialinnovationsjournal.596

com/index.php/sij/article/view/6968597

Vickery, J. A., Bradbury, R. B., Henderson, I. G., Eaton, M. A., & Grice, P. V. (2004).598

The role of agri-environment schemes and farm management practices in reversing599

the decline of farmland birds in England. Biological Conservation, 119 (1), 19–39.600

https://doi.org/10.1016/j.biocon.2003.06.004601

29

https://doi.org/10.18174/sesmo.18701
https://socialinnovationsjournal.com/index.php/sij/article/view/6968
https://socialinnovationsjournal.com/index.php/sij/article/view/6968
https://socialinnovationsjournal.com/index.php/sij/article/view/6968
https://doi.org/10.1016/j.biocon.2003.06.004


Persefone.jl User Manual

Daniel Vedder, Marco C. Matthies, Guy Pe’er

http://persefone-model.eu

August 29, 2025

v0.8.0

http://persefone-model.eu


Contents

Contents i

I Introduction 1

II User guide 3

1 The Persefone.jl Package 4

1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Running from the command line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Running from within Julia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Graphical User Interface 6

2.1 Quick start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Running from the repo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Control bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Menu bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Configuration 9

III Developer guide 11

4 Developing Persefone 12

4.1 Setting up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Visual Studio Code on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Emacs on Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Development workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3 Important libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Revise.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Documenter.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Graphics and user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Unitful.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Source code architecture 15

6 Model components 16

i



CONTENTS ii

7 Important implementation details 17

The model object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Model configuration/the @param macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Output data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Farm events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Random numbers and logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8 Adapting Persefone 19

Changing the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Changing the region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Adding new animal species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Adding new crop species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Adding new farmer behaviour or a new crop model . . . . . . . . . . . . . . . . . . . . . . . . 19

Adding a new submodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Linking to another model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9 Maps and weather data 21

9.1 Land cover maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

9.2 Field ID maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9.3 Soil data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9.4 Weather data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

10 Defining new species 25

11 Changelog 27

11.1 [1.0.0] - in planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

11.2 [0.8.0] - 29-8-2025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Deprecated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

11.3 [0.7.1] - 17-6-2025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

11.4 [0.7.0] - 14-03-2025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Deprecated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

11.5 [0.6.1] - 14-03-2025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Deprecated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

11.6 [0.6.0] - 13-01-2025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Deprecated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



CONTENTS iii

11.7 [0.5.5] - 09-08-2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

11.8 [0.5.4] - 08-08-2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

11.9 [0.5.3] - 31-07-2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11.10[0.5.2] - 30-07-2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

11.11[0.5.1] - 13-06-2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

11.12[0.5.0] - 07-06-2024 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

11.13[0.4.1] - 2023-11-14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

11.14[0.4.0] - 2023-10-28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11.15[version] - unreleased . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

PLANNED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Added . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Changed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Deprecated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

IV Software API 36

12 Simulation 37

12.1 Persefone.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

12.2 simulation.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

12.3 landscape.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

12.4 weather.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

13 Input and Output 51

13.1 input.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

13.2 output.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

13.3 makieplots.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

14 Nature submodel 58



CONTENTS iv

14.1 nature.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

14.2 macros.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

14.3 individuals.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

14.4 populations.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

14.5 ecologicaldata.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

15 Species models 74

15.1 Skylark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

15.2 Marbled White . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

16 Crop submodel 79

16.1 farmplot.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

16.2 cropmodels.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

16.3 almass.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

16.4 aquacrop.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

17 Farm submodel 86

17.1 farm.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

17.2 farmdata.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

17.3 scenarios.jl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



Part I

Introduction

1



CONTENTS 2

Figure 0.1: Persefone.jl splash screen

Persefone.jl models agricultural practice and how it impacts animal species at a landscape scale. It includes a

farm submodel, a crop growth submodel, and individual-based models of multiple indicator species. Its aim is

to investigate how changes in farm operations (e.g. through policy changes in the CAP) influence biodiversity.

The model is open-source software available on Gitlab.

This documentation was last updated on 2025-08-29 for Persefone.jl v0.8.0 (commit 33b037c).

https://persefone-model.eu
https://persefone-model.eu
https://git.idiv.de/persefone/persefone-model
https://git.idiv.de/persefone/persefone-model/-/commit/33b037c


Part II

User guide

3



Chapter 1

The Persefone.jl Package

Available user interfaces

This page describes how to run Persefone.jl as a command line application or Julia package, which is

the default mode. To use the model with a graphical user interface, see here.

1.1 Installation

For more detailed installation instructions, see here.

Install the latest version of the Julia programming language (1.10+). The recommended editors are VSCode or

Emacs. To install the package dependencies, open a Julia REPL in this folder and run:

using Pkg

Pkg.activate(".")

Pkg.instantiate()

1.2 Running from the command line

This is the normal mode of operation. Simply execute run.jl in a terminal, typically like so (in Linux):

> julia run.jl <config>

where <config> specifies the configuration file to use. The recommendedworkflow is to copy scr/parameters.toml

to a location of your choice and edit the copy to suit your requirements. The adapted config file can then be

passed to run.jl. (If no configuration file is specified, Persefone will run with its default settings.)

The full list of commandline arguments is:

usage: run.jl [-s SEED] [-o OUTDIR] [-l LOGLEVEL] [--version] [-h]

[configfile]

positional arguments:

configfile name of the configuration file

optional arguments:

4

gui.md
developing.md
https://julialang.org/downloads/
https://www.julia-vscode.org/
https://www.emacswiki.org/emacs/JuliaProgrammingLanguage


CHAPTER 1. THE PERSEFONE.JL PACKAGE 5

-s, --seed SEED inital random seed (type: Int64)

-o, --outdir OUTDIR location of the output directory

-l, --loglevel LOGLEVEL

verbosity: "debug", "info", or "warn"

--version show version information and exit

-h, --help show this help message and exit

You can also use runparallel.jl to launch a simulation experiment using multiple processors (when param-

eter scanning), or runprofile.jl to profile the performance of the software.

To run the test suite, switch to the test directory and execute runtests.jl.

If you are on Linux or MacOS, you can also use make:

> make run # run a simulation with default values

> make test # run the test suite

> make profile # run and profile a default simulation

> make docs # build the documentation

> make release # create a release

1.3 Running from within Julia

To use the model from within Julia (either inside an interactive REPL or if you want to import it from your own

software), do the following:

using Pkg

Pkg.activate(".") # assuming you're in the Persefone root folder

using Persefone

You can then access all Persefone functions, such as simulate, initialise, stepsimulation!, simulate!, or

visualiseoutput. (See src/Persefone.jl for a list of exported functions.)

config.md
config.md


Chapter 2

Graphical User Interface

Due to the computational demands of simulating many individuals at high temporal and spatial resolution,

Persefone.jl is primarily designed to be run non-interactively on an HPC. However, to allow interactive ex-

ploratory simulations to be conducted while learning or developing the model, a graphical user interface is

available as an additional package: Persefone Desktop.

2.1 Quick start

Follow these instructions if you simply want to try out the software as a user. If you want to play around with

the source code, see the next section.

1. Download the Julia programming language and install it on your computer.

2. Start Julia. This should launch a commandline interface/REPL.

3. Execute the following commands (copy-and-paste should work):

using Pkg

Pkg.add(url="https://git.idiv.de/persefone/persefone-model.git")

Pkg.add(url="https://git.idiv.de/persefone/persefone-desktop.git")

using PersefoneDesktop

ENV["QSG_RENDER_LOOP"] = "basic" # only needed on Windows

launch()

2.2 Running from the repo

Follow these instructions if you want to get to grips with the source code. For more detailed installation

instructions, see here.

To install: Install Julia and download/clone the repository. Open a Julia REPL in the downloaded folder and

execute the following to install all dependencies:

using Pkg

Pkg.activate(".")

Pkg.instantiate()

6

https://git.idiv.de/persefone/persefone-desktop
https://julialang.org/downloads/
developing.md
https://julialang.org/downloads/
https://git.idiv.de/persefone/persefone-desktop


CHAPTER 2. GRAPHICAL USER INTERFACE 7

Figure 2.1: Persefone.jl Desktop screenshot

To run: Run desktop.jl. Alternatively, open a Julia REPL in this folder and run:

using Pkg

Pkg.activate(".")

using PersefoneDesktop

launch()

Note: Due to the necessary pre-compilation done by Julia, installing and launching the application can take

quite a long time. (Start-up time with desktop.jl is currently about 2 minutes.) We will reduce this as much

as possible in future releases.

2.3 User interface

The main window component is the map view. This displays a land cover map of the simulated region: dark

green are forests, light green grassland, yellow fields, red built-up areas and blue water. On it, little circles

show the position of individual animals, with different species denoted by different colours.



CHAPTER 2. GRAPHICAL USER INTERFACE 8

Control bar

• Back button: Rewind the simulation by one day.

• Step button: Advance the simulation by one day.

• Run button: Run the simulation until the button is pressed again or the end date is reached.

• Progress bar: Shows the percentage of time elapsed between the start and end dates of the simulation.

• Speed slider: Set the time delay between each simulation step when running.

• Date: Shows the simulation date currently displayed on the map.

Menu bar

Simulation:

• New simulation: Reset the model and start over.

• Configure simulation: Change the model settings (not yet implemented).

• Load saved state: Load a model object file saved by a previous simulation run.

• Save current state: Save a model object file for later use.

• Quit: Close the application.

Data:

• Show population graph: Show a window with a graph of population sizes over time in the current

model run.

• Save simulation output: Save the model output data to file (saves both raw CSV data and generated

graphics).

Help:

• Documentation: Open the Persefone.jl online documentation in a browser.

• Website: Open the main Persefone.jl website in a browser.

• About: Show a window with core information about the application.



Chapter 3

Configuration

Persefone requires three input files: a configuration file and twomap files. How to generate themap files is doc-

umented elsewhere. The configuration file defines parameter values and looks like this (see src/parameters.toml

for the default):

### Persefone.jl - a model of agricultural landscapes and ecosystems in Europe.

###

### This is the default configuration file for Persefone, containing all model parameters.

### The syntax is described here: https://toml.io/en/

[core]

configfile = "src/parameters.toml" # location of the configuration file

outdir = "results" # location and name of the output folder

overwrite = "ask" # overwrite the output directory? (true/false/"ask")

logoutput = "both" # log output to screen/file/none/both

csvoutput = true # save collected data in CSV files

visualise = true # generate result graphs

storedata = true # keep collected data in memory

figureformat = "pdf" # file format to use for graphical output

loglevel = "info" # verbosity level: "debug", "info", "warn"

seed = 2 # seed value for the RNG (0 -> random value)

startdate = 2020-01-01 # first day of the simulation

enddate = 2022-12-31 # last day of the simulation

[world]

region = "jena" # the region to simulate (must be a folder in `mapdirectory`)

mapdirectory = "data/regions" # the directory in which all geographic data are stored

mapresolution = 10 # map resolution in meters

landcovermap = "landcover.tif" # name of the landcover map in the map directory

farmfieldsmap = "fields.tif" # name of the field geometry map in the map directory

soiltypesmap = "soil.tif" # name of the soil type map in the map directory

weatherfile = "weather.csv" # name of the weather data file in the map directory

fixlandcover = true # correct misclassified landcover pixels

[farm]

farmmodel = "BasicFarmer" # which version of the farm model to use

setaside = 0.04 # proportion of farm area set aside as fallow

croprotation = ["winter wheat", "winter rape", "maize", "winter barley"]

extensivegrassland = 0.60 # proportion of grassland managed extensively

mowingthreshold = 25 # height in cm above which intensive grassland is mown

mowingperiod = 10 # number of days in which mowing may occur on extensive grassland

9

io.md
gis.md


CHAPTER 3. CONFIGURATION 10

fieldoutfreq = "daily" # output frequency for crop/field data, daily/monthly/yearly/end/never

scenarios = ["thuringian_fallows"] # management scenarios to apply

[nature]

targetspecies = ["MarbledWhite", "Skylark"] # list of target species to simulate

popoutfreq = "daily" # output frequency population-level data, daily/monthly/yearly/end/never

indoutfreq = "monthly" # output frequency individual-level data, daily/monthly/yearly/end/never

# MarbledWhite parameters - see src/nature/species/marbled_white.jl for details

marbledwhite_initialdensity = 1 # individuals/hectare at initialisation

marbledwhite_mintemp = 16

marbledwhite_maxtemp = 32

marbledwhite_rainactive = false

marbledwhite_movement = "random"

marbledwhite_maxstepsperday = 100

marbledwhite_selfavoidance = 0.9

marbledwhite_habitatpreference = 0.95

marbledwhite_maxindperpixel = inf

marbledwhite_maxeggsperday = 5

marbledwhite_oviposition = "linear"

marbledwhite_juvenilemortality = 0.96

marbledwhite_mowingmortality = 0.0

marbledwhite_recordeggstats = false # record habitat of eggs laid rather than movement?

# Skylark parameters - see src/nature/species/skylark.jl for details

skylark_initialdensity = 3 # ha/individual at initialisation

skylark_minimumterritory = 5000

skylark_limitterritory = false

skylark_movementrange = 500

skylark_mindistancetoedge = 60

skylark_maxforageheight = 50

skylark_maxforagecover = 70

skylark_minnestingheight = 15

skylark_maxnestingheight = 45

skylark_minnestingcover = 20

skylark_maxnestingcover = 100

skylark_offfieldnesting = true

skylark_firstyearmortality = 0.38

skylark_migrationmortality = 0.33

skylark_matefaithfulness = 0.5

[crop]

cropmodel = "almass,aquacrop" # crop growth model to use, "almass", "aquacrop", or "simple"

cropdirectory = "data/crops/almass/,data/crops/aquacrop/" # the directory storing all data files

for the selected crop model↪→

use_region_specific_params = true # use calibrated crop parameters, or the defaults?

Parameter scanning

You can set any parameter to a list of different values, e.g. seed = [1,2,3]. Persefone will then set

up and run multiple simulations, one for every possible combination of parameters that you entered

(i.e. do a full-factorial simulation experiment). Use runparallel.jl to have these simulations run on

multiple processors.



Part III

Developer guide

11



Chapter 4

Developing Persefone

4.1 Setting up

If you haven't worked with Julia before, here are detailed instructions for how to set up your development

environment. The main development is currently done on Linux (and as the primary execution platform will be

an HPC, Linux compatibility is important), but developing on Windows works too.

Visual Studio Code on Windows

1. Download and install Julia, git and Visual Studio Code.

2. Install the Julia extension for VS Code: In VS Code, open the extensions pane (Ctrl+Shift+X). Search

for and install Julia Language Support.

3. Clone the Gitlab repository: In VS Code, open the source control pane (Ctrl+Shift+G). Click on Clone

and enter the repo URL. Then select a folder on your computer to download the files into, and let VS

Code open the project once it has been cloned.

4. Start a Julia REPL: In VS Code, bring up the command palette (Ctrl+Shift+P). Execute the command

Julia: Start REPL. Then install all dependencies of Persefone by running using Pkg; Pkg.activate(".");

Pkg.instantiate(). (This will take some time.)

5. Open the file run.jl and click Execute (triangular button in the top right). The source code will compile

(this can take a lot of time the first time you do it) and run a default simulation.

6. Further steps: You may want to familiarise yourself with how to use git with VS Code. You may also want

to clone the Persefone Desktop repository (repeat steps 3 to 5).

Emacs on Linux

You can of course also use VS Code on Linux. In that case, follow the instructions above.

Make sure you have git and Julia installed. Git should be in your distro's repos (e.g. sudo apt install

git). To install Julia, download the binary and unpack it. For greater ease of use, copy the unpacked files to

/usr/local/lib/julia (or similar) and create a symlink to the executable: sudo ln -s /usr/local/lib/julia/bin/julia

/usr/local/bin/julia. Then go the to folder that you want to use for development and run git clone

https://git.idiv.de/persefone/persefone-model.git . in your terminal.

There are a couple of addons that make working with Julia much nicer in Emacs:

1. julia-mode gives syntax highlighting. Install with M-x package-install julia-mode.

12

https://julialang.org/downloads/
https://git-scm.com/download/win
https://code.visualstudio.com/
https://www.julia-vscode.org/
https://git.idiv.de/persefone/persefone-model.git
https://code.visualstudio.com/docs/sourcecontrol/overview
https://git.idiv.de/persefone/persefone-desktop.git
https://julialang.org/downloads/


CHAPTER 4. DEVELOPING PERSEFONE 13

2. julia-snail provides IDE-like features, especially a fully-functional REPL and the ability to evaluate

code straight from inside a buffer. Note that the installation can be somewhat tricky. You first need

to manually install all the dependencies of its dependency vterm, then install vterm itself with M-x

package-install vterm, before you can do M-x package-install julia-snail. Then add it to your

init.el with (require 'julia-snail) and (add-hook 'julia-mode-hook #'julia-snail-mode).

3. company-mode integrates with Snail to give code completion. Install with M-x package-install company,

then add (add-hook 'julia-mode-hook #'company-mode) and (global-set-key (kbd "C-<tab>")

'company-complete) to your init.el.

4. magit is a great git interface for Emacs. Install with M-x package-install magit and add (global-

set-key (kbd "C-x g") 'magit-status) to your init.el.

4.2 Development workflow

1. Pull the current version from the master branch on Gitlab: https://git.idiv.de/persefone/persefone-model.

2. If you are working on a new feature, create a new branch to avoid breaking the master branch. (The

master branch on Gitlab should always be in a runnable and error-free state.)

3. Implement your changes.

4. Run an example simulation and the test suite to make sure everything works without crashing (make

run and make test on Linux, or execute run.jl and test/runtests.jl manually.)

5. Commit your work frequently, and try to keep each commit small. Don't forget to add relevant tests to

the test suite.

6. Once your satisfied with your work, do another pull/merge from the master branch in case somebody

else changed the branch in the meantime. Then merge your work into master and push to the Gitlab

server.

7. Repeat :-)

The Gitlab issue tracker can be used to create, discuss, and assign tasks, as well as to monitor progress towards

milestones/releases. Once we have a first release, we will start using semantic versioning and a changelog.

4.3 Important libraries

Revise.jl

Revise.jl allows one to reload code without restarting the Julia interpreter. Get it with Pkg.add("Revise"),

then add using Revise to .julia/config/startup.jl to have it automatically available.

Test

Persefone uses the inbuilt Julia testing framework. All new functions should have appropriate tests written for

them in the appropriate file in the test directory. (See test/runtests.jl for details.) There are three ways

to run the test suite: in the terminal, executing make test or cd test; julia runtests.jl; or in the Julia

REPL, Pkg.activate("."); Pkg.test().

https://github.com/gcv/julia-snail
https://github.com/akermu/emacs-libvterm
http://company-mode.github.io/
https://magit.vc/
https://git.idiv.de/persefone/persefone-model
https://git.idiv.de/persefone/persefone-model/-/boards/373
https://semver.org/
https://keepachangelog.com/en/1.0.0/
https://timholy.github.io/Revise.jl/stable/
https://docs.julialang.org/en/v1/stdlib/Test/
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/test/runtests.jl


CHAPTER 4. DEVELOPING PERSEFONE 14

Documenter.jl

The HTML documentation is generated using Documenter.jl. Therefore, all new functions should have doc-

strings attached. New files need to be integrated into the relevant documentation source files in docs/src,

and if necessary into docs/builddocs.jl. To build the documentation, run make docs, or cd docs; julia

builddocs.jl (if using the latter, don't forget to update the date and commit in docs/src/index.md).

Graphics and user interface

Persefone uses Makie as a plotting library to generate its output graphics. Additionally, Persefone Desktop

uses QML.jl to create its graphical user interface.

Unitful.jl

Throughout the source code, variables can be tagged with their appropriate units using the Unitful.jl library.

This makes the code easier to understand, and also allows automatic unit conversion:

julia> 1ha == 10000m²

true

julia> 2km |> m

2000 m

julia> 2km / 10m

200.0

Within Persefone, the following units and dimensions have been imported for direct usage: cm, m, km, m², ha,

km², mg, g, kg, Length, Area, Mass.

