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ABSTRACT 13 

Basal and standard metabolic rates (BMR and SMR) are cornerstones of physiological ecology and are assumed 14 
to be relatively fixed intrinsic properties of organisms that represent the minimum energy required to sustain 15 
life. However, this assumption is conceptually flawed. Many core maintenance processes underlying SMR are 16 
temporally partitioned across sleep and wakefulness and are not continuously active. We argue that instead of 17 
representing a singular metabolic state, SMR is better defined as a shifting metabolic mosaic where maintenance 18 
functions are distributed unevenly across sleep-wake states. SMR measured during wakefulness will mainly 19 
represent ion regulation, thermoregulation, sensory processing, and substrate cycling. In contrast, sleep-20 
measured SMR primarily includes processes upregulated during sleep, including protein synthesis, cellular 21 
repair, immune activation, and synaptic plasticity. Our models demonstrate that SMR values measured 22 
exclusively during wake or sleep consistently over- or underestimate daily maintenance costs depending on the 23 
time spent in specific sleep states and when SMR was measured. In addition, treatment or environmental effects 24 
on the costs of specific processes may be entirely missed if metabolic measures occur during the wrong sleep-25 
wake state. The temporal partitioning of maintenance processes suggests that, to date, SMR measurements may 26 
have confounded true metabolic variation with individual and species-specific differences in sleep architecture, 27 
with implications for the estimation of energy budgets, trait heritability, environmental effects on metabolic 28 
rate, and metabolic scaling relationships. We propose redefining organismal maintenance costs as a time-29 
integrated profile of metabolic demands, but also suggest that state-specific SMR measurements are 30 
appropriate if the sleep-wake measurement period aligns with that of the behavioural, physiological, or 31 
ecological context of interest. Moving beyond the fiction of a constant maintenance baseline would provide 32 
more refined insights into the bioenergetic foundations of ecological performance and evolutionary constraints. 33 
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The Unstable Foundation of Metabolic Rate 42 

Basal and standard metabolic rates (BMR and SMR) are among the most widely measured and applied traits in 43 
organismal biology. Both terms refer to the rate of energy throughput by a whole organism for baseline 44 
maintenance processes under standardized resting conditions. BMR applies to measurements at thermoneutral 45 
temperatures in endotherms, and SMR refers to measurements at any specified temperature in endotherms 46 
and ectotherms1. The ubiquity of BMR and SMR (hereafter collectively referred to as SMR) in research stems 47 
from their scalability across biological levels, from cells to ecosystems, and their integration into foundational 48 
ecological theories2–4. SMR often correlates with other fundamental organismal traits (e.g. growth rate5), and is 49 
also used to derive traits such as aerobic scope6. These standardized estimates of energy use are fundamental 50 
across fields, influencing the study of life-history strategies, responses to environmental change, species 51 
interactions, and population dynamics7–9 .  52 

Standard metabolic measurements implicitly assume a constant baseline energy rate for maintenance processes 53 
in resting animals. This conceptualization treats cellular and physiological maintenance as being continuously 54 
active with a single, measurable SMR. However, this assumption masks a critical biological reality: different 55 
maintenance processes are activated or downregulated, depending on what the animal is doing, with a 56 
especially strong divide between waking and sleep states. Indeed, while some biological processes are 57 
downregulated during sleep10, many others are upregulated11. As a result, there is not a continuous metabolic 58 
baseline, but instead a metabolic mosaic of shifting maintenance energy demands that vary across the sleep-59 
wake cycle based on which processes are active or suppressed. Indeed, a primary hypothesis for sleep's function 60 
is an efficient energy reallocation among maintenance functions that is incompatible with wakefulness12. 61 
Consequently, SMR estimates taken during a single state – such as during sleep – capture only the maintenance 62 
costs that are predominant in that state, potentially misestimating both process-specific and whole-animal costs 63 
in other states. 64 

Despite its ubiquity across animal taxa, sleep remains an underexplored source of variation in ecological and 65 
comparative physiology. Sleep architecture refers to the duration, fragmentation, latency, and distribution of 66 
non-rapid eye movement (NREM) and rapid eye movement (REM) sleep states, and variation. Across species, 67 
sleep duration and structure correlate with factors influencing SMR, including body size and life-history 68 
characteristics13. Within species, individuals show consistent differences in sleep architecture, linked to 69 
behavioural types and energy budgeting14. This variation may drive physiological differences often attributed to 70 
intrinsic metabolic traits. Specifically, SMR differences among treatments, individuals, or species, may reflect 71 
either: (1) true physiological variance in SMR; (2) variation in sleep-wake architecture; or (3) variation in the 72 
sleep-wake state during which SMR was measured – three potential sources of variation that are likely often 73 
conflated but must be disentangled for an accurate biological interpretation of SMR (Figure 1). Environmental 74 
factors, such as temperature, photoperiod, and habitat structure, affect the time spent in different sleep-wake 75 
states15,16 and the corresponding maintenance costs, therefore further confounding metabolic measurements.  76 