Dates

Persefone expands the default Dates library with the AnnualDate type, which can be used to store dates that

recur every year (e.g. migration or harvest). AnnualDates can be compared and added/subtracted just as

normal dates. Use thisyear() to convert an AnnualDate to a Date.

https://documenter.juliadocs.org
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/docs/builddocs.jl
https://makie.org/
https://github.com/JuliaGraphics/QML.jl
https://painterqubits.github.io/Unitful.jl/stable/
https://docs.julialang.org/en/v1/stdlib/Dates/


Chapter 5

Source code architecture

15



Chapter 6

Model components

Persefone is divided into five components, three of which are semi-independent submodels:

1. core and world: These two directories provide the foundation of the model software, which sets up

and executes simulation runs. It also reads all input files (the configuration file, landscape maps, and

weather data), and provides data output functionality.

2. nature: This is a collection of individual-based model of species in agricultural landscapes. It defines the

Animal agent type, and a set of macros that can be used to rapidly create new species. It also includes

ecological process functions that are useful for all species.

3. farm: This is an agent-based model of farmer decision making. It provides the Farmer agent type, which

can be subtyped to provide different decision models. Currently the only implemented farmer is very

basic, only carrying out a static crop rotation and simple grassland mowing regimes.

4. crop: This component simulates the growth of crops in the landscape. It provides the agent type

FarmPlot, representing one field and its associated extent and crop type. Currently two different models

are used here: AquaCrop for the most important crops, and ALMaSS for the rest.

Conceptually, core and world provide functionality that is needed by all the submodels. Decisions made by

Farmers affect the FarmPlots they own, and (directly or indirectly) the Animals in the model landscape.

Figure 6.1: "model architecture"

16



Chapter 7

Important implementation details

The model object

A cursory reading of the source code will quickly show that most functions take an SimulationModel object as

one of their arguments. The concrete type for this is AgricultureModel, a struct that holds all state that is in

any way relevant to a simulation run. (Persefone has a strict "no global state" policy to avoid state-dependent

bugs and allow parallelisation.) The model object gives access to all agent instances. It also stores the con-

figuration (model.settings), the landscape (model.landscape, a matrix of Pixel objects that store the local

land cover, amongst other things), and the current simulation date (model.date). (See Persefone.initmodel

for details.)

Model configuration/the @param macro

The model is configured via a TOML file, the default version of which is at src/parameters.toml. An individual

run can be configured using a user-defined configuration file, commandline arguments, or function calls (when

Persefone is used as a package rather than an application). During a model run, the @parammacro can be used

Figure 7.1: "the model object"

17

https://toml.io/en/
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/parameters.toml


CHAPTER 7. IMPORTANT IMPLEMENTATION DETAILS 18

to access parameter values. Note that parameter names are prepended with the name of the component they

are associated with. For example, the outdir parameter belongs to the [core] section of the TOML file, and

must therefore be referenced as @param(core.outdir). (See src/core/input.jl for details.)

@param and other macros

As @param(parameter) expands to model.settings["parameter"], it can obviously only be used in a

context where the model object is actually available. (This is the case for most functions in Persefone,

but not for all.) Similarly, many of the nature macros depend on specific variables being available

where they are called, and can therefore only be used in specific contexts (this is indicated in their

documentation).

Output data

Persefone can output model data into text files with a specified frequency (daily, monthly, yearly, or at the

simulation end). Submodels can use Persefone.newdataoutput! to plug into this system. For an example of

how to use this, see src/nature/ecologicaldata.jl. (See src/core/output.jl for details.)

Farm events

The FarmEvent struct is used to communicate farming-related events between submodels. An event can

be triggered with createevent! and affects all pixels within a FarmPlot. (See src/core/landscape.jl for

details.)

Random numbers and logging

By default in Julia, the random number generator (RNG) and the system logger are two globally accessible

variables. As Persefone needs to avoid all global data (since this would interfere with reproducibility in parallel

runs), the model object stores a local logger and a local RNG. The local logger generally does not change the

way the model uses log statements, it is only relevant for some functions in src/core/simulation.jl.

Using the model RNG

Whenever you need to use a random number, you must use the model.rng. The easiest way to do this

is with the @rand and @shuffle! macros. (Note that these, too, require access to the model object.)

https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/core/input.jl
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/nature/ecologicaldata.jl
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/core/output.jl
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/core/landscape.jl
https://docs.julialang.org/en/v1/stdlib/Random/
https://docs.julialang.org/en/v1/stdlib/Logging/#Logging.global_logger
https://docs.julialang.org/en/v1/stdlib/Logging/
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/core/simulation.jl
https://docs.julialang.org/en/v1/stdlib/Random/#Base.rand


Chapter 8

Adapting Persefone

A key development goal of Persefone is to be FAIR: findable, accessible, interoperable, and reusable. We aim

to build a model that is both easy to use and easy to adapt to new situations.

There are multiple ways to adapt Persefone for a new modelling study:

Changing the parameters

The simplest way to adapt Persefone is simply by changing the parameters. Copy src/parameters.toml to a

new location, adjust it to your needs, and run the model using julia run.jl <configfile>.

Changing the region

To apply Persefone to a new region, you need to create new input maps of land cover, field geometries, and

soil type, and download the local weather data. How to do so is described here.

Adding new animal species

To implement a new species to the nature submodel, add a new file to the src/nature/species directory and

include it in src/Persefone.jl, as well as adding the name of the species to the nature.targetspecies

parameter. In the new file, implement the species using the @species syntax as described here.

Adding new crop species

To calibrate the AquaCrop crop growth model for new crop species, follow the tutorial here.

Adding new farmer behaviour or a new crop model

To implement new farmer behaviour or add another crop model, create a new subtype of Farmer or Ab-

stractCropState, respectively. As this is somewhat more complex, read through the current implementations

of the farm and crop components to understand how they work.

Adding a new submodel

To add a new submodel in addition to the existing ones (nature, crop, and farm), you need to familiarise

yourself with the software architecture. In particular, you need to understand how initialisation and scheduling

works in src/core/simulation.jl, and what information is stored in the model object.

If you want to add a new agent type, create a subtype of ModelAgent, implement a stepagent! function for it

and add it to Persefone.initmodel.

19

https://doi.org/10.1515/itit-2019-0040
gis.md
species-dsl.md
https://doi.org/10.21105/joss.07944
crop-calibration.md
architecture.md
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/core/simulation.jl


CHAPTER 8. ADAPTING PERSEFONE 20

Linking to another model

Persefone can also be used as a software library and be called from another application. For this purpose,

it is set up as a Julia package, with a module exporting various model functions, types, and macros (see

src/Persefone.jl). Of particular interest are the functions simulate (set up and run a complete simulation

based on a config file), initialise (create one or more model objects from a config file), simulate! (do a

simulation run with an existing model object), and stepsimulation! (update a model object by one time step).

To interface with Julia from another language, see the Julia docs here and here.

https://pkgdocs.julialang.org/v1/
https://docs.julialang.org/en/v1/manual/modules/
https://git.idiv.de/xo30xoqa/persephone/-/blob/master/src/Persephone.jl
https://docs.julialang.org/en/v1/manual/calling-c-and-fortran-code/
https://docs.julialang.org/en/v1/manual/embedding/


Chapter 9

Maps and weather data

Persefone.jl requires three map input files: one for land cover, one for for field geometries, and one for soil

types. Additionally, a weather input file is needed. This documents describe how to obtain and process the

data needed for each of these.

There is a QGIS project file at data/regions/auxiliary/persefone.qgz, which can be used get an overview of

the existing region input files and add new ones. All region data files are stored using the following convention:

data/regions/<regionname>/

-> <regionname>.geojson

-> landcover.tif

-> fields.tif

-> soil.tif

-> weather.csv

Where <regionname> is currently one of bodensee, eichsfeld, hohenlohe, jena, oberrhein, or thueringer_becken.

9.1 Land cover maps

Land cover maps for Germany at 10m resolution can be obtained fromMundialis. These are generated annually

from Sentinel data and comprise the following land cover classes:

10: forest

20: low vegetation

30: water

40: built-up

50: bare soil

60: agriculture

To create a Persefone map input file, you need to crop the national Mundialis map to the extent that you want

to simulate (suggestion: edge lengths between 10-20 km are a reasonable size).

To do so, download the Mundialis map and import it into QGIS. Then create a new vector layer and create a

rectangle feature to delimit the extent of your region. You can save this as a GEOJSON file to the region folder

for future reference. Then go to Raster -> Extraction -> Clip Raster by Extent. Select the Mundialis

map as the input layer, set the clipping extent by choosing your region vector layer under Calculate from

Layer and specify the output file name before clicking Run. This will generate a TIF file that you can pass to

Persefone as the landcovermap parameter.

21

https://data.mundialis.de/geonetwork/srv/eng/catalog.search#/metadata/9246503f-6adf-460b-a31e-73a649182d07


CHAPTER 9. MAPS AND WEATHER DATA 22

9.2 Field ID maps

In addition to the land cover data explained above, Persefone also needs information about agricultural field

boundaries in order to assign these to the farming agents. Unfortunately, getting this is rather more compli-

cated.

In the EU, every country runs a Land Parcel Information System (LPIS) to administer CAP payments. In Germany,

this is called InVeKoS and is run by the Länder. For example, you can view and download the InVeKoS data for

Thüringen or Baden-Württemberg. This gives you a vector layer which can be loaded into QGIS. However, it

needs to be converted to a raster layer and cropped to your region extent before it can be used in Persefone.

The first thing to do is to make sure that the vector layer has a numeric (!) field with a unique identifier for

each field block (check the attribute table). The Thüringen data has the FBI ("Feldblockident") field, but this

is a string value and therefore not usable by the rasteriser. So, we set the vector layer to edit mode, open

the field calculator, enter the information for a new field (call it "FID" and set it to a 32-bit integer), and enter

@row_number in the expression field. Then save the layer and close the calculator.

Secondly, you need to filter out all non-field/non-grassland plot types. (LPIS also has data on forests and various

landscape elements that are not relevant to our use case.) Assuming you're working with the Thüringen

InVeKoS data (other data sets may have a different structure), right-click on the layer name in QGIS' layer

overview and click on "Filter...". Then, enter this expression in the query builder: "BNK" = 'AL' OR "BNK" =

'GL' and click "OK". This will select only field and grassland plots.

Next, open the rasteriser (Raster -> Conversion -> Rasterize). Select your FID field as the "Field to use

for a burn-in value", and your land cover map (as created above - this ensures the two layers match) as the

output extent. Make sure the "fixed value to burn" is "Not set". Then choose "Georeferenced units" as the

"Out raster size units" and set horizontal and vertical resolution to 10.0. In the advanced parameters, set the

output data type to UInt32. Finally, enter an output file name and run. The resulting TIF file can be passed to

Persefone as the farmfieldmap parameter.

9.3 Soil data

Soil data for Germany is provided by the Bundesanstalt für Geowissenschaften und Rohstoffe in form of the

Bodenatlas. This provides a (coarse, but for our purposes sufficient) map of the distribution of the basic soil

types such as clay, silt, sand, and loam.

To create the Persefone input file, you first need to rasterise the data. See the instructions above - choose

BODENART as the field for the burn-in value. (Note: rastering the whole map produces a 20GB file! This can

later be deleted again.) Then you need to align and crop it to the extent you require, using the dialog at Raster

-> Align Rasters.... Select your landcover map as the reference layer and the extent layer, then choose

your national soil map as the input. (Don't forget to define the output file name using Configure Raster...,

this is a bit hidden.) The created output file can then be used for the soilmap parameter. Its integer values

map onto the SoilType enum as follows:

1: Abbauflächen -> nosoil

2: Gewässer -> nosoil

3: Lehmsande (ls) -> loamy_sand

4: Lehmschluffe (lu) -> silt_loam

5: Moore -> nosoil

6: Normallehme (ll) -> loam

7: Reinsande (ss) -> sand

8: Sandlehme (sl) -> sandy_loam

9: Schluffsande (us) -> sandy_loam

10: Schlufftone (ut) -> silty_clay

11: Siedlung -> nosoil

https://thueringenviewer.thueringen.de/thviewer/invekos.html
https://metadaten.geoportal-bw.de/geonetwork/srv/eng/catalog.search#/metadata/03873032-80e7-41ec-bb3e-3d34231617e4
https://bodenatlas.bgr.de/


CHAPTER 9. MAPS AND WEATHER DATA 23

Figure 9.1: Soil types triangle

12: Tonlehme (tl) -> clay_loam

13: Tonschluffe (tu) -> silty_clay_loam

14: Watt -> nosoil

Names of soil types are based on the relative composition of clay, silt, and sand. Note that the typology used

in the Bodenatlas does not map perfectly on to this international classification. Image source: Australian

Environmental Education

9.4 Weather data

Currently, Persefone uses historical weather data from the closest weather station as its weather input. (In

future, this may be changed to a more detailed raster input, which could then also provide future weather

predictions under climate change.) Weather data can be downloaded from the German weather service (DWD).

The description of these data sets and the list of weather stations can be found in the Persefone repository, in

the docs folder (or downloaded from the link above). Using the list of weather stations, select the one closest

https://www.australianenvironmentaleducation.com.au/education-resources/what-is-soil/
https://www.australianenvironmentaleducation.com.au/education-resources/what-is-soil/
https://www.dwd.de/DE/leistungen/cdc/cdc_ueberblick-klimadaten.html?nn=16102


CHAPTER 9. MAPS AND WEATHER DATA 24

to the area of study. Note that not all stations were continuously in operation; make sure that the selected

station covers the years of interest. The currently included regions have the following station codes:

• Region Jena: station number 02444 ("Jena (Sternwarte)")

• Region Eichsfeld: station number 02925 ("Leinefelde")

• Region Thüringer Becken: station number 00896 ("Dachwig")

• Region Hohenlohe: station number 03761 ("Oehringen")

• Region Bodensee: station number 06263 ("Singen")

• Region Nördlicher Oberrhein: station number 05275 ("Waghäusel-Kirrlach")

The script data/regions/auxiliary/extract_weather_data.R can be used to download and process the

data into the format needed by Persefone. This uses the rdwd package. To use it, simply specify the desired

region, adding its ID to the stationid list if necessary. The produced CSV file can be copied into the respective

region folder.

https://bookdown.org/brry/rdwd/


Chapter 10

Defining new species

In order to make implementing new species as easy as possible, Persefone includes a domain-specific language

(DSL) built from a collection of macros and functions.

Here is an example of what this looks like, using a hypothetical mermaid species:

@species Mermaid begin

ageofmaturity = 2

pesticidemortality = 1.0

end

@create Mermaid begin

@debug "Created $(animalid(self))."

end

@phase Mermaid life begin

@debug "$(animalid(self)) is swimming happily in its pond."

@respond pesticide @kill(self.pesticidemortality, "poisoning")

@respond harvesting @setphase(drought)

if self.sex == female && length(@neighbours()) < 3 &&

self.age >= self.ageofmaturity && @landcover() == water

@reproduce()

end

end

@phase Mermaid drought begin

n = sum(1 for a in @neighbours())

@debug "$(animalid(self)) is experiencing drought with $n neighbour(s)."

@respond sowing @setphase(life)

end

@populate Mermaid begin

birthphase = life

initphase = life

habitat = @habitat(@landcover() == water)

pairs=true

end

A complete species definition consists of one call each to @species, @create, @populate, and one or more

calls to @phase. Another important macro is @habitat. Further macros are available to provide convenience

wrappers for common functions. (See src/nature/nature.jl for details.)

25

https://doi.org/10.1016/j.ecoinf.2015.02.005
nature.md


CHAPTER 10. DEFINING NEW SPECIES 26

The first macro to call is @species. This takes two arguments: a species name and a definition block (enclosed

in begin and end tags). Within the block, species-specific parameters and variables can be defined (and

optionally given values) that should be available throughout a species' lifetime.

Next, each species must define one or more @phase blocks. The concept behind this is that species show

different behaviours at different phases of their lifecycle. Each @phase block defines the behaviour in one of

these phases. (Technically, it defines a function that will be called daily, so long as the species' phase variable

is set to this phase.) Code in this section has access to the model object as well as a self object, which is the

currently active Animal agent. Within a phase block, @respond can be used to define the species' response to

a FarmEvent that affects the species' current location, while a variety of other macros provide wrappers to life

history and movement functions from src/nature/populations.jl.

The third macro to call is @create. Like @phase, this defines a function with access to the world and self

objects. This function is called whenever a new individual of this species is created (either at birth, or when

the model is initialised).

The last macro that must be called is @populate. Whereas @create regulates the creation of individual animals,

@populate determines how the population of a species is initialised at the start of a simulation. It does this by

defining values for the parameters used by initpopulation!. The full list of parameters that can be used is

documented under PopInitParams.

The final important macro is @habitat. This defines a "habitat descriptor", i.e. a predicate function that tests

whether or not a given landscape pixel is suitable for a specified purpose. Such habitat descriptors are used

as arguments to various functions, for example for population initialisation or movement. The argument to

@habitat consists of a logical expression, which has access to the animal's current position (the pos tuple

variable) and the model. Various macros are available to easily reference information about the current loca-

tion, such as @landcover or @distancetoedge.

All of these macros are defined in src/nature/macros.jl.

!!! tip Read the source The simplest way to understand how this DSL works is probably to read the source

code of the existing animal models, found in the src/nature/species folder. If you have questions, ask the

Persefone developers for help.



Chapter 11

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

11.1 [1.0.0] - in planning

Aim: 4 species, 2 crop growth models, farm model, GAEC scenarios, experimental analysis

11.2 [0.8.0] - 29-8-2025

This minor release adds the first butterfly model (marbled white), and expands the farm model.

Added

• Marbled white (Melanargia galathea) species model with associated data outputs

• implemented management of extensive and intensive grassland in the farm model (new parameters:

farm.extensivegrassland, farm.mowingthreshold, farm.mowingperiod)

• management scenarios can now be implemented using functions in the farm model and activated using

the farm.scenarios parameter

• added cropgroup() functions

• added macros for weather functions (@humidity(), @maxtemp(), etc.)

• added runparallel.jl and slurm.sh to allow parallel processing of parameter scans on an HPC

• region-specific modified crop parameters for use with AquaCrop will now be loaded automatically from

the data/crops/aquacrop/regions/ directory, e.g. the file data/crops/aquacrop/regions/jena/winter_wheat.toml

can be used to overload the parameters for "winter wheat" in the "jena" region. Use of the modified crop

parameters can be controlled with the crop.use_region_specific_params configuration file parame-

ter.

Changed

• Skylark model parameters can be set via configuration file

• added Skylark parameters limitterritory and offfieldnesting

27

https://keepachangelog.com/en/1.1.0/
https://semver.org/spec/v2.0.0.html


CHAPTER 11. CHANGELOG 28

• Setasides (fallows) are now reassigned to new fields every year

• ALMaSS grassland data expanded to allow continued growth after mowing

• crop rotation on all fields can now be set via parameter farm.croprotation

• the model now attempts to fix misclassifications in the land cover map if the world.fixlandcover

parameter is true

• DataOutputs can now be passed a string with an AnnualDate instead of a frequency to specify on which

date they should be run

• the world.mapdirectory parameter has been split up into world.mapdirectory and world.region

• updated and expanded documentation

Deprecated

Removed

Fixed

• fixed post-mowing grass growth in ALMaSS

• fixed isvalidstart() bug in almass.jl

• fixed a bug in initpopulations!()

• interpolated missing weather data

• crop cover is now given as percent by both crop models

11.3 [0.7.1] - 17-6-2025

Added

• AquaCrop can now estimate crop height from dry biomass using the rational function regression y =

a * (x/x0)^b / (c + (x/x0)^b) with parameters fitted for maize, winter wheat, winter barley, and

winter rapeseed. AquaCrop by itself does not model plant height.

11.4 [0.7.0] - 14-03-2025

This minor release adds support for the AquaCrop crop model.

Added

• Add AquaCrop crop model

• Simple linear crop height estimation for AquaCrop plants from biomass (AquaCrop does not model plant

height)

• Read soil type map, controlled with the setting "world.soiltypesmap"

• Landscape Pixels store their soil type (enum SoilType)

• FarmPlots store the most common soil type of their landscape Pixels (AquaCrop needs the soil type as

an input parameter).



CHAPTER 11. CHANGELOG 29

Changed

• Allowmultiple cropmodels to be used in one simulation. The settings "crop.cropmodel" and "crop.cropdirectory"

are now comma-separated lists of crop models and their data directories.

Deprecated

Removed

Fixed

11.5 [0.6.1] - 14-03-2025

Added

• user manual: documentation is now compiled to PDF (#91)

• added soil maps to region data, but not used yet

• added mean_cloud_cover and potential_evapotranspiration fields to weather data csv files

Changed

• added soil map section to GIS docs

• Changed weather internal representation to struct-of-arrays (previously a dict-of-struct representation).

The Weather type now stores all weather information for the whole simulation, with a function interface,

e.g. sunshine(weather, date).

• When reading weather data, we now throw an error when there aremissing days or anymissing values for

the fields min_temperature, max_temperature, mean_temperature, precipitation, and potential_evapotranspiration.

In the future missing values could also be imputed.

• The script for weather data extraction at data/regions/auxiliary/extract_weather_data.R has been

reworked to always return an output row for each day in the date range, even if the day is missing in the

original data source. It now also accepts the stations to download as command-line arguments. The renv

lockfile for the R environment used to run the script can be found at data/regions/auxiliary/renv.lock.

Deprecated

Removed

Fixed

11.6 [0.6.0] - 13-01-2025

This minor release re-implements the ALMaSS crop model

Added

• crop.cropdirectory parameter specifies folder in which all crop data files for the selected crop model

can be found.



CHAPTER 11. CHANGELOG 30

Changed

• preprocessparameters() checks whether the map and crop directories are reachable from the current

working directory. If not, it checks whether it can be reached from the package directory. This makes

running simulations easier when Persefone has been installed as a package.

• simulate() and initialise() now take a params keyword argument that can be used to override

parameters from other input sources

• The ALMaSS crop data config file data/crops/almass/crop_data_general.csv now has extra columns

for is_c4_plant, sowingdensity, and phase_before_harvest

Deprecated

Removed

• crop.cropfile and crop.growthfile parameters -> user configuration is now done via crop.cropdirectory,

names of ALMaSS input files are specified as constants in almass.jl

Fixed

• The implementation of the ALMaSS vegetation model in Persefone has been completely rewritten, hope-

fully more faithfully reproducing the logic in ALMaSS. The resulting plant heights are now more realistic

and do not produce the extreme plant heights seen previously (which was due to an erroneous interpre-

tation of the ALMaSS growth curves).

11.7 [0.5.5] - 09-08-2024

This point release implements the first basic farm model

Added

• basic farm model that assigns a crop rotation to each field, sowing and harvesting when appropriate

• new parameters: farm.farmmodel, farm.setaside, farm.fieldoutfreq

• visualisation of cropped area and crop growth over time

• farm.setaside setting to configure what proportion of land farmers let lie fallow

• isharvestable() function for FarmPlots

• @areaof macro to calculate the area of a given number of landscape pixels

• data/farm/standard_gross_margins.csv from KTBL data

Changed

• expanded & adapted general crop data and crop growth curve tables

Fixed

• bug fixes in the ALMaSS crop model



CHAPTER 11. CHANGELOG 31

11.8 [0.5.4] - 08-08-2024

Skylark data analysis and new internal utility functions

Added

• AnnualDate type and associated functions for working with recurring dates (#101)

– can be constructed from two Int64, a Date, or a Tuple{Int64,Int64}

– automatic conversion from Date or Tuple{Int64,Int64}

– can use operators: ==, <, +, -, :

– thisyear(), lastyear(), nextyear() functions and macros

• new file core/utils.jl for utility functions that fit in no other file

• irregular data logging using record!()/@record() (#103)

• data outputs & visualisation for the skylark model (#97)

• randn() function and macro to sample from a vector using a normal distribution

• make install to download and install Julia and package dependencies (on Linux, #67)

• weather file for the Thüringer Becken

Changed

• moved random number functions and macros from input.jl to utils.jl

• expanded weather data for Jena to 1990-2023

• Non-breeding skylarks only search for neighbours to follow once (-> huge performance improvement!)

Fixed

• bug fixes in the skylark model

11.9 [0.5.3] - 31-07-2024

Switchable crop models

Added

• Support for switchable crop models (#70), crop models can be set with the cropmodel setting in the

[crop] section of parameters.toml.

• New submodules ALMaSS for the ALMaSS cropmodel, and SimpleCrop for testing switchable cropmodels.



CHAPTER 11. CHANGELOG 32

Changed

• All functionality specific to the ALMaSS crop model has been moved to the submodule ALMaSS.

• Due to switchable cropmodels, some types are now parametric: AgricultureModel{Tcroptype,Tcropstate}

and FarmPlot{Tcropstate}.

• FarmPlot{Tcropstate} now only stores basic information about which pixels are part of the farm plot,

all crop-specific information is now stored in the field cropstate. Many functions acting on a FarmPlot

now mostly forward to functions of the same name acting on the cropstate field of a FarmPlot.

• The type of height in ALMaSS.CropState and ALMaSS.CropCurveParams is now a unitful number ::Length{Float64}.

• Both crop models ALMaSS and SimpleCrop now also support the functions cropcover and cropyield in

addition to croptype, cropname, cropheight.

• cropheight now returns a unitful number ::Length{Float64}, and returns height 0cm if the landscape

at that position is not a FarmPlot.

11.10 [0.5.2] - 30-07-2024

Rewrote the skylark model

Added

• Skylark model is largely rewritten to follow a new phase structure (#9)

• animals can occupy territories (see @occupy, @isoccupied, @vacate macros/functions) (#94)

• @cropcover macro and function

• ODD documentation for Skylark

Changed

• input files that are now copied to a separate inputs directory within the output directory

• EventType renamed to Management for clarity

• documentation website now has a "Scientific Documentation" section

Removed

• old skylark model (has been rewritten, see above)

Fixed

• all skylarks now migrate (#90)

• insectbiomass() uses units

11.11 [0.5.1] - 13-06-2024

Added Unitful.jl



CHAPTER 11. CHANGELOG 33

Added

• Unitful.jl now used to add units to quantities

• world.mapdirectory parameter specifies the path to the directory in which

landcovermap, farmfieldsmap, and weatherfile are located

• world.mapresolution parameter specifies the input maps' spatial resolution in meters

Changed

• spatial functions now work with explicit distances (using Unitful.jl) rather than using the number of pixels

• all species definitions and tests updated to use units

11.12 [0.5.0] - 07-06-2024

This release doesn't add much new functionality, but represents a major restructuring of the code

base. Specifically, it removes the Agents.jl dependency and changes the way the species definition

macros work and are used.

Added

• SimulationModel type, extended by AgricultureModel struct

• @create macro defines a special phase function that is called when an individual animal is created (at

birth or on model initialisation)

• functions (and associated macros) to replace Agents.jl functionality:

– move!() and walk!()

– nearby_ids(), nearby_animals(), countanimals(), neighbours()

– directionto(), distanceto(), randomdirection()

– nagents(), killallanimals!()

• @here macro to return the pixel currently occupied by the active animal

• core.logoutput parameter to define whether logs are printed to screen, file, none, or both

• large logo and model structure diagram

• Changelog



CHAPTER 11. CHANGELOG 34

Changed

• SimulationModel replaces AgentBasedModel

• Species definition macros revamped:

– @species now only defines parameters and variables and creates a mutable struct

– @phase must now be defined in the top-level code and creates a global function

– @initialise renamed to @populate, must also be called in the top-level code

– initindividual() renamed to create!()

• Skylark, Wolpertinger, and Wyvern updated to match the new macros

• requires Julia 1.10

Removed

• Agents.jl dependency (including AgentBasedModel and functions for adding/moving/removing agents)

11.13 [0.4.1] - 2023-11-14

Initial version of the skylark model

Added

• initial version of the Skylark species

• small Jena map

• animal individuals keep track of their parents' IDs

• several new functions and macros for animals

• installation instructions for Windows

Changed

• graphics output is more configurable

11.14 [0.4.0] - 2023-10-28

Functions for animal populations

Added

• initialisation functions for individuals (not just species)

• migration function / migrant pool for animals that disappear from the landscape during winter

• skylark migration



CHAPTER 11. CHANGELOG 35

Changed

• online documentation was expanded and restructured

• nature macros moved to a separate file

Started changelog at this point, earlier versions are not included.

<!– Template

11.15 [version] - unreleased

<comments>

PLANNED

Added

Changed

Deprecated

Removed

Fixed

–>



Part IV

Software API

36



Chapter 12

Simulation

The core and world directories hold source files that are important for all submodels, including scheduling,

landscape, weather, and input/output functions.

12.1 Persefone.jl

This file defines the module, including all exported symbols and two high-level types.

Persefone.AbstractCropState – Type.

AbstractCropState

The abstract supertype of all crop states in the model. Each crop model has to define a type CropState

<: AbstractCropState.

source

Persefone.AbstractCropType – Type.

AbstractCropType

The abstract supertype of all crop types in the model. Each crop model has to define a type CropType <:

AbstractCropType.

source

Persefone.ModelAgent – Type.

ModelAgent

The supertype of all agents in the model (animal species, farmer types, farmplots).

source

Persefone.SimulationModel – Type.

37

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/Persefone.jl#L146-L151
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/Persefone.jl#L138-L143
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/Persefone.jl#L131-L135


CHAPTER 12. SIMULATION 38

SimulationModel

The supertype of AgricultureModel. This is needed to avoid circular dependencies (most types and func-

tions depend on SimulationModel, but the definition of the model struct depends on these types).

source

Persefone.AnnualDate – Type.

AnnualDate

A type to handle recurring dates (e.g. migration, harvest). Stores a month and a day, and can be compared

against normal dates. To save typing, a Tuple{Int64,Int64} is automatically converted to an AnnualDate,

allowing this syntax: nestingend::AnnualDate = (August, 15).

source

Base.randn – Function.

randn(vector)

Return a random element from the given vector, following a (mostly) normal distribution based on index

values (i.e. elements in the middle of the vector will be returned most frequently).

source

Persefone.bounds – Method.

bounds(x; max=Inf, min=0)

A utility function to make sure that a number is within a given set of bounds. Returns max/min if x is

greater/less than this.

source

Persefone.cycle! – Function.

cycle!(vector, n=1)

Move the first element of the vector to the end, repeat n times.

source

Persefone.thisyear – Method.

thisyear(annualdate, model)

nextyear(annualdate, model)

lastyear(annualdate, model)

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/Persefone.jl#L122-L128
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/utils.jl#L21-L28
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/utils.jl#L132-L137
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/utils.jl#L191-L196
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/utils.jl#L207-L211


CHAPTER 12. SIMULATION 39

Convert an AnnualDate to a Date, using the current/next/previous year of the simulation run.

source

Persefone.@areaof – Macro.

@areaof()

Calculate the area of a farmplot or of a given number of landscape pixels, knowing the resolution of the

world map (requires the model object to be available).

source

Persefone.@chance – Macro.

@chance(odds)

Return true if a random number is less than the odds (0.0 <= odds <= 1.0), using the model RNG. This is

a utility wrapper that can only be used a context where the model object is available.

source

Persefone.@lastyear – Macro.

@lastyear(annualdate)

Construct a date object referring to the last year in the model from an AnnualDate. Only use in scopes

where model is available.

source

Persefone.@nextyear – Macro.

@nextyear(annualdate)

Construct a date object referring to the next year in the model from an AnnualDate. Only use in scopes

where model is available.

source

Persefone.@rand – Macro.

@rand(args...)

Return a random number or element from the sample, using the model RNG. This is a utility wrapper that

can only be used a context where the model object is available.

source

Persefone.@randn – Macro.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/utils.jl#L89-L95
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/utils.jl#L223-L228
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/utils.jl#L178-L184
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/utils.jl#L120-L125
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/utils.jl#L110-L115
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/utils.jl#L156-L162


CHAPTER 12. SIMULATION 40

@randn(vector)

Return a normally-distributed random number or element from the sample, using the model RNG. This is

a utility wrapper that can only be used a context where the model object is available.

source

Persefone.@shuffle! – Macro.

@shuffle!(collection)

Shuffle the given collection in place, using the model RNG. This is a utility wrapper that can only be used

a context where the model object is available.

source

Persefone.@thisyear – Macro.

@thisyear(annualdate)

Construct a date object referring to the current model year from an AnnualDate. Only use in scopes where

model is available.

source

12.2 simulation.jl

This file includes the basal functions for initialising and running simulations.

Persefone.AgricultureModel – Type.

AgricultureModel

This is the heart of the model - a struct that holds all data and state for one simulation run. It is created

by initialise and passed as input to most model functions.

source

Persefone.finalise! – Method.

finalise!(model)

Wrap up the simulation. Finalises and visualises output, then terminates.

source

Persefone.initialise – Method.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/utils.jl#L145-L151
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/utils.jl#L167-L173
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/utils.jl#L100-L105
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/simulation.jl#L8-L14
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/simulation.jl#L191-L195


CHAPTER 12. SIMULATION 41

initialise(configfile=PARAMFILE, params=Dict())

Initialise the model: read in parameters, create the output data directory, and instantiate the Simulation-

Model object(s). Optionally allows specifying the configuration file and overriding specific parameters. This

returns a single model object, unless the config file contains multiple values for one or more parameters,

in which case it creates a full-factorial simulation experiment and returns a vector of model objects.

source

Persefone.initmodel – Method.

initmodel(settings)

Initialise a model object using a ready-made settings dict. This is a helper function for initialise().

source

Persefone.nagents – Method.

nagents(model)

Return the total number of agents in a model object.

source

Persefone.paramscan – Method.

paramscan(settings)

Create a list of settings dicts, covering all possible parameter combinations given by the input settings (i.e.

a full-factorial experiment). This is a helper function for initialise().

source

Persefone.simulate! – Method.

simulate!(model)

Carry out a complete simulation run using a pre-initialised model object.

source

Persefone.simulate – Method.

simulate(configfile=PARAMFILE, params=Dict())

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/simulation.jl#L77-L86
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/simulation.jl#L97-L102
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/simulation.jl#L31-L35
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/simulation.jl#L145-L151
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/simulation.jl#L64-L68


CHAPTER 12. SIMULATION 42

Initialise one or more model objects and carry out a full simulation experiment, optionally specifying a

configuration file and/or specific parameters.

This is the default way to run a Persefone simulation.

source

Persefone.stepagent! – Method.

stepagent!(agent, model)

All agent types must define a stepagent!() method that will be called daily.

source

Persefone.stepsimulation! – Method.

stepsimulation!(model)

Execute one update of the model.

source

12.3 landscape.jl

This file manages the landscape maps that underlie the model.

Persefone.df_soiltypes_bodenatlas – Constant.

Bodenatlas soil type id, corresponding Persefone soil type, and numbers to Persefone SoilType enum and

the original Bodenatlas description of the soil type

source

Persefone.soiltype_bodenatlas_to_persefone – Constant.

Map a Bodenatlas soil type integer to a Persefone SoilType enum

source

Persefone.FarmEvent – Type.

FarmEvent

A data structure to define a landscape event, giving its type, spatial extent, and duration.

source

Persefone.LandCover – Type.

The land cover classes encoded in the Mundialis Sentinel data.

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/simulation.jl#L49-L56
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/simulation.jl#L40-L44
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/simulation.jl#L173-L177
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L31-L33
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L52
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L142-L147
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L9


CHAPTER 12. SIMULATION 43

Persefone.Management – Type.

The types of management event that can be simulated

source

Persefone.Pixel – Type.

Pixel

A pixel is a simple data structure to combine land use and ownership information in a single object. The

model landscape consists of a matrix of pixels. (Note: further landscape information may be added here

in future.)

source

Persefone.SoilType – Type.

The soil type of a Pixel or FarmPlot

source

Persefone.createevent! – Function.

createevent!(model, pixels, name, duration=1)

Add a farm event to the specified pixels (a vector of position tuples) for a given duration.

source

Persefone.directionto – Method.

directionto(pos, model, habitatdescriptor)

Calculate the direction from the given location to the closest location matching the habitat descriptor

function. Returns a coordinate tuple (target - position), or nothing if no matching habitat is found. Caution:

can be computationally expensive!

source

Persefone.directionto – Method.

directionto(pos, model, habitattype)

Calculate the direction from the given location to the closest habitat of the specified type. Returns a coor-

dinate tuple (target - position), or nothing if no matching habitat is found. Caution: can be computationally

expensive!

source

Persefone.distanceto – Method.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L57
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L61-L67
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L12
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L212-L216
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L244-L250
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L283-L289


CHAPTER 12. SIMULATION 44

distanceto(pos, model, habitatdescriptor)

Calculate the distance from the given location to the closest location matching the habitat descriptor

function. Caution: can be computationally expensive!

source

Persefone.distanceto – Method.

distanceto(pos, model, habitattype)

Calculate the distance from the given location to the closest habitat of the specified type. Caution: can be

computationally expensive!

source

Persefone.distancetoedge – Method.

distancetoedge(pos, model)

Calculate the distance from the given location to the closest neighbouring habitat. Caution: can be com-

putationally expensive!

source

Persefone.farmplot – Method.

farmplot(position, model)

Return the farm plot at this position, or nothing if there is none (utility wrapper).

source

Persefone.inbounds – Method.

inbounds(pos, model)

Is the given position within the bounds of the model landscape?

source

Persefone.initlandscape – Method.

initlandscape(directory, region, landcovermap, farmfieldsmap, soiltypesmap)

Initialise the model landscape based on the map files specified in the configuration. Returns a matrix of

pixels.

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L295-L300
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L308-L313
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L319-L324
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L234-L238
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L358-L362
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L154-L159


CHAPTER 12. SIMULATION 45

Persefone.landcover – Method.

landcover(position, model)

Return the land cover class at this position (utility wrapper).

source

Persefone.randomdirection – Method.

randomdirection(model, distance)

Get a random direction coordinate tuple within the specified distance.

source

Persefone.randompixel – Function.

randompixel(position, model, range, habitatdescriptor)

Find a random pixel within a given range of the position that matches the habitatdescriptor (create this

using @habitat).

source

Persefone.safebounds – Method.

safebounds(pos, model)

Make sure that a given position is within the bounds of the model landscape.

source

Persefone.updateevents! – Method.

updateevents!(model)

Cycle through the list of events, removing those that have expired.

source

12.4 weather.jl

This file reads in weather data and makes it available to the model.

Persefone.Weather – Type.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L225-L229
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L348-L352
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L330-L335
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L368-L372
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/landscape.jl#L191-L195


CHAPTER 12. SIMULATION 46

Weather

Holds the weather information for the whole simulation period.

source

Persefone.check_missing_weatherdata – Method.

check_missing_weatherdata(dataframe)

Check the weather input data for missing values in columns where input values are required.

source

Persefone.cloudcover – Method.

cloudcover(weather, date)

cloudcover(model, date)

cloudcover(model)

Return the average cloudcover in eigths on date.

source

Persefone.daynumber – Method.

daynumber(weather, date)

Returns the number of days, counting weather.firstdate as day 1.

source

Persefone.evapotranspiration – Method.

evapotranspiration(weather, date)

evapotranspiration(model, date)

evapotranspiration(model)

Return the potential evapotranspiration (ETo) on date.

source

Persefone.findspans – Method.

findspans(predicate_fn, array) -> Vector{UnitRange{Int}}

Returns spans of indices in a 1-d array where a predicate_fn returns true. The spans are returned as a

Vector of UnitRange{Int}, where each range is of the form start_index:end_index.

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L7-L11
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L71-L76
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L184-L190
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L33-L37
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L239-L245
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L44-L51


CHAPTER 12. SIMULATION 47

Persefone.humidity – Method.

humidity(weather, date)

humidity(model, date)

humidity(model)

Return today's average vapour pressure in %.

source

Persefone.initweather – Method.

initweather(weatherfile, startdate, enddate)

Load a weather file, extract the values that are relevant to this model run (specified by start and end

dates), and return a dictionary of Weather objects mapped to dates.

Note: This requires a weather file in the format produced by data/regions/auxiliary/extract_weather_data.R.

source

Persefone.maxtemp – Method.

maxtemp(weather, date)

maxtemp(model, date)

maxtemp(model)

Return the maximum temperature in °C on date.

source

Persefone.meantemp – Method.

meantemp(weather, date)

meantemp(model, date)

meantemp(model)

Return the mean temperature in °C on date.

source

Persefone.mintemp – Method.

mintemp(weather, date)

mintemp(model, date)

mintemp(model)

Return the minimum temperature in °C on date.

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L195-L201
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L98-L107
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L217-L223
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L206-L212
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L228-L234


CHAPTER 12. SIMULATION 48

Persefone.precipitation – Method.

precipitation(weather, date)

precipitation(model, date)

precipitation(model)

Return the total precipitation in mm on date.

source

Persefone.sunshine – Method.

sunshine(weather, date)

sunshine(model, date)

sunshine(model)

Return the sunshine duration in hours on date.

source

Persefone.windspeed – Method.

windspeed(weather, date)

windspeed(model, date)

windspeed(model)

Return the average windspeed in m/s on date.

source

Persefone.@cloudcover – Macro.

@cloudcover(date=model.date)

Return the average cloudcover in eigths today/on the specified date. Can only be used in scopes where

model is available.

source

Persefone.@evapotranspiration – Macro.

@evapotranspiration(date=model.date)

Return the potential evapotranspiration (ETo) today/on the specified date. Can only be used in scopes

where model is available.

source

Persefone.@humidity – Macro.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L162-L168
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L173-L179
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L151-L157
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L282-L287
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L332-L337


CHAPTER 12. SIMULATION 49

@humidity(date=model.date)

Return the average vapour pressure (in %) today/on the specified date. Can only be used in scopes where

model is available.

source

Persefone.@maxtemp – Macro.

@maxtemp(date=model.date)

Return the maximum temperature today/on the specified date. Can only be used in scopes where model

is available.

source

Persefone.@meantemp – Macro.

@meantemp(date=model.date)

Return the mean temperature today/on the specified date. Can only be used in scopes where model is

available.

source

Persefone.@mintemp – Macro.

@mintemp(date=model.date)

Return the minimum temperature today/on the specified date. Can only be used in scopes where model is

available.

source

Persefone.@precipitation – Macro.

@precipitation(date=model.date)

Return the total precipitation in mm today/on the specified date. Can only be used in scopes where model

is available.

source

Persefone.@sunshine – Macro.

@sunshine(date=model.date)

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L292-L297
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L312-L317
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L302-L307
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L322-L327
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L262-L267


CHAPTER 12. SIMULATION 50

Return the sunshine duration in hours today/on the specified date. Can only be used in scopes where model

is available.

source

Persefone.@windspeed – Macro.

@windspeed(date=model.date)

Return the average windspeed in m/s today/on the specified date. Can only be used in scopes where model

is available.

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L272-L277
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/world/weather.jl#L252-L257


Chapter 13

Input and Output

These functions are responsible for reading in all model configurations (passed by config file or commandline),

administrating them during a run, and printing or plotting any output.

13.1 input.jl

Persefone.AVAILABLE_CROPMODELS – Constant.

The crop models that can be used in the simulation.

source

Persefone.PARAMFILE – Constant.

The file that stores all default parameters: src/parameters.toml

source

Persefone.flattenTOML – Method.

flattenTOML(dict)

An internal utility function to convert the two-dimensional dict returned by TOML.parsefile() into a one-

dimensional dict, so that instead of writing settings["domain"]["param"] one can use settings["domain.param"].

Can be reversed with prepareTOML.

source

Persefone.getsettings – Function.

getsettings(configfile, userparams=Dict())

Combines all configuration options to produce a single settings dict. Precedence: function arguments -

commandline parameters - user config file - default values

source

Persefone.loadmodelobject – Method.

51

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/input.jl#L20-L22
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/input.jl#L10-L12
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/input.jl#L129-L136
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/input.jl#L44-L49


CHAPTER 13. INPUT AND OUTPUT 52

loadmodelobject(fullfilename)

Deserialise a model object that was previously saved with [savemodelobject](@ref).

source

Persefone.parsecommandline – Method.

parsecommandline()

Certain software parameters can be set via the commandline.

source

Persefone.preprocessparameters – Method.

preprocessparameters(settings)

Take the raw input parameters and process them where necessary (e.g. convert types or perform checks).

This is a helper function for getsettings.

source

Persefone.@param – Macro.

@param(domainparam)

Return a configuration parameter from the global settings. The argument should be in the form <domain>.<parameter>,

for example @param(core.outdir). Possible values for <domain> are core, nature, farm, or crop. For a

full list of parameters, see src/parameters.toml.

Note: this macro only works in a context where the model object is available!

source

13.2 output.jl

Persefone.LOGFILE – Constant.

Log output is saved to simulation.log in the output directory

source

Persefone.RECORDDIR – Constant.

All input data are copied to the inputs folder within the output directory

source

Persefone.DataOutput – Type.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/input.jl#L184-L188
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/input.jl#L147-L151
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/input.jl#L84-L89
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/input.jl#L25-L36
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L8
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L11


CHAPTER 13. INPUT AND OUTPUT 53

DataOutput

A struct for organising model output. This is used to collect model data in an in-memory dataframe or for

CSV output. Submodels can register their own output functions using newdataoutput!.

Struct fields: - frequency: how often to call the output function. This can be any of: "daily", "monthly",

"yearly", "end", "never", or a date (e.g. "15 June"). - databuffer: a vector of vectors that temporarily saves

data before it is stored permanently or written to file. - datastore: a data frame that stores data until the

end of the run - outputfunction: a function that takes a model object and returns data values to record

(formatted as a vector of vectors). - plotfunction: a function that takes a model object and returns a Makie

figure object (optional).

source

Persefone.createdatadir – Method.

createdatadir(outdir, overwrite)

Creates the output directory, dealing with possible conflicts.

source

Persefone.data – Method.

Retrieve the data stored in a DataOutput (assumes core.storedata is true).

source

Persefone.modellogger – Function.

modellogger(loglevel, outdir, output="both")

Create a logger object that writes output to screen and/or a logfile. This object is stored as model.logger

and can then be used with with_logger(). Note: requires createdatadir to be run first.

source

Persefone.newdataoutput! – Function.

newdataoutput!(model, name, header, frequency, outputfunction, plotfunction)

Create and register a new data output. This function must be called by all submodels that want to have

their output functions called regularly.

source

Persefone.outputdata – Function.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L148-L165
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L17-L21
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L174
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L39-L45
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L180-L185


CHAPTER 13. INPUT AND OUTPUT 54

outputdata(model, force=false)

Cycle through all registered data outputs and activate them according to their configured frequency. If

force is true, activate all outputs regardless of their configuration.

source

Persefone.prepareTOML – Method.

prepareTOML(dict)

An internal utility function to re-convert the one-dimensional dict created by flattenTOML into the two-

dimensional dict needed by TOML.print, and convert any data types into TOML-compatible types where

necessary.

source

Persefone.record! – Method.

record!(model, outputname, data)

Append an observation vector to the given output.

source

Persefone.saveinputfiles – Method.

saveinputfiles(model)

Copy all input files into the output directory, including the actual parameter settings used. This allows

replicating a run in future.

source

Persefone.savemodelobject – Method.

savemodelobject(model, filename)

Serialise a model object and save it to file for later reference. Includes the current model and Julia versions

for compatibility checking.

WARNING: produces large files (>100 MB) and takes a while to execute.

source

Persefone.visualiseoutput – Method.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L212-L218
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L125-L131
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L254-L258
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L80-L85
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L301-L308


CHAPTER 13. INPUT AND OUTPUT 55

visualiseoutput(model)

Cycle through all data outputs and call their respective plot functions, saving each figure to file.

source

Persefone.withtestlogger – Method.

withtestlogger(model)

Replace the model logger with the currently active logger. This is intended to be used in the testsuite to

circumvent a Julia issue, where @test_logs doesn't work with local loggers.

source

Persefone.@data – Macro.

@data(outputname)

Return the data stored in the given output (assumes core.storedata is true). Only use in scopes where

model is available.

source

Persefone.@record – Macro.

@record(outputname, data)

Record an observation / data point. Only use in scopes where model is available.

source

13.3 makieplots.jl

Persefone.croptrends – Method.

croptrends(model)

Plot a dual line graph of cropped area and average plant height and cover per crop over time. Returns a

Makie figure object.

source

Persefone.datetickmarks – Method.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L283-L288
https://github.com/JuliaLang/julia/issues/48456
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L68-L74
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L273-L278
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/core/output.jl#L264-L268
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/analysis/makieplots.jl#L212-L217


CHAPTER 13. INPUT AND OUTPUT 56

datetickmarks(dates)

Given a vector of dates, construct a selection to use as tickmark locations. Helper function for [populationtrends](@ref)

source

Persefone.marbledwhiteabundanceplot – Method.

marbledwhiteabundanceplot(model)

Plot a line graph of total population size and individual demographics of marbled whites over time. Returns

a Makie figure object.

source

Persefone.marbledwhitelifestats – Method.

marbledwhitelifestats(model)

Plot various statistics from the marbled white model: fecundity, movement, habitat use

source

Persefone.marbledwhitetrendsplot – Method.

marbledwhitetrendsplot(model)

... Returns a Makie figure object.

source

Persefone.populationtrends – Method.

populationtrends(model)

Plot a line graph of population sizes of each species over time. Returns a Makie figure object.

source

Persefone.skylarkpopulation – Method.

skylarkpopulation(model)

Plot a line graph of total population size and individual demographics of skylarks over time. Returns a

Makie figure object.

source

Persefone.skylarkstats – Method.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/analysis/makieplots.jl#L259-L264
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/analysis/makieplots.jl#L137-L142
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/analysis/makieplots.jl#L160-L164
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/analysis/makieplots.jl#L189-L194
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/analysis/makieplots.jl#L52-L57
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/analysis/makieplots.jl#L76-L81


CHAPTER 13. INPUT AND OUTPUT 57

skylarkstats(model)

Plot various statistics from the skylark model: nesting habitat, territory size, mortality.

source

Persefone.visualisemap – Function.

visualisemap(model, date, landcover)

Draw the model's land cover map and plot all individuals as points on it at the specified date. If no date

is passed, use the last date for which data are available. Optionally, you can pass a landcover map image

(this is needed to reduce the frequency of disk I/O for Persefone Desktop). Returns a Makie figure object.

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/analysis/makieplots.jl#L100-L104
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/analysis/makieplots.jl#L8-L16


Chapter 14

Nature submodel

Unused source files

There are two source files in the src/nature directory that are currently not used: insects.jl and

energy.jl. The first defines a function insectbiomass() that provides a very rough estimate of insect

population density in a given pixel. The second is a (still incomplete) implementation of Dynamic

Energy Budgets. Both were begun in the expectation that they would be needed, but then set aside

for the time being. We note their existence here should they become useful again (with the caveat

that both require testing).

14.1 nature.jl

This file is responsible for managing the animal modules.

Persefone.Animal – Type.

Animal

This is the generic agent type for all animals. Individual species are created using the @species macro. In

addition to user-defined, species-specific fields, all species contain the following fields:

• id An integer unique identifier for this individual.

• sex male, female, or hermaphrodite.

• parents The IDs of the individual's parents.

• pos An (x, y) coordinate tuple.

• age The age of the individual in days.

• phase The update function to be called during the individual's current life phase.

• energy A DEBparameters struct for calculating energy budgets.

• offspring A vector containing the IDs of an individual's children.

• territory A vector of coordinates that comprise the individual's territory.

source

Persefone.animalid – Method.

58

https://doi.org/10.1111/2041-210x.12002
https://doi.org/10.1111/2041-210x.12002
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/nature.jl#L12-L28


CHAPTER 14. NATURE SUBMODEL 59

animalid(animal)

A small utility function to return a string with the species name and ID of an animal.

source

Persefone.create! – Method.

create!(animal, model)

The create! function is called for every individual at birth or at model initialisation. Species must use

@create to define a species-specific method. This is the fall- back method, in case none is implemented

for a species.

source

Persefone.initnature! – Method.

initnature!(model)

Initialise the model with all simulated animal populations.

source

Persefone.killallanimals! – Method.

killallanimals!(model)

Remove all animal individuals from the simulation.

source

Persefone.speciesof – Method.

speciesof(animal)

Return the species name of this animal as a string.

source

Persefone.speciestype – Method.

speciestype(name)

Return the Type of this species.

source

Persefone.stepagent! – Method.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/nature.jl#L70-L74
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/nature.jl#L79-L85
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/nature.jl#L100-L104
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/nature.jl#L137-L141
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/nature.jl#L31-L35
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/nature.jl#L43-L47


CHAPTER 14. NATURE SUBMODEL 60

stepagent!(animal, model)

Update an animal by one day, executing it's currently active phase function.

source

Persefone.updatenature! – Method.

updatenature!(model)

Run processes that affect all animals.

source

14.2 macros.jl

This file contains all the macros that can be used in the species DSL.

Persefone.@animal – Macro.

@animal(id)

Return the animal object associated with this ID number. This can only be used in a context where the

model object is available (e.g. nested within @phase).

source

Persefone.@countanimals – Macro.

@countanimals(radius=0, species="")

Count the number of animals at or near this location, optionally filtering by species. This can only be used

nested within @phase or @habitat.

source

Persefone.@create – Macro.

@create(species, body)

Define a special phase function (create!()) that will be called when an individual of this species is created,

at the initialisation of the simulation or at birth.

As for @phase, the body of this macro has access to the variables self (the individual being created) and

model (the simulation world), and can thus use all macros available in @phase.

source

Persefone.@cropcover – Macro.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/nature.jl#L90-L94
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/nature.jl#L115-L119
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L150-L156
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L467-L472
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L129-L139


CHAPTER 14. NATURE SUBMODEL 61

@cropcover

Return the percentage ground cover of the crop at this position, or nothing if there is no crop here. This is

a utility wrapper that can only be used nested within @phase or @habitat.

source

Persefone.@cropgroup – Macro.

@cropgroup

Return the group of the local croptype, or an empty string if there is no crop here. This is a utility wrapper

that can only be used nested within @phase or @habitat.

source

Persefone.@cropheight – Macro.

@cropheight

Return the height of the crop at this position, or nothing if there is no crop here. This is a utility wrapper

that can only be used nested within @phase or @habitat.

source

Persefone.@cropname – Macro.

@cropname

Return the name of the local croptype, or an empty string if there is no crop here. This is a utility wrapper

that can only be used nested within @phase or @habitat.

source

Persefone.@destroynest – Macro.

@destroynest(reason)

Utility wrapper for destroynest!() in the Skylark model.

source

Persefone.@directionto – Macro.

@directionto

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L386-L392
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L364-L370
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L375-L381
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L353-L359
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L527-L531


CHAPTER 14. NATURE SUBMODEL 62

Calculate the direction to an animal or the closest habitat of the specified type or descriptor. This is a utility

wrapper that can only be used nested within @phase or @habitat.

source

Persefone.@distanceto – Macro.

@distanceto

Calculate the distance to an animal or the closest habitat of the specified type or descriptor. This is a utility

wrapper that can only be used nested within @phase or @habitat.

source

Persefone.@distancetoedge – Macro.

@distancetoedge

Calculate the distance to the closest neighbouring habitat. This is a utility wrapper that can only be used

nested within @phase or @habitat.

source

Persefone.@follow – Macro.

@follow(leader, distance)

Move to a location within the given distance of the leading animal. This is a utility wrapper that can only

be used nested within @phase.

source

Persefone.@habitat – Macro.

@habitat

Specify habitat suitability for spatial ecological processes.

This macro works by creating an anonymous function that takes in a model object and a position, and

returns true or false depending on the conditions specified in the macro body.

Several utility macros can be used within the body of @habitat as a short-hand for common expressions:

@landcover, @cropname, @cropheight, @distanceto, @distancetoedge, @countanimals. The variables

model and pos can be used for checks that don't have a macro available.

Two example uses of @habitat might look like this:

movementhabitat = @habitat(@landcover() in (grass agriculture soil))

nestinghabitat = @habitat((@landcover() == grass ||

(@landcover() == agriculture && @cropname() != "maize" &&

@cropheight() < 10)) &&

@distanceto(forest) > 20)

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L399-L405
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L410-L416
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L421-L427
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L515-L520


CHAPTER 14. NATURE SUBMODEL 63

For more complex habitat suitability checks, the use of this macro can be circumvented by directly creating

an equivalent function.

source

Persefone.@here – Macro.

@here()

Return the landscape pixel of this animal's current location. This can only be used nested within @phase.

source

Persefone.@isalive – Macro.

@isalive(id)

Test whether the animal with the given ID is still alive. This can only be used in a context where the model

object is available (e.g. nested within @phase).

source

Persefone.@isoccupied – Macro.

@isoccupied(position)

Test whether this position is already occupied by an animal of this species. This can only be used nested

within @phase.

source

Persefone.@kill – Macro.

@kill

Kill this animal (and immediately abort its current update if it dies). This is a thin wrapper around kill!,

and passes on any arguments. This can only be used nested within @phase.

source

Persefone.@killother – Macro.

@killother

Kill another animal. This is a thin wrapper around kill!, and passes on any arguments. This can only be

used nested within @phase.

source

Persefone.@landcover – Macro.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L297-L324
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L172-L177
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L161-L167
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L260-L265
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L208-L214
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L219-L224


CHAPTER 14. NATURE SUBMODEL 64

@landcover

Returns the local landcover. This is a utility wrapper that can only be used nested within @phase or

@habitat.

source

Persefone.@migrate – Macro.

@migrate(arrival)

Remove this animal from the map and add it to the migrant species pool. It will be returned to its current

location at the specified arrival date. This can only be used nested within @phase.

source

Persefone.@move – Macro.

@move(position)

Move the current individual to a new position. This is a utility wrapper that can only be used nested within

@phase.

source

Persefone.@nearby_animals – Macro.

@nearby_animals(radius=0, species="")

Return an iterator over all animals in the given radius around the current position. This can only be used

nested within @phase or @habitat.

source

Persefone.@neighbours – Macro.

@neighbours(radius=0, conspecifics=true)

Return an iterator over all (by default conspecific) animals in the given radius around this animal, excluding

itself. This can only be used nested within @phase.

source

Persefone.@occupy – Macro.

@occupy(position)

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L343-L348
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L239-L245
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L491-L496
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L454-L459
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L478-L483


CHAPTER 14. NATURE SUBMODEL 65

Add the given position to this animal's territory. Use @vacate to remove positions from the territory again.

This can only be used nested within @phase.

source

Persefone.@phase – Macro.

@phase(name, body)

Use this macro to describe a species' behaviour during a given phase of its life. The idea behind this is

that species show very different behaviour at different times of their lives. Therefore, @phase can be used

define the behaviour for one such phase, and the conditions under which the animal transitions to another

phase.

@phase works by creating a function that will be called by the model if the animal is in the relevant phase.

When it is called, it has access to the following variables:

• self a reference to the animal itself. This provides access to all the variables defined in the @species

definition, as well as all standard Animal variables (e.g. self.age, self.sex, self.offspring).

• pos gives the animal's current position as a coordinate tuple.

• model a reference to the model world (an object of type SimulationModel). This allows access,

amongst others, to model.date (the current simulation date) and model.landscape (a two-dimensional

array of pixels containing geographic information).

Many macros are available to make the code within the body of @phase more succinct. Some of the

most important of these are: @setphase, @respond, @kill, @reproduce, @neighbours, @migrate, @move,

@occupy, @rand.

source

Persefone.@populate – Macro.

@populate(species, params)

Set the parameters that are used to initialise this species' population. For parameter options, see PopInitParams.

This macro has access to the model object.

@populate <species> begin

<parameter> = <value>

...

end

source

Persefone.@randomdirection – Macro.

@randomdirection(range=1)

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L250-L255
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L92-L116
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L61-L74


CHAPTER 14. NATURE SUBMODEL 66

Return a random direction tuple that can be passed to @walk. This is a utility wrapper that can only be

used nested within @phase.

source

Persefone.@randompixel – Macro.

@randompixel(range, habitatdescriptor)

Find a random pixel within a given range of the animal's location that matches the habitatdescriptor (create

this using @habitat). This is a utility wrapper that can only be used nested within @phase.

source

Persefone.@reproduce – Macro.

@reproduce

Let this animal reproduce. This is a thin wrapper around reproduce!, and passes on any arguments. This

can only be used nested within @phase.

source

Persefone.@respond – Macro.

@respond(eventname, body)

Define how an animal responds to a landscape event that affects its current position. This can only be

used nested within @phase.

source

Persefone.@setphase – Macro.

@setphase(newphase)

Switch this animal over to a different phase. This can only be used nested within @phase.

source

Persefone.@species – Macro.

@species(name, body)

A macro used to add new species types to the nature model. Use this to define species-specific variables

and parameters.

The macro works by creating a keyword-defined mutable struct that contains the standard fields described

for the Animal type, as well as any new fields that the user adds:

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L444-L449
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L432-L439
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L229-L234
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L192-L197
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L182-L187


CHAPTER 14. NATURE SUBMODEL 67

@species <name> begin

<var1> = <value>

<var2> = <value>

...

end

To complete the species definition, the @phase, @create, and @populate macros also need to be used.

source

Persefone.@vacate – Macro.

@vacate(position)

Remove the given position from this animal's territory. This can only be used nested within @phase.

source

Persefone.@vacate – Macro.

@vacate()

Remove this animal's complete territory. This can only be used nested within @phase.

source

Persefone.@walk – Macro.

@walk(direction, speed)

Walk the animal in a given direction, which is specified by a tuple of coordinates relative to the animal's

current position (i.e. (2, -3) increments the X coordinate by 2 and decrements the Y coordinate by 3.)

This is a utility wrapper that can only be used nested within @phase.

source

14.3 individuals.jl

This file contains life-history and other ecological functions that apply to all animal individuals, such reproduc-

tion, death, and movement.

Persefone.followanimal! – Function.

followanimal!(follower, leader, model, distance=0)

Move the follower animal to a location near the leading animal.

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L16-L36
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L270-L275
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L280-L285
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/macros.jl#L501-L508
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/individuals.jl#L114-L118


CHAPTER 14. NATURE SUBMODEL 68

Persefone.kill! – Function.

kill!(animal, model, probability=1.0, cause="")

Kill this animal, optionally with a given percentage probability. Returns true if the animal dies, false if not.

source

Persefone.migrate! – Method.

migrate!(animal, model, arrival)

Remove this animal from the map and add it to the migrant species pool. It will be returned to its current

location at the specified arrival date.

source

Persefone.move! – Method.

move!(animal, model, position)

Move the animal to the given position, making sure that this is in-bounds. If the position is out of bounds,

the animal stops at the map edge.

source

Persefone.occupy! – Method.

occupy!(animal, model, position)

Add the given location to the animal's territory. Returns true if successful (i.e. if the location was not

already occupied by a conspecific), false if not.

source

Persefone.reproduce! – Function.

reproduce!(animal, model, mate, n=1)

Produce one or more offspring for the given animal at its current location. The mate argument gives the

ID of the reproductive partner.

source

Persefone.vacate! – Method.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/individuals.jl#L33-L38
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/individuals.jl#L55-L60
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/individuals.jl#L128-L133
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/individuals.jl#L75-L80
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/individuals.jl#L7-L12


CHAPTER 14. NATURE SUBMODEL 69

vacate!(animal, model, position)

Remove this position from the animal's territory.

source

Persefone.vacate! – Method.

vacate!(animal, model)

Remove the animal's complete territory.

source

Persefone.walk! – Function.

walk!(animal, model, direction, distance=1pixel)

Let the animalmove a given number of steps in the given direction ("north", "northeast", "east", "southeast",

"south", "southwest", "west", "northwest", "random").

source

Persefone.walk! – Function.

walk!(animal, model, direction, distance=-1)

Let the animal move in the given direction, where the direction is defined by an (x, y) tuple to specify the

shift in coordinates. If maxdist >= 0, move no further than the specified distance.

source

14.4 populations.jl

This file contains functions that apply to all animal populations, such as for initialisation, or querying for neigh-

bours.

Persefone.PopInitParams – Type.

PopInitParams

A set of parameters used by initpopulation! to initialise the population of a species at the start of a

simulation. Define these parameters for each species using @populate.

• initphase determines which life phase individuals will be assigned to at model initialisation (re-

quired).

• birthphase determines which life phase individuals will be assigned to at birth (required).

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/individuals.jl#L92-L96
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/individuals.jl#L102-L106
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/individuals.jl#L142-L147
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/individuals.jl#L177-L183


CHAPTER 14. NATURE SUBMODEL 70

• habitat is a function that determines whether a given location is suitable or not (create this using

@habitat). By default, every cell will be occupied.

• popsize determines the number of individuals that will be created, dispersed over the suitable lo-

cations in the landscape. If this is zero or negative, one individual will be created in every suitable

location. If it is greater than the number of suitable locations, multiple individuals will be created per

location. Alternately, use indarea.

• indarea: if this is greater than zero, it determines the habitat area allocated to each individual or

pair. To be precise, the chance of creating an individual (or pair of individuals) at a suitable location

is 1/indarea. Use this as an alternative to popsize.

• sex determines how indidivduals are assigned a sex. If this is :pairs (the default), a male and a

female will be created in each selected location. If :random, a male or a female will be created.

Otherwise, male, female, or hermaphrodite can be chosen to force all individuals to be of the same

sex.

source

Persefone.countanimals – Method.

countanimals(pos, model; radius=0, species="")

Return the number of animals in the given radius around this position, optionally filtering by species.

source

Persefone.directionto – Method.

directionto(pos, model, animal)

Calculate the direction from the given position to the animal.

source

Persefone.distanceto – Method.

distanceto(pos, model, animal)

Calculate the distance from the given position to the animal.

source

Persefone.initindividuals! – Method.

initindividuals!(species, pos, popinitparams, model)

Initialise one or two individuals (depending on the pairs parameter) in the given location. Returns the

number of created individuals. (Internal helper function for initpopulation!().)

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L7-L35
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L210-L215
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L234-L238
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L244-L248
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L110-L116


CHAPTER 14. NATURE SUBMODEL 71

Persefone.initpopulation! – Method.

initpopulation!(speciesname, model)

Initialise the population of the given species, based on the parameters stored in PopInitParams. Define

these using @populate.

source

Persefone.initpopulation! – Method.

initpopulation!(speciestype, popinitparams, model)

Initialise the population of the given species, based on the given initialisation parameters. This is an

internal function called by initpopulation!(), and was split off from it to allow better testing.

source

Persefone.isalive – Method.

isalive(id, model)

Test whether the animal with the given ID is still alive.

source

Persefone.isoccupied – Method.

isoccupied(model, position, species)

Test whether this location is part of the territory of an animal of the given species.

source

Persefone.nearby_animals – Method.

nearby_animals(pos, model; radius= 0, species="")

Return a list of animals in the given radius around this position, optionally filtering by species.

source

Persefone.nearby_ids – Method.

nearby_ids(pos, model, radius)

Return a list of IDs of the animals within a given radius of the position.

source

Persefone.neighbours – Function.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L55-L60
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L67-L73
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L166-L170
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L141-L145
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L194-L198
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L175-L179


CHAPTER 14. NATURE SUBMODEL 72

neighbours(animal, model, radius=0, conspecifics=true)

Return a list of animals in the given radius around this animal, excluding itself. By default, only return

conspecific animals.

source

Persefone.populationparameters – Method.

populationparameters(type)

A function that returns a PopInitParams object for the given species type. Parametric methods for each

species are defined with @populate. This is the catch-all method, which throws an error if no species-

specific function is defined.

source

Persefone.territorysize – Function.

territorysize(animal, model, stripunits=false)

Calculate the size of this animal's territory in the given unit. If stripunits is true, return the size as a

plain number.

source

14.5 ecologicaldata.jl

This file contains a set of life-history related utility functions needed by species.

Persefone.initecologicaldata – Method.

initecologicaldata()

Create output files for each data group collected by the nature model.

source

Persefone.marbledwhiteabundance – Method.

marbledwhiteabundance(model)

Save marbledwhite abundance data, including total abundance and demographic data (abundances of

breeding/non-breeding/juvenile/migrated individuals).

source

Persefone.marbledwhitetrends – Method.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L221-L226
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L45-L51
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/populations.jl#L153-L158
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/ecologicaldata.jl#L7-L11
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/ecologicaldata.jl#L150-L155


CHAPTER 14. NATURE SUBMODEL 73

marbledwhitetrends(model)

Save marbledwhite abundance data, including total abundance and demographic data (abundances of

breeding/non-breeding/juvenile/migrated individuals).

source

Persefone.saveindividualdata – Method.

saveindividualdata(model)

Return a data table (to be printed to individuals.csv), listing all properties of all animal individuals in

the model. May be called never, daily, monthly, yearly, or at the end of a simulation, depending on the

parameter nature.indoutfreq. WARNING: Produces very big files!

source

Persefone.savepopulationdata – Method.

savepopulationdata(model)

Return a data table (to be printed to populations.csv), giving the current date and population size for

each animal species. May be called never, daily, monthly, yearly, or at the end of a simulation, depending

on the parameter nature.popoutfreq.

source

Persefone.skylarkabundance – Method.

skylarkabundance(model)

Save skylark abundance data, including total abundance and demographic data (abundances of breed-

ing/non-breeding/juvenile/migrated individuals).

source

Persefone.skylarkterritories – Method.

skylarkterritories(model)

Return a list of all coordinates occupied by a skylark territory, and the ID of the individual holding the

territory. WARNING: produces very big files.

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/ecologicaldata.jl#L176-L181
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/ecologicaldata.jl#L46-L53
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/ecologicaldata.jl#L22-L29
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/ecologicaldata.jl#L81-L86
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/ecologicaldata.jl#L115-L120


Chapter 15

Species models

The ecological submodel in Persefone simulates a range of species in agricultural landscapes.

15.1 Skylark

Persefone.Skylark – Type.

Skylark

Alauda arvensis is a common and charismatic species of agricultural landscapes.

Sources: - Bauer, H.-G., Bezzel, E., & Fiedler, W. (Eds.). (2012). Das Kompendium der Vögel Mitteleu-

ropas: Ein umfassendes Handbuch zu Biologie, Gefährdung und Schutz (Einbändige Sonderausg. der 2.,

vollständig überarb. und erw. Aufl. 2005). AULA-Verlag - Delius, J. D. (1965). A Population Study of Skylarks

Alauda Arvensis. Ibis, 107(4), 466–492. https://doi.org/10.1111/j.1474-919X.1965.tb07332.x - Donald et

al. (2002). Survival rates, causes of failure and productivity of Skylark Alauda arvensis nests on lowland

farmland. Ibis, 144(4), 652–664. https://doi.org/10.1046/j.1474-919X.2002.00101.x - Glutz von Blotzheim,

Urs N. (Ed.). (1985). Handbuch der Vögel Mitteleuropas. Bd. 10. Passeriformes (Teil 1) 1. Alaudidae -

Hirundidae. AULA-Verlag, Wiesbaden. ISBN 3-89104-019-9 - Jenny, M. (1990). Territorialität und Brutbiolo-

gie der Feldlerche Alauda arvensis in einer intensiv genutzten Agrarlandschaft. Journal für Ornithologie,

131(3), 241–265. https://doi.org/10.1007/BF01640998 - Püttmanns et al. (2022). Habitat use and forag-

ing parameters of breeding Skylarks indicate no seasonal decrease in food availability in heterogeneous

farmland. Ecology and Evolution, 12(1), e8461. https://doi.org/10.1002/ece3.8461

source

Persefone.#1371#fun – Function.

Initialise the skylark population. Creates pairs of skylarks on grassland and agricultural land, keeping a

distance of 60m to vertical structures and giving each pair an area of 3ha.

source

Persefone.allowsnesting – Method.

allowsnesting(skylark, model, pos)

Check whether the given position is suitable for nesting.

74

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/skylark.jl#L13-L37
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/skylark.jl#L426-L429


CHAPTER 15. SPECIES MODELS 75

source

Persefone.breeding – Method.

Females that have laid eggs take care of their chicks, restarting the nesting process once the chicks are

independent or in case of brood loss.

source

Persefone.create! – Method.

Initialise a skylark individual. Selects migration dates and checks if the bird should currently be on migra-

tion. Also sets other individual-specific variables.

source

Persefone.destroynest! – Method.

destroynest!(skylark, model, reason)

Remove the skylark's nest and offspring due to disturbance or predation.

source

Persefone.findterritory – Method.

findterritory(skylark, model)

Check whether the habitat surrounding the skylark is suitable for establishing a territory. If it is, return the

list of coordinates that make up the new territory, else return an empty list.

source

Persefone.foragequality – Method.

foragequality(skylark, model, pos)

Calculate the relative quality of the habitat at this position for foraging. This assumes that open habitat is

best (quality = 1.0), and steadily decreases as vegetation height and/or cover increase. (Linear regressions

based on Püttmanns et al., 2021; Jeromin, 2002; Jenny, 1990b.)

source

Persefone.matesearch – Method.

Females returning from migration move around to look for a suitable partner with a territory.

source

Persefone.nesting – Method.

Females that have found a partner build a nest and lay eggs in a suitable location.

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/skylark.jl#L355-L359
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/skylark.jl#L242-L245
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/skylark.jl#L387-L390
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/skylark.jl#L370-L374
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/skylark.jl#L287-L292
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/skylark.jl#L335-L342
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/skylark.jl#L161-L163
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/skylark.jl#L200-L202


CHAPTER 15. SPECIES MODELS 76

Persefone.nonbreeding – Method.

Non-breeding adults move around with other individuals and check for migration.

source

Persefone.occupation – Method.

Once a male has found a territory, he remains in it until the breeding season is over, adjusting it to new

conditions when and as necessary.

source

Persefone.territorysearch – Method.

Males returning from migration move around to look for suitable habitats to establish a territory.

source

15.2 Marbled White

Persefone.MarbledWhite – Type.

Marbled White

Melanargia galathea is a grassland specialist butterfly.

Sources: - Baguette et al. (2000). Population spatial structure and migration of three butterfly species

within the same habitat network: Consequences for conservation. Journal of Applied Ecology, 37(1),

100–108. https://doi.org/10.1046/j.1365-2664.2000.00478.x - Dennis (Ed.). (1992). The ecology of butter-

flies in Britain. Oxford University Press. - Ebert & Rennwald (1991). Die Schmetterlinge Baden-Württembergs,

Bd.2, Tagfalter: Satyridae, Libytheidae, Lycaenidae, Hesperiidae. Verlag Eugen Ulmer. - Evans et al.

(2019). Integrating the influence of weather into mechanistic models of butterfly movement. Movement

Ecology, 7(1), 24. https://doi.org/10.1186/s40462-019-0171-7 - Gotthard et al. (2007). What Keeps In-

sects Small? Time Limitation during Oviposition Reduces the Fecundity Benefit of Female Size in a But-

terfly. The American Naturalist, 169(6), 768–779. https://doi.org/10.1086/516651 - Hannappel & Fischer

(2020). Grassland intensification strongly reduces butterfly diversity in the Westerwald mountain range,

Germany. Journal of Insect Conservation, 24(2), 279–285. https://doi.org/10.1007/s10841-019-00195-1

- Kühn et al. (2024). Tagfalter-Monitoring Deutschland: Auswertung 2005-2023. Oedippus, 42, 12–45.

https://www.ufz.de/export/data/6/298835298188Oedippus42klein.pdf - Lenda & Skórka (2010). Patch oc-

cupancy, number of individuals and population density of the Marbled White in a changing agricultural

landscape. Acta Oecologica, 36(5), 497–506. https://doi.org/10.1016/j.actao.2010.07.002 - Reinhardt et

al. (2007): Tagfalter von Sachsen. In: Klausnitzer & Reinhardt (Hrsg.) Beiträge zur Insektenfauna Sach-

sens Band 6. – Entomologische Nachrichten und Berichte, Beiheft 11, 696 + 48 Seiten. Dresden. - Roy

et al. (2001). Butterfly numbers and weather: Predicting historical trends in abundance and the future

effects of climate change. Journal of Animal Ecology, 70(2), 201–217. https://doi.org/10.1111/j.1365-

2656.2001.00480.x - Schulte et al. (2007). Die Tagfalter der Pfalz—Band 2. Gesellschaft für Naturschutz

und Ornithologie Rheinland-Pfalz. - Vandewoestijne et al. (2004). Dispersal, landscape occupancy and

population structure in the butterfly Melanargia galathea. Basic and Applied Ecology, 5(6), 581–591.

https://doi.org/10.1016/j.baae.2004.07.004

source

Persefone.#1521#fun – Function.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/skylark.jl#L95-L97
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/skylark.jl#L145-L148
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/skylark.jl#L122-L124
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/marbled_white.jl#L7-L47


CHAPTER 15. SPECIES MODELS 77

Initialise the marbled white population with one individual on every grassland pixel.

source

Persefone.adult – Method.

Adult marbled whites (we only simulate females) fly around more or less randomly on days

with good weather, laying eggs on suitable habitat.

Movement

Adults move a given number of steps each day, depending on the temperature (see below). Each step,

an individual randomly scans landscape pixels within its perceptual range of 100m. If the pixel is suitable

habitat, i.e. either arable or extensive grassland with plant heights within the required range (30-60cm), it

moves to this pixel. In this case, the individual also lays an egg if it has not yet laid all its eggs for that day.

If the pixel is not suitable habitat, it may nevertheless move there with a certain probability (given by the

habitatpreference parameter). Otherwise, it looks at the next randomly chosen pixel in its perceptual

range.

Temperature

Temperature affects both the distance moved and the number of eggs laid each day. The optimal temper-

ature is taken to be the midway point between the species' minimum and maximum temperatures (i.e.

24°C). Outside the species' temperature range (18-30°C), neither movement nor oviposition take place.

Within that range, the number of steps each day peaks at the optimum temperature and declines linearly

on either side of it. (cf. Evans et al., 2019). The number of eggs laid declines linearly if the temperature is

below the optimum, but stays stable above it (cf. Gotthard et al., 2007). The daily mean temperatures are

used as the basis for calculation (using the maximum temperature produces wrong model results during

heat waves).

source

Persefone.create! – Method.

Initialise a marbled white individual. Mainly defines the time this individual will spend in each phase. (This

ought to be temperature-dependent rather than random, but I don't have data for that.)

source

Persefone.egg – Method.

Juvenile individuals (i.e. eggs, larvae, pupae) simply wait for the eclosing day.

source

Persefone.habitatcategory – Method.

habitatcategory(butterfly, model)

Return the habitat category of the butterfly's current location (using a species-specific classification).

source

Persefone.larva – Method.

Juvenile individuals (i.e. eggs, larvae, pupae) simply wait for the eclosing day.

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/marbled_white.jl#L414-L416
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/marbled_white.jl#L136-L162
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/marbled_white.jl#L361-L365
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/marbled_white.jl#L103-L105
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/marbled_white.jl#L306-L311
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/marbled_white.jl#L114-L116


CHAPTER 15. SPECIES MODELS 78

Persefone.moveproximity – Method.

moveproximity(self, model)

Each step, an individual scans its surroundings in concentric circles, looking for the closest spot that offers

suitable habitat which it hasn't visited today. (Depending on the habitatpreference and selfavoidance

parameters, spots that are not suitable habitat or have been visited before may also be selected.) Spots

with higher population densities are more likely to be avoided (avoidance increases linearly up to 100% at

maxindperpixel). Returns nothing if no suitable spot is selected.

source

Persefone.moverandom – Method.

moverandom(self, model)

The butterfly randomly inspects pixels within its field of view and moves to the first suitable spot it finds.

Depending on the habitatpreference parameter, spots that are not suitable habitat may also be selected.

Spots with higher population densities are more likely to be avoided (avoidance increases linearly up to

100% at maxindperpixel). Returns nothing if no suitable spot is selected.

source

Persefone.pupa – Method.

Juvenile individuals (i.e. eggs, larvae, pupae) simply wait for the eclosing day.

source

Persefone.recordlifestats – Method.

recordlifestats(butterfly, model)

Save this butterfly's life stats to file.

source

Persefone.suitablehabitat – Method.

suitablehabitat(butterfly, model, pos)

Check whether the given position is suitable for oviposition. This means: the land cover must be either

grass or fallow, and if grass, must either not be managed, or not have been fertilised and be a certain

height.

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/marbled_white.jl#L224-L233
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/marbled_white.jl#L263-L271
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/marbled_white.jl#L125-L127
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/marbled_white.jl#L331-L335
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/nature/species/marbled_white.jl#L290-L296


Chapter 16

Crop submodel

Persefone reimplements two different crop models for different purposes. AquaCrop is a well-established crop

growth model developed by the FAO, which provides quite reliable estimates of plant growth but is data-

intensive to parameterise. The vegetation submodel of ALMaSS is much simpler, but also less reliable. Ac-

cordingly, we use AquaCrop for our main crop types, and ALMaSS for the rest (especially grass growth).

16.1 farmplot.jl

This file is responsible for the farm plots, i.e. the indidivual fields that farmers manage.

Persefone.FarmPlot – Type.

FarmPlot

A struct representing a single field, on which a crop can be grown.

source

Persefone.averagefieldsize – Method.

averagefieldsize(model)

Calculate the average field size in hectares for the model landscape.

source

Persefone.cropcover – Method.

cropcover(model, position)

Return the crop cover of the crop at this position, or nothing if there is no crop here (utility wrapper).

source

Persefone.cropgroup – Method.

79

https://doi.org/10.21105/joss.07944
https://doi.org/10.3897/fmj.5.121215
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/farmplot.jl#L6-L10
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/farmplot.jl#L109-L113
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/farmplot.jl#L163-L168


CHAPTER 16. CROP SUBMODEL 80

cropgroup(model, position)

Return the group of the crop at this position, or an empty string if there is no crop here (utility wrapper).

source

Persefone.cropheight – Method.

cropheight(model, position)

Return the height of the crop at this position, or nothing if there is no crop here (utility wrapper).

source

Persefone.cropname – Method.

cropname(model, position)

Return the name of the crop at this position, or NA if there is no crop here (utility wrapper).

source

Persefone.croptype – Method.

croptype(model, position)

Return the crop at this position, or nothing if there is no crop here (utility wrapper).

source

Persefone.harvest! – Method.

harvest!(farmplot, model)

Harvest the crop of this farmplot.

source

Persefone.isgrassland – Method.

isgrassland(farmplot, model)

Classify a farmplot as grassland or not (i.e., is the landcover of >80% of its pixels grass?)

source

Persefone.sow! – Method.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/farmplot.jl#L141-L146
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/farmplot.jl#L152-L157
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/farmplot.jl#L130-L135
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/farmplot.jl#L120-L124
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/farmplot.jl#L59-L63
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/farmplot.jl#L90-L94


CHAPTER 16. CROP SUBMODEL 81

sow!(farmplot, model, cropname)

Sow the specified crop on the farmplot.

source

Persefone.stepagent! – Method.

stepagent!(farmplot, model)

Update a farm plot by one day.

source

Persefone.@harvest – Macro.

@harvest()

Harvest the current field. Requires the variables field and model.

source

Persefone.@sow – Macro.

@sow(cropname)

Sow the named crop on the current field. Requires the variables field and model.

source

16.2 cropmodels.jl

This initialises the crop models and the farmplots at the beginning of the simulation.

Persefone.initcropmodels – Method.

initcropmodels(cropmodels, cropdirectory; region)

Initialise the crop models given as a comma-delimited string (e.g. "almass,aquacrop"). The crop model

parameters are read from the cropdirectories, also a comma-delimited string. Returns the crop types

available in the simulation.

source

Persefone.initfields! – Method.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/farmplot.jl#L43-L47
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/farmplot.jl#L34-L38
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/farmplot.jl#L79-L83
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/farmplot.jl#L70-L74
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/cropmodels.jl#L8-L15


CHAPTER 16. CROP SUBMODEL 82

initfields!(model)

Initialise the farm plots in the simulation model.

source

16.3 almass.jl

This file reimplements the ALMaSS vegetation submodel.

Persefone.ALMaSS.temperature_to_solar_conversion_c3 – Constant.

Temperature to solar conversion factor for C3 plants.

source

Persefone.ALMaSS.temperature_to_solar_conversion_c4 – Constant.

Temperature to solar conversion factor for C4 plants.

source

Persefone.ALMaSS.CropCurveParams – Type.

CropCurveParams

The values in this struct define one crop growth curve.

source

Persefone.ALMaSS.CropState – Type.

CropState

The state data for an ALMaSS vegetation point calculation. Usually part of a FarmPlot.

source

Persefone.ALMaSS.CropType – Type.

CropType

The type struct for all crops. Currently follows the crop growth model as implemented in ALMaSS.

source

Persefone.ALMaSS.GrowthPhase – Type.

GrowthPhase

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/cropmodels.jl#L47-L51
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L229
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L243
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L88-L92
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L158-L163
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L118-L123


CHAPTER 16. CROP SUBMODEL 83

ALMaSS crop growth curves are split into five phases, triggered by seasonal dates or agricultural events.

source

Base.tryparse – Method.

Base.tryparse(type, str)

Extend tryparse to allow parsing GrowthPhase values. (Needed to read in the CSV parameter file.)

source

Persefone.ALMaSS.buildgrowthcurve – Method.

buildgrowthcurve(data)

Convert a list of rows from the crop growth data into a CropCurveParams object.

source

Persefone.ALMaSS.readcropparameters – Method.

readcropparameters(cropdirectory)

Parse a CSV file containing the required parameter values for each crop (as produced from the original

ALMaSS file by convert_almass_data.py).

source

Persefone.ALMaSS.setphase! – Method.

setphase!(cropstate, phase)

Set the growth phase of an ALMaSS cropstate.

source

Persefone.ALMaSS.solar_conversion_c3 – Method.

solar_conversion_c3(temperature)

Solar conversion factor (no units) for C3 plants.

source

Persefone.ALMaSS.solar_conversion_c4 – Method.

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L80-L85
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L362-L367
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L377-L381
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L406-L411
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L437-L441
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L256-L260


CHAPTER 16. CROP SUBMODEL 84

solar_conversion_c3(temperature)

Solar conversion factor (no units) for C4 plants.

source

Persefone.harvest! – Method.

harvest!(cropstate, model)

Harvest the crop of this cropstate.

source

Persefone.sow! – Method.

sow!(cropstate, model, cropname)

Change the cropstate to sow the specified crop.

source

Persefone.stepagent! – Method.

stepagent!(cropstate, model)

Update a farm plot by one day.

source

16.4 aquacrop.jl

This file integrates the AquaCrop model (implemented in a separate pacakge) into Persefone.

Persefone.AquaCropWrapper.readcropparameters – Method.

readcropparameters(cropdirectory; region)

Read parameters needed for the AquaCrop crop module in Persefone:

• a CSV file crop_data.csv containing some parameters required to map

AquaCrop crop names to Persefone crop names, as well as additional crop data needed for Persefone

(cropgroup, minsowdate, maxsowdate)

• modified crop parameters for each region, e.g. the file data/crop/aquacrop/regions/jena/winter_wheat.toml

can be used to overload the parameters of the Persefone crop "winter wheat" for the "jena" region

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L269-L273
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L877-L881
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L855-L859
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/almass.jl#L691-L695


CHAPTER 16. CROP SUBMODEL 85

source

Persefone.harvest! – Method.

harvest!(cropstate, model)

Harvest the crop of this cropstate.

source

Persefone.sow! – Method.

sow!(cropstate, model, cropname)

Change the cropstate to sow the specified crop.

source

Persefone.stepagent! – Method.

stepagent!(cropstate, model)

Update a crop state by one day.

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/aquacrop.jl#L94-L108
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/aquacrop.jl#L385-L389
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/aquacrop.jl#L366-L370
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/crop/aquacrop.jl#L357-L361


Chapter 17

Farm submodel

Eventually, the aim is to create a full socio-economic farm decision model for Persefone. However, for the time

being, we will restrict ourselves to a simple model that executes typical farm operations and crop rotations.

17.1 farm.jl

This file is responsible for managing the farm module(s).

Persefone.BasicFarmer – Type.

BasicFarmer

The BasicFarmer type simply applies a set crop rotation to his fields and keeps track of income.

source

Persefone.Farmer – Type.

This is the agent type for the farm ABM.

source

Persefone.initbasicfarms! – Method.

initbasicfarms!(model)

Initialise the basic farm model. All fields are controlled by a single farmer actor and are assigned as

grassland, set-aside, or arable land with a crop rotation.

source

Persefone.initfarms! – Method.

initfarms!(model)

Initialise the model with a set of farm agents, depending on the configured farm model.

source

86

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/farm/farm.jl#L38-L42
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/farm/farm.jl#L9
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/farm/farm.jl#L118-L123
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/farm/farm.jl#L15-L19


CHAPTER 17. FARM SUBMODEL 87

Persefone.stepagent! – Method.

stepagent!(farmer, model)

Update a farmer by one day. Cycle through all fields and see what management is needed.

source

Persefone.updatefarms! – Method.

updatefarms!(model)

Run processes that affect all farms and fields.

source

17.2 farmdata.jl

This file collects relevant output data from the farm model.

Persefone.initfarmdata – Method.

initfarmdata()

Create output files for each data group collected by the farm model.

source

Persefone.savefielddata – Method.

savefielddata(model)

Return a data table (to be printed to fields.csv), giving the current date, and the area and average height

and cover of each crop in the landscape. May be called never, daily, monthly, yearly, or at the end of a

simulation, depending on the parameter farm.fieldoutfreq.

source

17.3 scenarios.jl

This file contains management scenarios that can modify the functioning of the farm component.

Persefone.applyscenarios – Method.

applyscenarios(model)

Calls functions that can change settings or otherwise manipulate the model to implement different simu-

lation scenarios.

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/farm/farm.jl#L69-L73
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/farm/farm.jl#L54-L58
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/farm/farmdata.jl#L6-L10
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/farm/farmdata.jl#L17-L24
https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/farm/scenarios.jl#L6-L11


CHAPTER 17. FARM SUBMODEL 88

Persefone.sc_thuringian_fallows – Method.

sc_thuringian_fallows(model)

This scenario changes the amount of set-aside/fallow area over time, based on historical developments in

Thuringia following changes in the CAP (2007: abolishment of set-asides (used as a market instrument);

2015: introduction of Greening). Note: does not include the most recent changes (CAP post-2022).

Based on data from Thüringer Landesamt für Statistik, via Jungmann (2018): https://wirtschaft.thuerin-

gen.de/fileadmin/Landwirtschaft/Agrarpolitik/oevfbiodiversitatthueringen_nov2018.pdf

source

https://git.idiv.de/persefone/persefone-model/-/tree/33b037c15eb190cba3144ece74b0ec17979674cf/src/farm/scenarios.jl#L22-L32


Appendix: Crop model descriptions and calibration

1 Crop model descriptions

1.1 AquaCrop (FAO Crop Water Productivity Model)

AquaCrop (Steduto et al., 2009; Raes et al., 2009) is a process-based crop
growth model designed to predict crop yield response to water conditions.
It simulates plant growth over time — including canopy cover, phenology,
biomass, yield, and other variables — based on physical and physiological
processes. The model also incorporates management practices and environ-
mental input data. Inside Persefone, the AquaCrop.jl (Dı́az Iturry et al.,
2025) implementation of the AquaCrop model was used, which is a direct
translation of the original AquaCrop Fortran code to the Julia programming
language.

The AquaCrop model focuses on the yield response to water availabil-
ity. It is designed to use a relatively low number of parameters, which are
expected to be easy to estimate. The model emphasises the fundamental
processes involved in crop productivity and the responses to water deficits,
both from physiological and agronomic perspectives. In addition to crop
parameters, AquaCrop also relies on climate input data and soil type char-
acterisation. Temperature data are used to track crop development through
the calculation of growing degree days (GDD). Rainfall and soil properties
are used to estimate the soil water content within the root zone. Based
on these calculations, the model estimates the crop’s canopy cover (CC).
Subsequently, using reference evapotranspiration (ETo) and the water pro-
ductivity (WP) parameter, it estimates biomass production. Finally, the
harvest index (HI) is applied to convert biomass into yield, as described
in (Steduto et al., 2009; Raes et al., 2009). Daily solar radiation is not an
explicit AquaCrop model input, but its effect enters indirectly via the ref-
erence evapotranspiration. We extended the model by adding functionality
to calculate plant height from biomass.

Model inputs. To simulate with AquaCrop and predict plant yields for
given conditions, the following data are needed:

• climate data: min./max. daily air temperature, rainfall, reference
evapotranspiration

1



• soil type: five horizons, each with hydraulic conductivity, water con-
tent at saturation, field capacity, and permanent wilting point. These
parameters can be set from preset soil types such as “silty loam” etc.

• crop type and parameters

• sowing date and sowing density

Model outputs. The outputs relevant to Persefone are:

• canopy cover

• dry biomass and yield

Model calibration. To calibrate crop parameters to empirical crop data,
the following is needed:

• input data as above

• biomass or yield per crop type

• phenological phase dates per crop type (date of germination, flowering,
etc)

1.2 ALMaSS vegetation model

ALMaSS (Animal, Landscape and Man Simulation System) is an agent-
based landscape simulation framework developed to study fauna and man-
agement in agricultural environments (Topping, Hansen, et al., 2003; Top-
ping and Duan, 2024). It includes a vegetation/crop growth sub-model that
provides daily vegetation state (e.g., height, biomass, fractional cover) to
the animal agents. The crop module is a simple, semi-mechanistic light-use-
efficiency (LUE) model driven primarily by solar radiation and temperature
(growing degree-days), with stage changes driven by crop management (sow-
ing, harvest) or calendar time (1 January, 1 March). The model does not
consider water availability or transpiration, and assumes that an adequate
amount of water is available. In Persefone, the ALMaSS vegetation model
has been re-implemented in the Julia programming language, following the
original publication and source code.

Each crop stage has its own set of three piecewise-linear growth curves
that determine the daily change in plant height, green and total leaf area
index of the plant in terms of growing degree-days.

The amount of radiation absorbed by the plant canopy can be calculated
from the green leaf area index with the Beer-Lambert law of extinction. Fi-
nally, the change in dry matter is calculated from the amount of solar energy
with a simple multiplicative model of crop- and temperature-dependent fac-
tors.

2



The total accumulated dry matter over the course of a simulation can
be calculated as the sum of daily changes, which are determined by the leaf
area index, temperature, incoming radiation:

W =
n∑

d=1

ε f(T (d))ϕ(L(d))R(d) p(d)

• W : accumulated dry matter (g/m2) at day n

• ε: radiation use efficiency (g/MJ), depends on plant species

• f(T ): effect of temperature T (°C) on radiation use efficiency, depends
on plant species

• ϕ: fraction of incoming light intercepted by canopy; estimated as
ϕ(L(d)) = 1 − e−kL(d) from leaf area index L, with extinction coef-
ficient k = 0.4

• R: incoming daily radiation (MJ/m2)

• p: effect of fertiliser use

Model inputs. A simulation with the ALMaSS vegetation model needs
the following input data:

• climate data: min./max. daily air temperature, incoming daily radia-
tion

• crop parameters: growth curves for height and green/total leaf area
index in terms of growing-degree days (GDD), radiation use efficiency
for crop type,

• sowing date

Model outputs.

• canopy height, green leaf area index, total leaf area index

• accumulated dry matter (biomass)

2 AquaCrop height-biomass regression

AquaCrop does not predict canopy height, which is required by our ecosys-
tem simulator Persefone. We therefore infer height from dry biomass by
fitting a saturating rational function to observations of plant height and
biomass for major field crops.

3



Data and variables. We used the multi-site crop monitoring dataset of
(Reichenau et al., 2020), pooling observations across four monitored sites
in western Germany (Hürtgenwald, Merken, Selhausen, Merzenhausen) for
the following crops: maize (MA), winter wheat (WW), winter barley (WB), and
rapeseed (RA). The response variable is the measured canopy height (cm).
The predictor is dry biomass per plant (g plant−1), computed as the sum of
dry mass compartments divided by the observed plant density:

x =
DWgreen leaves +DWbrown leaves +DWgreen stems +DWbrown stems +DWfruit

nplants /m2

,

(1)
where the five dry-weight compartments correspond to the dataset columns
DW green leaves, DW brown leaves, DW green stems, DW brown stems, DW fruit,
and nplants /m2 is the observed plant density (column num plants m2). All
crop-specific fits pool data over sites and dates (no site or date effects are
modelled).

Model. For each crop, canopy height h as a function of dry biomass per
plant x is modelled by a three-parameter rational function:

h(x) =
a x b

c+ x b
, a, b, c > 0. (2)

This form is monotone and saturating with interpretable parameters: the
asymptotic maximum height is limx→∞ h(x) = a; the half-saturation biomass
is

x50 = c 1/b such that h(x50) =
1
2a, (3)

and the exponent b controls how sharply height increases with biomass
around x50. For small x, h(x) ≈ (a/c)x b.

The saturating form of the fitting function ensures realistic capping of
height and realistic behavior when biomass is large.

Estimation. Parameters (a, b, c) were estimated by nonlinear least squares
for each crop separately, minimizing the sum of squared residuals in height.
We used the Levenberg-Marquardt algorithm as implemented in LsqFit.jl,
with starting values (a, b, c) = (100, 2, 4) chosen to reflect typical ce-
real/maize canopy heights and a sigmoidal rise with biomass. Goodness
of fit is summarized by the coefficient of determination

R2 = 1−
∑

i

(
hi − ĥ(xi)

)2∑
i

(
hi − h̄

)2 , (4)

where hi are observed heights, ĥ(xi) are model predictions from (2), and h̄
is the sample mean height. Fits were performed independently for maize,
winter wheat, winter barley, and rapeseed using all available observations
for which (1) was defined.

4



Resulting functional fits.

Figure 1: Data and rational function fits for predicting plant height from
dry biomass

Use in Persefone. In the simulator, crop height is obtained by evaluating
(2) with the fitted, crop-specific parameters from this dataset (â, b̂, ĉ) and
the current AquaCrop dry biomass per plant x in the simulation.

Code availability. The notebook with the code for the height-biomass
nonlinear regression can be found at TODO:addURL.

3 AquaCrop model calibration

Crop parameters were estimated from empirical data with AquaCrop.jl (Dı́az
Iturry et al., 2025) for silage maize, winter wheat, winter barley, and winter

5

TODO: add URL


rapeseed. After parameter fitting, we compared the simulated and actual
results for the following variables: plant emergence, beginning of flowering,
harvest date, and yield. We compared these variables at each of the three
sites of Jena, Eichsfeld, and Thüringer Becken. The results of the compari-
son are shown in the following figures.

Silage maize.

Figure 2: Silage maize: comparing simulated and actual results at three
different locations.

Winter wheat.

6



Figure 3: Winter wheat: comparing simulated and actual results at three
different locations.

Winter barley.

Figure 4: Winter barley: comparing simulated and actual results at three
different locations.

7



Winter rapeseed.

Figure 5: Winter rapeseed: comparing simulated and actual results at three
different locations.

References

Dı́az Iturry, Gabriel et al. (2025). “AquaCrop.jl: A Process-Based Model
of Crop Growth”. In: Journal of Open Source Software 10.110, p. 7944.
doi: https://doi.org/10.21105/joss.07944.

Raes, D. et al. (2009). “AquaCrop—The FAO crop model to simulate yield
response to water: II. Main algorithms and software description”. In:
Agronomy Journal 101.3, pp. 438–447. doi: 10 . 2134 / agronj2008 .

0140s.
Reichenau, T. G. et al. (2020). “A comprehensive dataset of vegetation

states, fluxes of matter and energy, weather, agricultural management,
and soil properties from intensively monitored crop sites in western Ger-
many”. In: Earth System Science Data 12.4, pp. 2333–2364. doi: 10.
5194/essd-12-2333-2020.

Steduto, P. et al. (2009). “AquaCrop—The FAO crop model to simulate yield
response to water: I. Concepts and underlying principles”. In: Agronomy
Journal 101.3, pp. 426–437. doi: 10.2134/agronj2008.0139s.

Topping, C. J. and X. Duan (2024). “ALMaSS Landscape and Farming Sim-
ulation: software classes and methods”. In: Food and Ecological Systems
Modelling Journal 5, e121215. doi: https://doi.org/10.3897/fmj.5.
121215.

8

https://doi.org/https://doi.org/10.21105/joss.07944
https://doi.org/10.2134/agronj2008.0140s
https://doi.org/10.2134/agronj2008.0140s
https://doi.org/10.5194/essd-12-2333-2020
https://doi.org/10.5194/essd-12-2333-2020
https://doi.org/10.2134/agronj2008.0139s
https://doi.org/https://doi.org/10.3897/fmj.5.121215
https://doi.org/https://doi.org/10.3897/fmj.5.121215


Topping, C. J., T. S. Hansen, et al. (2003). “ALMaSS, an agent-based mod-
elling system for animals in agricultural landscapes”. In: Ecological Mod-
elling 167.1–2, pp. 65–82. doi: 10.1016/S0304-3800(03)00173-4.

9

https://doi.org/10.1016/S0304-3800(03)00173-4


Appendix C: Animal Species Models
Vedder et al.: “Persefone.jl: Modelling Biodiversity in Dynamic

Agricultural Landscapes”

Part I.1

Skylark (Alauda arvensis)2

Alauda arvensis is a common and charismatic species of agricultural landscapes. This3

animal model is one component of the animal submodel of Persefone.jl.4

The model description follows the ODD (Overview, Design concepts, Details) protocol5

(Grimm et al., 2006, 2010, 2020):6

1. Purpose7

The purpose of this animal model is to simulate the abundance and distribution of a8

population of Alauda arvensis in response to farm management in Central European9

agricultural landscapes.10

2. Entities, state variables, and scales11

2.1. Landscape12

The simulated landscapes consist of a grid of pixels with a resolution of 10m and have an13

extent of 270km²-370km² (approximately; depending on the chosen input map). Each14

pixel is assigned a land cover class. It may also be associated with a farm plot, in which15

case it will contain information about the type and growth stage of the crop planted16

1



here. Farm management determines which crops are grown when, and when disturbance17

(e.g. mowing, harvesting, tillage) takes place.18

2.2. Animals19

The simulated individuals (a.k.a. agents) are mature skylarks. Each skylark is charac-20

terised by the following variables:21

• ID A unique identifier for this individual, which can be used to link it to its parents22

and its offspring.23

• sex Male or female.24

• phase The individual’s current stage in the annual or life cycle. May be one of:25

migration, nonbreeding, territorysearch, occupation, matesearch, nesting, breeding.26

• position The individual’s position in the simulated landscape.27

• mate The ID of the individual with which this individual has mated this year, if28

any.29

• territory A list of coordinates of the positions in the landscape that this individual30

claims as its nesting and feeding territory.31

• nest A coordinate giving the location of the currently active nest.32

• clutch The number of juvenile (i.e. not yet independent) skylarks that this indi-33

vidual is currently raising.34

3. Process overview and scheduling35

The simulation proceeds in time steps of one day. Every day, each individual executes36

the function associated with their current life phase:37

• migration: The individual is held in a separate data structure (apart from the38

model landscape) and does nothing until its return date is reached. Then, it is39

re-introduced to the landscape and assigned the phase territorysearch (for males)40

or matesearch (for females).41

• territorysearch: Males return first from migration. If they already have a ter-42

ritory from a previous year, they return to this. Otherwise, they move randomly43

through the landscape until they find a contiguous territory that satisfies their hab-44

itat requirements. Once a male has a territory, it changes its phase to occupation.45

• matesearch: Females return later than males from their winter migration. If they46

already had a partner the previous year, they have a given probability of remaining47

2



migra�on

non-breeding

occupa�on

nes�ng & breeding

territory
search

mate
search

off
sp
rin

g
unsuccessful

migra�on mortality

juvenile mortality
(preda�on, disturbance)

Figure 1: Phase diagram of the skylark model.

with this partner. Otherwise, they move randomly through the landscape, looking48

for a male with a territory and without a partner. Once the female has a partner,49

it changes its phase to nesting.50

If an individual fails to find a territory or a mate, it changes its phase to nonbreeding51

once the breeding season is over.52

• occupation: The male moves at random about its territory until the breeding53

season is over. Then it changes its phase to nonbreeding. (Note: real skylark males54

actively help with feeding their chicks. However, feeding is only modelled indirectly55

here, through the process of habitat selection when the male forms its territory -56

see section 4.1.)57

• nesting: The female selects a suitable location within the male’s territory for the58

nest. Building the nest and laying eggs takes a number of days, during which she59

does nothing else. Then, she changes her phase to breeding.60

• breeding: The female checks for mortality. The likelihood of brood loss varies61

with the age of the clutch and the nesting habitat. If and when the chicks reach62

independence (30 days after hatching), they are instantiated as new individuals in63

the nonbreeding phase. If a nest fails due to predation or disturbance, or a brood64

leaves the nest successfully, the female resets her phase to nesting and begins again65

if the breeding season is not yet over. If it is, she changes her phase to nonbreeding.66

• nonbreeding: Non-breeding mature birds move randomly around the landscape,67

keeping close to other individuals (flocking behaviour). Once their individual mi-68

3



gration date is reached, they are removed from the landscape until the following69

year (see above). Mature birds have a mortality probability for their first summer,70

and others thereafter for each winter.71

4. Design concepts72

4.1. Basic principles73

This model assumes that the two most important drivers of skylark distribution and74

abundance are habitat availability and juvenile mortality (see literature below). The75

factors and processes affecting these are therefore given the most attention in the model,76

while other factors and processes are only included superficially, indirectly, or not at all.77

Specifically, this means that the phases territorysearch, nesting, and breeding are the78

most relevant and detailed parts of the model, as these determine the selection of habitat79

and the survival of offspring.80

Furthermore, the model concentrates on predation and anthropogenic disturbance (through81

management actions such as mowing) as the main causes of juvenile mortality. Other82

causes, such as hunger or bad weather, are currently ignored as they are usually not83

significant.84

The focus on habitat availability and juvenile mortality opens up two avenues by which85

agricultural management influences skylark populations. First, the farmers’ choice of86

crops and date of sowing determines the quality of the habitat when skylarks select a87

territory. (For example, unlike summer grain, winter grain is already so high and dense88

in spring that it is generally avoided for nesting.) Secondly, the frequency and timing89

of management actions (especially mowing) is a major cause of brood loss. This means90

that there are direct causal links between agriculture and population trends.91

Concentrating on these two drivers allows the rest of the model to be kept simple, redu-92

cing both the scientific complexity and computational costs. Thus, foraging movement93

(both during and after the breeding season) can be ignored or represented as random94

movement, as it does not directly impact either of the drivers. Likewise, chick growth95

and winter migration are represented very simply.96

4.2. Emergence97

Multiple patterns emerge from the basic principles outlined above. The most important98

are listed here:99

4



• Territory size and population density: The model assumes that skylarks oc-100

cupy only as much area as they need to satisfy their nesting and foraging require-101

ments, and that population size is limited by the amount of available habitat. This102

means that territories in high-quality habitat are smaller than in low-quality hab-103

itat. Scaling up, this leads to a pattern whereby population densities are highest104

in open landscapes with a diversity of crops, grassland, semi-natural habitat, and105

lower in landscapes with low habitat diversity or many woody features (Poulsen106

et al., 1998).107

• Ecological traps: Jenny (1990) describes a strong ecological trap effect whereby108

skylarks avoid winter grain crops, preferentially nesting in more open grassland109

sites. However, the mowing frequency associated with modern agriculture means110

that nest loss in grassland is almost assured, since there is insufficient time between111

two mowing dates to raise a brood. This means that landscape composition leads112

skylarks to breed in habitats that have a high mortality, resulting in population113

declines.114

4.3. Adaptation115

In the model, skylarks primarily adapt to their surroundings by choosing suitable territ-116

ories. These are chosen by evaluating the quality of surrounding habitats for breeding117

and foraging, and occupying as much area as needed to satisfy requirements (see section118

7.1).119

4.4. Objectives120

Skylarks’ main objective in the model is to have sufficient habitat available to raise a121

brood. Habitat quality is calculated as a function of habitat type, vegetation height,122

vegetation cover, and distance to vertical structures (see section 7.1).123

4.5. Learning124

The model includes no learning by individuals.125

4.6. Prediction126

The model includes no predictions by individuals.127

5



4.7. Sensing128

Skylarks can perceive the landscape structure in a given radius around them (habitat129

type, vegetation height and cover). They can also see nearby conspecifics and are aware130

of the territories claimed by other individuals. When mating, they recognise whether131

another individual already has a mate, and mated individuals share information about132

their territory and brood status.133

4.8. Interaction134

The model includes two direct forms of interaction. First, during mating, females move135

around the landscape looking for males who have a territory but no mate yet. Once136

they have found one, the two individuals set each other as their mate. Secondly, after137

the breeding seasons, individuals move around the landscape, keeping close to other138

individuals in their vicinity (flocking behaviour).139

There are also indirect interactions, in that there is a competition for habitat (territory140

that has been claimed by one male cannot be occupied by another) and males (males141

that have mated with one female will not mate with another in the same season).142

4.9. Stochasticity143

Stochasticity is used when modelling mortality and movement. Predation mortality is144

modelled as an age- and habitat-dependent probability, while migration mortality is a145

simple probability. Dispersal movement (when searching for a territory or a mate) is146

modelled as a random walk, as it is assumed that skylarks are not significantly impeded147

in their long-range movement by habitats that are unsuitable for foraging or nesting.148

Foraging movement by the male and by non-breeding individuals is also random, as it149

is desirable to show movement (to help model analysis) but unimportant to model this150

exactly.151

Persefone.jl includes a seed parameter, which is used to initialise the random number152

generator. This can be used to ensure reproducibility (simulation runs of the same153

model version with the same parameter values will be identical in outcome). The model154

saves all input files used for a simulation run alongside the run’s output data, so that all155

run’s can be repeated if necessary.156

6



4.10. Collectives157

After the breeding season, skylarks move around in loose agglomerations (flocking beha-158

viour). However, this has no relevant ecological effect.159

4.11. Observation160

The model collects three sets of data. The first set gathers daily abundance data, listing161

the number of individuals currently alive in each life phase. The second gathers inform-162

ation about each nesting attempt, with the date, habitat choice, and territory size. The163

third records the cause of death of all animals that die during the simulation. All data164

are saved as CSV files, with several figures automatically created from these at the end165

of the run.166

5. Initialisation167

At the beginning of a model run, pairs of skylarks are created on grassland and agri-168

cultural land, keeping a distance of 60m to vertical structures and allowing each pair169

approximately 3ha of suitable habitat (an average territory size in agricultural land-170

scapes).171

For details, see the source code and the associated documentation.172

6. Input data173

The general input to Persefone (i.e. land use maps and weather data) is described in174

the user manual and online documentation. The species parameters associated with the175

skylark model are listed and explained in Table 1.176

7. Submodels177

7.1. Territory formation178

In the territorysearch phase, male skylarks look for a breeding territory upon returning179

from migration. If they still have a designated territory from the previous year, they180

occupy this again. Otherwise, they take random steps through the landscape until they181

find a territory (one step per day of movementrange length). Each step, they inspect182

7



Table 1: Species parameters and their values for the Alauda arvensis model.
Parameter Default

value
Explanation References Values

tested
eggtime

nestlingtime
fledglingtime

11
9
21

Days spent in each
juvenile life stage.

Glutz
von Blotzheim

and Bauer (1985)
egg-

predation-
mortality
nestling-
predation-
mortality
fledgling-
predation-
mortality

0.03
0.03
0.01

Daily probability of dying
in each juvenile life stage.

Delius (1965)
and Jenny (1990)

firstyear-
mortality

0.38 Probability of dying in
the first year of life after

fledging.

Delius (1965)

migration-
mortality

0.33 Probability of dying
during on each winter

migration.

Delius (1965)

migration--
departure

migration--
arrival

15 Sep –
1 Nov

15 Feb –
1 Mar

Time period in which
adults leave for / arrive

back from winter
migration.

Glutz
von Blotzheim

and Bauer (1985)

migrationdelay-
females

15 Number of days which
females return later than

males from winter
migration.

Glutz
von Blotzheim

and Bauer (1985)

minimum-
territory

5000 m² Minimum required size of
a territory in ideal

habitat.

Delius (1965)

mindistance-
toedge

60 m Minimum required
distance of suitable
habitat to vertical

structures.

Jenny (1990)

8



Table 2: Species parameters and their values for the Alauda arvensis model. (cont.)
Parameter Default

value
Explanation References Values

tested
maxforageheight
maxforagecover

50 cm
70 %

Maximum preferred plant
height and canopy cover

for foraging.

Püttmanns et al.
(2022)

nestingheight
nestingcover

15–45 cm
20–100%

Range of preferred plant
height and canopy cover

for nesting.

Jenny (1990) 15–20 /
15-60 cm
20–50 %

matefaithfulness 50 % Probability that a female
retains her partner from

the previous year.

Jenny (1990)

nestingbegin
nestingend

10–20
Apr

15 Aug

Time in which nesting
takes place.

Glutz
von Blotzheim

and Bauer (1985)
nestbuildingtime 4–5 Number of days needed to

build a nest.
Glutz

von Blotzheim
and Bauer (1985)

eggsperclutch 2–5 Number of eggs laid per
clutch.

Jenny (1990)

movement-
range

500 m Movement distance per
day when looking for
territories, mates, or
foraging outside the

breeding season.
visionrange 200 m Perception range while

moving (used in the
matesearch and

nonbreeding phases).
offfield-
nesting

false Allow skylarks to nest in
unmanaged areas of the

landscape?

true

limit-
territory

false Limit skylark territory
sizes to a diameter of

movementrange.

true

9



the landscape in concentric circles around their location, adding landscape pixels to183

their putative territory until they have accumulated a sufficiently large effective habitat184

area. The area that each pixel contributes to the effective area is weighted by its forage185

quality, which is calculated as a function of its openness (bare ground is best, quality186

decreases as vegetation height and cover increase). If the required effective habitat area187

cannot be reached because of other territories in the surrounding, or an insufficiently188

large contiguous block of habitat, the search breaks off and is repeated in a different189

location the next day.190

7.2. Juvenile mortality191

Juvenile mortality comes from two different sources: predation and disturbance (i.e. man-192

agement). Predation is an age-dependent constant probability applied daily before chicks193

become independent, then one-off for the first summer upon independence. (Skylarks are194

only instantiated as code objects at independence, therefore applying first-year mortality195

as a one-off probability means that only those need to be instantiated that will survive196

the year, this saves processing time.) Apart from the constant background mortality197

of predation, the management actions of tillage and harvest also lead to juvenile death198

(100 % probability). Except for the first-year mortality, which is individual-specific, all199

other causes of juvenile mortality affect the whole brood, i.e. the whole nest is lost at200

once.201

8. Testing & validation202

The only critical parameters we found were nestingheight and nestingcover, as these203

determine where skylarks can build their nests. The original values tested here (15–204

25 cm and 20–50%) resulted in rapid population loss, as the crop models predict values205

outside this range for most of the breeding season. After another look at the literature, we206

therefore raised the maximum nesting height to 45 cm, as different studies report different207

values here. We also raised the maximum nesting cover to 100 %, as AquaCrop and208

ALMaSS both predict very high canopy cover proportions very quickly, which would have209

precluded any nesting otherwise. (In addition, there were concerns about methodological210

mismatches between the values generated by our crop models and those measured in211

empirical studies.)212

Two other parameters we changed from the initial settings where offfieldnesting and213

limitterritory. We disabled the former because we were observing a lot of skylarks214

10



nesting in areas that were not under agricultural management in the model; something215

that we judged to be a modelling artefact rather than a real ecological effect. We enabled216

the latter to curtail the creation of very large territories (>40 ha) in a few cases; however,217

a closer inspection of the literature showed that these sizes can in fact be reached, so we218

turned this setting off again.219

With these described parameter adjustments, and good calibration of the AquaCrop220

model, the skylark model reproduced a range of complex ecological patterns without221

further changes needed.222

11



Part II.223

Marbled White (Melanargia224

galathea)225

Melanargia galathea is a common grassland specialist butterfly. This animal model is226

one component of the animal submodel of Persefone.jl.227

The model description follows the ODD (Overview, Design concepts, Details) protocol228

(Grimm et al., 2006, 2010, 2020):229

1. Purpose230

The purpose of this animal model is to simulate the abundance and distribution of231

a population of Melanargia galathea in response to climate and farm management in232

Central European agricultural landscapes.233

2. Entities, state variables, and scales234

2.1. Landscape235

The simulated landscapes consist of a grid of pixels with a resolution of 10m and have an236

extent of 270km²-370km² (approximately; depending on the chosen input map). Each237

pixel is assigned a land cover class. It may also be associated with a farm plot, in which238

case it will contain information about the type and growth stage of the crop planted239

here. Farm management determines which crops are grown when, and when disturbance240

(e.g. mowing, harvesting, tillage) takes place.241

The landscape is also associated with daily weather data, taken from the nearest weather242

station. This provides the daily mean temperature and daily precipitation as input to243

this species model (other variables are available, but not used).244

2.2. Animals245

The simulated individuals (a.k.a. agents) are female marbled whites. (It is assumed that246

all females mate, and males therefore do not need to be simulated to capture population247

12



adult

pupa

larva

egg

°C

°C

m
ov
em

en
t

fe
cu
nd

ity

juvenile mortality
(preda�on, disturbance)

Figure 2: Phase diagram of the marbled model.

dynamics.) Each individual is characterised by the following variables:248

• ID A unique identifier for this individual, which can be used to link it to its parent249

and its offspring.250

• phase The individual’s current stage in the life cycle. May be one of: egg, larva,251

pupa, adult.252

• age The individual’s age in days.253

• position The individual’s position in the simulated landscape.254

3. Process overview and scheduling255

The simulation proceeds in time steps of one day. Every day, each individual executes256

the function associated with their current life phase:257

• Juveniles (phases egg, larva, and pupa) check whether they are in a field that has258

been tilled or harvested, and if so, die with a certain probability (100% for tillage,259

by default 0% for harvest - the latter probability is configurable). They also check260

whether they are old enough to advance to the next phase. No movement or other261

activity takes place.262

• Adults move around quasi-randomly and lay eggs. Distance moved and number of263

eggs laid is temperature-dependent (for details, see below). Individuals die once264

13



they reach their maximum age, which is determined using a linear distribution at265

birth.266

4. 4. Design concepts267

4.1. Basic principles268

This model assumes that marbled white distribution is primarily shaped by habitat avail-269

ability, while abundance is most affected by weather. Thus, the model’s representation of270

their biology focuses on habitat requirements and activity levels in response to weather.271

Accordingly, the only behavioural mechanisms that are simulated in the model are move-272

ment and oviposition.273

Movement is assumed to be largely random, although with a strong preference for habitat274

that is suitable for oviposition (i.e. unmanaged grassy areas, extensively managed grass-275

land, and fallows; cf. section 7.2). The representation of movement chosen here is coarser276

than that found in dedicated movement models of butterflies (e.g. Evans et al., 2019),277

as we are primarily interested in larger-scale processes (over seasons and kilometers) for278

which very fine-grained movement decisions (over seconds and meters) are less relevant.279

The model assumes that marbled white population growth is limited by fecundity not280

mortality. Fecundity in turn is understood to be limited by the available time for ovipos-281

ition, as determined by the daily weather (Gotthard et al., 2007). Therefore, a central282

part of the model is the calculation of the number of eggs that can be laid in a given day283

(section 7.1).284

Agricultural management is of secondary importance to the modelled population trends,285

but can still influence them on two levels. The first concerns the availability of habitat,286

as the amount of fallow land and the proportion of extensively managed grassland can287

vary in different model scenarios. The second is additional mortality caused by tillage288

and harvest/mowing, which can be configured but is generally assumed to be negligible289

(Ebert & Rennwald, 1991).290

4.2. Emergence291

Multiple patterns emerge from the basic principles outlined above. The most important292

are listed here:293

1. Individual lifetime stats: The combination of individual behaviour, weather,294

and landscape structure lead to characteristic distributions of different measured295

14



individual-level variables (cf. section 4.11), which can be compared to known distri-296

butions of these variables from the literature (e.g. Baguette et al., 2000; Vandewoes-297

tijne et al., 2004). These variables include the individual fecundity (i.e. total eggs298

laid per female), the local population density experienced by each individual, the299

lifetime displacement (i.e. distance of the location at death from the birth location),300

and the relative use of different habitats while moving through the landscape.301

2. Population trends: Kühn et al. (2024) show the population trends of Melanargia302

galathea in Germany for the period 2006-2023. In the first time period (2006-303

2015), this shows a strongly fluctuating, overall slightly decreasing trend, followed304

by a marked increase after 2015. Comparing this to the summer temperatures305

over these years shows that the abundance in one year is correlated with the mean306

temperature of the previous summer (at least until 2016), a pattern that was also307

shown for British butterflies by Roy et al. (2001). In addition, the introduction of308

the CAP Greening measures in 2015 may have contributed to the positive trend309

over the past years.310

4.3. Adaptation311

Marbled whites respond to the landscape by mostly restricting their movement to suitable312

habitat. The movement rules were chosen to reproduce lifetime and landscape-scale313

patterns, rather than conform to mechanistic principles of movement behaviour (see314

sections 7.2, 8.2).315

4.4. Objectives316

Marbled whites’ only “objective” is to stay on or close to suitable habitat, in order to317

allow them to lay their eggs (see section 7).318

4.5. Learning319

The model includes no learning by individuals.320

4.6. Prediction321

The model includes no predictions by individuals.322

15



4.7. Sensing323

Marbled whites can perceive the landscape structure in a given radius around them324

(land cover, crop type, vegetation height and cover). They can see nearby conspecifics325

and sense the day’s weather (temperature and precipitation).326

4.8. Interaction327

By default, there are no interactions between individual marbled whites. Optionally,328

a maximum local population density can be set, with individuals less likely to visit a329

landscape pixel as the number of conspecifics already on it approaches this maximum.330

4.9. Stochasticity331

Stochasticity is used when modelling mortality and movement. Juvenile mortality is332

modelled as a one-time probability of death, applied when an adult butterfly lays an333

egg. (Only eggs that pass this probability check and will therefore mature into adults are334

actually instantiated, in order to save computational resources.) The amount of time in335

days that an individual spends in each development phase is drawn at random during its336

initialisation, using a normal distribution for the larval phases and a linear distribution337

for the adult lifetime. Movement proceeds in quasi-random jumps (for details see below).338

Persefone.jl includes a seed parameter, which is used to initialise the random number339

generator. This can be used to ensure reproducibility (simulation runs of the same340

model version with the same parameter values will be identical in outcome). The model341

saves all input files used for a simulation run alongside the run’s output data, so that all342

run’s can be repeated if necessary.343

4.10. Collectives344

The model includes no collectives.345

4.11. Observation346

The model collects three sets of data. The first set gathers daily abundance data, listing347

the number of individuals currently alive in each life phase. The second set is updated348

every time an individual dies, and shows that individual’s lifetime values of fecundity,349

displacement, and habitat use, as well as the local population density at its last loca-350

tion. The third set is updated annually and lists that year’s adult abundance, average351

16



fecundity, and average temperature. All data are saved as CSV files, with several figures352

automatically created from these at the end of the run.353

5. Initialisation354

The simulation is initialised with one individual per hectare placed at random on suit-355

able habitat, defined as unmanaged grassy areas, extensive grassland, or fallow land.356

The starting population density can be modified with the initialdensity parameter. In-357

dividuals are created as eggs (whether at birth or at initialisation), and then calculate358

how much time they will spend in each juvenile phase in order to ensure eclosure during359

the known flying period. (As juvenile phases are functionally identical in the model, the360

amount of time in each is irrelevant for model outcomes.)361

For details, see the source code and the associated documentation.362

6. Input data363

The general input to Persefone (i.e. land use maps and weather data) is described in364

the user manual and online documentation. The species parameters associated with the365

marbled white model are listed and explained in Table 1.366

7. Submodels367

7.1. Weather368

Temperature affects both the distance moved and the number of eggs laid each day. The369

optimal temperature is taken to be the midway point between the species’ minimum and370

maximum temperatures (i.e. 24°C). Outside the species’ temperature range (18-30°C),371

neither movement nor oviposition take place. Within that range, the number of steps372

each day peaks at the optimum temperature and declines linearly on either side of it373

(cf. Evans et al., 2019). The number of eggs laid declines linearly if the temperature is374

below the optimum, but stays stable above it (cf. Gotthard et al., 2007). The daily mean375

temperatures are used as the basis for calculation (using the maximum temperature pro-376

duces wrong model results during heat waves). In addition, the model can be configured377

so that no activity takes place on days with rainfall (i.e. precipitation > 0, configured378

with rainactive).379

17



Table 1: Species parameters and their values for the Melanargia galathea model.
Parameter Default

value
Explanation References Values

tested
minheight
maxheight

30cm
60cm

Range of vegetation
heights suitable for

oviposition.

Vandewoestijne
et al. (2004)

mintemp
maxtemp

16°C
32°C

Temperature range
suitable for activity

(oviposition and
movement).

Ebert and
Rennwald (1991),

Evans et al.
(2019) and

Gotthard et al.
(2007)

18°C, 20°C
30°C, 28°C

rainactive true Allow activity on rainy
days?

false

movement “random” Movement algorithm to
use (see sections 7.2, 8.2).

“proximity”

maxsteps-
perday

100 Number of movement
steps per day under
optimum weather

conditions.

50

habitat-
preference

0.95 Probability of declining to
move to a non-habitat

location.
perception 100m Maximum distance for a

single movement step.
Cant et al.

(2005)
self-

avoidance
0.9 Probability of declining to

move to a location
previously visited that
day (with movement =

“proximity”).
maxind-
perpixel

Inf Maximum local
population density;

probability of avoiding a
location increases linearly

up to this value.

10, 100

maxeggs-
perday

Number of eggs laid per
day under optimal
weather conditions.

Reinhardt et al.
(2007)

3–12

18



Table 2: Species parameters and their values for the Melanargia galathea model. (cont.)
Parameter Default

value
Explanation Justification Values

tested
oviposition “linear” Oviposition-weather

algorithm to use (see
sections 7.1, 8.1).

“constant”

eggtime
larvatime
pupatime

18–22
290–320
16–29

Range of possible times
(in days) spent in each

juvenile phase.

Reinhardt et al.
(2007)

maxadult-
time

34 days Maximum life expectancy
after eclosure.

Reinhardt et al.
(2007)

maturation-
time

5–8 days Range of possible times
between eclosure and first

oviposition.

Reinhardt et al.
(2007)

juvenile-
mortality

Probability of individual
dying before eclosure.

Dennis (1992) 0.88–0.99

mowing-
mortality

0.0 Probability of an
individual dying if its
location is mown or

harvested.

Ebert and
Rennwald (1991)

0.1, 0.5

earliest-
eclosure
latest-
eclosure

15th
June
15th

August

Range of dates in which
eclosure takes place.

Ebert and
Rennwald (1991)

enforce-
flyingperiod

true Ensure all individuals
eclose in the empirically
observed flying period.

false

19



7.2. Movement380

Adults move a given number of steps each day, depending on the temperature (see above).381

Each step, an individual randomly scans landscape pixels within its perceptual range of382

100m. If the pixel is suitable habitat, i.e. either arable or extensive grassland with plant383

heights within the required range (30-60cm), it moves to this pixel. In this case, the384

individual also lays an egg if it has not yet laid all its eggs for that day. If the pixel is385

not suitable habitat, it may nevertheless move there with a certain probability (given by386

the habitatpreference parameter). Otherwise, it looks at the next randomly chosen pixel387

in its perceptual range.388

8. Testing & validation389

8.1. Alternate weather parameters390

We tested different temperature ranges (16-32°C, 18-30°C, 20-28°C), with and without391

rain sensitivity. We also tested an alternative calculation, in which the number of eggs392

per day is assumed to stay constant across the acceptable temperature range. However,393

in each of these scenarios, most populations died out due to insufficient reproduction.394

Thus, the option 18-30°C without rain sensitivity was found to reproduce the selected395

patterns best.396

8.2. Alternate movement397

We tested an alternative movement submodel, but this gave worse pattern fits than the398

random movement described above:399

Adults move a given number of steps each day, depending on the temperature (see below).400

Each step, an individual scans its surroundings in concentric circles, looking for the401

closest spot that offers suitable habitat which it hasn’t visited today. (Depending on the402

habitatpreference and selfavoidance parameters, spots that are not suitable habitat or403

have been visited before may also be selected.) Spots with higher population densities are404

more likely to be avoided (avoidance increases linearly up to 100% at maxindperpixel).405

If no suitable spot is found, the individual moves to a random location on the periphery406

of its vision. After each step, if it is in a suitable habitat, the individual lays an egg, up407

to the number determined by the temperature for that day.408

20



8.3. Other parameters409

We also tested different values of the parameters habitatpreference, juvenilemortality,410

mowingmortality, and maxeggsperday. Juvenile mortality proved to have the strongest411

influence and the highest sensitivity. For each parameter, we selected values to give the412

optimal fit in the pattern-oriented modelling process (see main text).413

21



References414

Baguette, M., Petit, S., & Quéva, F. (2000). Population spatial structure and migration415

of three butterfly species within the same habitat network: Consequences for416

conservation. Journal of Applied Ecology, 37 (1), 100–108. https://doi.org/10.417

1046/j.1365-2664.2000.00478.x418

Cant, E., Smith, A., Reynolds, D., & Osborne, J. (2005). Tracking butterfly flight paths419

across the landscape with harmonic radar. Proceedings of the Royal Society B:420

Biological Sciences, 272 (1565), 785–790. https://doi.org/10.1098/rspb.2004.3002421

Delius, J. D. (1965). A Population Study of Skylarks Alauda Arvensis. Ibis, 107 (4), 466–422

492. https://doi.org/10.1111/j.1474-919X.1965.tb07332.x423

Dennis, R. L. (Ed.). (1992). The ecology of butterflies in Britain. Oxford University Press.424

Ebert, G., & Rennwald, E. (1991). Die Schmetterlinge Baden-Württembergs, Bd.2, Tag-425

falter: Satyridae, Libytheidae, Lycaenidae, Hesperiidae. Verlag Eugen Ulmer.426

Evans, L. C., Sibly, R. M., Thorbek, P., Sims, I., Oliver, T. H., & Walters, R. J. (2019).427

Integrating the influence of weather into mechanistic models of butterfly move-428

ment. Movement Ecology, 7 (1), 24. https://doi.org/10.1186/s40462-019-0171-7429

Glutz von Blotzheim, U. N., & Bauer, K. M. (Eds.). (1985). Handbuch der Vögel Mit-430

teleuropas (10,1 : Passeriformes ; T. 1); [Alaudidae - Hirundinidae]. AULA-Verl.431

Gotthard, K., Berger, D., & Walters, R. (2007). What Keeps Insects Small? Time Limita-432

tion during Oviposition Reduces the Fecundity Benefit of Female Size in a Butter-433

fly. The American Naturalist, 169 (6), 768–779. https://doi.org/10.1086/516651434

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard,435

J., Grand, T., Heinz, S. K., Huse, G., Huth, A., Jepsen, J. U., Jørgensen, C.,436

Mooij, W. M., Müller, B., Pe’er, G., Piou, C., Railsback, S. F., Robbins, A. M.,437

. . . DeAngelis, D. L. (2006). A standard protocol for describing individual-based438

and agent-based models. Ecological Modelling, 198 (1–2), 115–126. https://doi.439

org/10.1016/j.ecolmodel.2006.04.023440

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F.441

(2010). The ODD protocol : A review and first update. Ecological Modelling, 221,442

2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019443

Grimm, V., Railsback, S. F., Vincenot, C. E., Berger, U., Gallagher, C., DeAngelis, D. L.,444

Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A. S. A., Milles, A.,445

Nabe-Nielsen, J., Polhill, J. G., Radchuk, V., Rohwäder, M.-S., Stillman, R. A.,446

Thiele, J. C., & Ayllón, D. (2020). The ODD Protocol for Describing Agent-Based447

and Other Simulation Models: A Second Update to Improve Clarity, Replication,448

22

https://doi.org/10.1046/j.1365-2664.2000.00478.x
https://doi.org/10.1046/j.1365-2664.2000.00478.x
https://doi.org/10.1046/j.1365-2664.2000.00478.x
https://doi.org/10.1098/rspb.2004.3002
https://doi.org/10.1111/j.1474-919X.1965.tb07332.x
https://doi.org/10.1186/s40462-019-0171-7
https://doi.org/10.1086/516651
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1016/j.ecolmodel.2010.08.019


and Structural Realism. Journal of Artificial Societies and Social Simulation,449

23 (2), 7. https://doi.org/10.18564/jasss.4259450

Jenny, M. (1990). Territorialität und Brutbiologie der FeldlercheAlauda arvensis in einer451

intensiv genutzten Agrarlandschaft. Journal für Ornithologie, 131 (3), 241–265.452

https://doi.org/10.1007/BF01640998453

Kühn, E., Musche, M., Harpke, A., Feldmann, R., & Settele, J. (2024). Tagfalter-Monitoring454

Deutschland: Auswertung 2005-2023. Oedippus, 42, 12–45. https://www.ufz.de/455

export/data/6/298835_298188_Oedippus_42_klein.pdf456

Poulsen, J. G., Sotherton, N. W., & Aebischer, N. J. (1998). Comparative nesting and457

feeding ecology of skylarks Alauda arvensis on arable farmland in southern Eng-458

land with special reference to set-aside. Journal of Applied Ecology, 35 (1), 131–459

147. https://doi.org/10.1046/j.1365-2664.1998.00289.x460

Püttmanns, M., Böttges, L., Filla, T., Lehmann, F., Martens, A. S., Siegel, F., Sippel,461

A., von Bassi, M., Balkenhol, N., Waltert, M., & Gottschalk, E. (2022). Habitat462

use and foraging parameters of breeding Skylarks indicate no seasonal decrease in463

food availability in heterogeneous farmland. Ecology and Evolution, 12 (1), e8461.464

https://doi.org/10.1002/ece3.8461465

Reinhardt, R., Sbieschne, H., Settele, J., Fischer, U., & Fiedler, G. (2007). Tagfalter466

von Sachsen (B. Klausnitzer & R. Reinhardt, typeredactors). Entomofauna467

Saxonica.468

Roy, D. B., Rothery, P., Moss, D., Pollard, E., & Thomas, J. A. (2001). Butterfly numbers469

and weather: Predicting historical trends in abundance and the future effects of470

climate change. Journal of Animal Ecology, 70 (2), 201–217. https://doi.org/10.471

1111/j.1365-2656.2001.00480.x472

Vandewoestijne, S., Martin, T., Liégeois, S., & Baguette, M. (2004). Dispersal, landscape473

occupancy and population structure in the butterfly Melanargia galathea. Basic474

and Applied Ecology, 5 (6), 581–591. https://doi.org/10.1016/j.baae.2004.07.004475

23

https://doi.org/10.18564/jasss.4259
https://doi.org/10.1007/BF01640998
https://www.ufz.de/export/data/6/298835_298188_Oedippus_42_klein.pdf
https://www.ufz.de/export/data/6/298835_298188_Oedippus_42_klein.pdf
https://www.ufz.de/export/data/6/298835_298188_Oedippus_42_klein.pdf
https://doi.org/10.1046/j.1365-2664.1998.00289.x
https://doi.org/10.1002/ece3.8461
https://doi.org/10.1111/j.1365-2656.2001.00480.x
https://doi.org/10.1111/j.1365-2656.2001.00480.x
https://doi.org/10.1111/j.1365-2656.2001.00480.x
https://doi.org/10.1016/j.baae.2004.07.004

	Introduction
	Methods
	Model description
	World component
	Farm component
	Crop component
	Animal component

	Model validation
	Landscape dynamics
	Population dynamics


	Results
	Discussion
	Model purpose and design principles
	Model evaluation
	Limitations
	Contribution to the current research context
	Conclusion

	Contents
	Introduction
	User guide
	The Persefone.jl Package
	Installation
	Running from the command line
	Running from within Julia

	Graphical User Interface
	Quick start
	Running from the repo
	User interface
	Control bar
	Menu bar


	Configuration

	Developer guide
	Developing Persefone
	Setting up
	Visual Studio Code on Windows
	Emacs on Linux

	Development workflow
	Important libraries
	Revise.jl
	Test
	Documenter.jl
	Graphics and user interface
	Unitful.jl
	Dates


	Source code architecture
	Model components
	Important implementation details
	The model object
	Model configuration/the @param macro
	Output data
	Farm events
	Random numbers and logging


	Adapting Persefone
	Changing the parameters
	Changing the region
	Adding new animal species
	Adding new crop species
	Adding new farmer behaviour or a new crop model
	Adding a new submodel
	Linking to another model


	Maps and weather data
	Land cover maps
	Field ID maps
	Soil data
	Weather data

	Defining new species
	Changelog
	[1.0.0] - in planning
	[0.8.0] - 29-8-2025
	Added
	Changed
	Deprecated
	Removed
	Fixed

	[0.7.1] - 17-6-2025
	Added

	[0.7.0] - 14-03-2025
	Added
	Changed
	Deprecated
	Removed
	Fixed

	[0.6.1] - 14-03-2025
	Added
	Changed
	Deprecated
	Removed
	Fixed

	[0.6.0] - 13-01-2025
	Added
	Changed
	Deprecated
	Removed
	Fixed

	[0.5.5] - 09-08-2024
	Added
	Changed
	Fixed

	[0.5.4] - 08-08-2024
	Added
	Changed
	Fixed

	[0.5.3] - 31-07-2024
	Added
	Changed

	[0.5.2] - 30-07-2024
	Added
	Changed
	Removed
	Fixed

	[0.5.1] - 13-06-2024
	Added
	Changed

	[0.5.0] - 07-06-2024
	Added
	Changed
	Removed

	[0.4.1] - 2023-11-14
	Added
	Changed

	[0.4.0] - 2023-10-28
	Added
	Changed

	[version] - unreleased
	PLANNED
	Added
	Changed
	Deprecated
	Removed
	Fixed



	Software API
	Simulation
	Persefone.jl
	simulation.jl
	landscape.jl
	weather.jl

	Input and Output
	input.jl
	output.jl
	makieplots.jl

	Nature submodel
	nature.jl
	macros.jl
	individuals.jl
	populations.jl
	ecologicaldata.jl

	Species models
	Skylark
	Marbled White

	Crop submodel
	farmplot.jl
	cropmodels.jl
	almass.jl
	aquacrop.jl

	Farm submodel
	farm.jl
	farmdata.jl
	scenarios.jl


	Crop model descriptions
	AquaCrop (FAO Crop Water Productivity Model)
	ALMaSS vegetation model

	AquaCrop height-biomass regression
	AquaCrop model calibration
	Skylark (Alauda arvensis)
	Purpose
	Entities, state variables, and scales
	Landscape
	Animals

	Process overview and scheduling
	Design concepts
	Basic principles
	Emergence
	Adaptation
	Objectives
	Learning
	Prediction
	Sensing
	Interaction
	Stochasticity
	Collectives
	Observation

	Initialisation
	Input data
	Submodels
	Territory formation
	Juvenile mortality

	Testing & validation

	Marbled White (Melanargia galathea)
	Purpose
	Entities, state variables, and scales
	Landscape
	Animals

	Process overview and scheduling
	4. Design concepts
	Basic principles
	Emergence
	Adaptation
	Objectives
	Learning
	Prediction
	Sensing
	Interaction
	Stochasticity
	Collectives
	Observation

	Initialisation
	Input data
	Submodels
	Weather
	Movement

	Testing & validation
	Alternate weather parameters
	Alternate movement
	Other parameters