To fully utilize SMR as a meaningful physiological trait, we must recognize that it is not a fixed or static measure, 77 
but the sum of multiple maintenance processes that varies over time with sleep-wake state. Here, we synthesize 78 
literature on SMR’s physiological components and their differential expression across sleep-wake states, to 79 
broadly estimate the state-partitioning of maintenance functions. In doing so, we propose a fundamental shift 80 
toward redefining maintenance metabolism as a dynamic, state-dependent profile shaped by sleep-wake cycles 81 
and suggest a re-evaluation of how metabolic traits are measured, interpreted, and applied. 82 



 

 83 

Figure 1. Disentangling physiological variation from state-dependent effects and sampling artefacts. 84 
Differences in standard metabolic rate (SMR) between individuals, contexts, or species may reflect real variation 85 
in maintenance metabolism (1), but also differences in sleep-wake architecture (2) or the sleep-wake state 86 
during which measurements were conducted (3). Without controlling for sleep-wake state, these sources of 87 
variation are confounded, causing misestimation of whole-animal SMR and treatment effects on specific 88 
maintenance processes. Each pie chart illustrates proportions of time spent in wake, NREM, and REM states, 89 
which differ across contexts or individuals and affect SMR estimates. Accurate measurement and interpretation 90 
of SMR requires specifying the state in which measurements occur, quantifying sleep-wake architecture, or 91 
integrating across sleep-wake states to approximate daily maintenance expenditure. 92 

Why There Is No Static SMR: The Case for State-Dependent Partitioning 93 

To illustrate how state-dependence can influence SMR estimation, we first broke down SMR into its constituent 94 
maintenance processes, such as ion gradient maintenance, protein synthesis, and thermoregulation (see Figure 95 
2 and Supplement 1 for the full list of SMR maintenance processes included). We then estimated the 96 
proportional contribution of each major maintenance process to overall SMR across sleep-wake states by using 97 
available estimates from the literature. However, for many processes, direct quantification of energetic costs 98 
across sleep-wake states do not exist. In these cases, we derived informed estimates by combining available 99 
data on the relative contribution of each process to total SMR with evidence for how the underlying physiological 100 
systems, organs, or cellular mechanisms are up- or down-regulated across different sleep-wake states.  101 

We recognize that this approach necessarily involves inference and that our quantitative estimates should be 102 
interpreted cautiously. In addition, the values used here are drawn primarily from studies of humans and other 103 
mammals, for which studies are most abundant, and substantial variation likely exists across taxa, individuals, 104 
and environmental contexts. However, we are not aiming to provide definitive quantitative estimates for all 105 
species and situations, but are instead demonstrating that maintenance processes are unlikely to be equally 106 
active across all sleep-wake states and offer a biologically informed heuristic for understanding how overlooking 107 
state-partitioning can lead to systematic biases in SMR measurement. While our specific partitioning values lack 108 
exactness, the broader biological reality that different maintenance functions are temporally partitioned across 109 
sleep and wakefulness is well-established, and the metabolic consequences of this partitioning warrant 110 
additional quantitative research focus and consideration in metabolic rate studies. 111 



 

Below, we highlight the state-dependent partitioning of several key maintenance processes that exemplify 112 
different patterns of temporal allocation across sleep-wake states. The partitioning estimates and supporting 113 
evidence for the remaining processes are provided in Supplement 1.  114 

Brain Ion Regulation 115 

Maintaining ion gradients across neuronal membranes is one of the most energetically expensive functions in 116 
the brain. It has been estimated that ion pumping via Na⁺/K⁺-ATPase accounts for roughly half of total cortical 117 
ATP consumption, particularly under awake conditions17,18. Given that the cerebral cortex accounts for 118 
approximately 20% of SMR in adult humans1, this implies that cortical ion-pumping alone accounts for ~10% of 119 
whole-body SMR. However, this estimate excludes regions such as the thalamus, basal ganglia, cerebellum, and 120 
brainstem, which also maintain high baseline activity and demand for ion transport19. To account for these 121 
additional brain structures, we conservatively assign 15% of SMR to total brain ion-gradient maintenance. During 122 
wake, cortical firing rates increase, driving maximal Na⁺/K⁺-ATPase activity17,18. During NREM, neuron firing rates 123 
decline by ~40%18,20, which should theoretically reduce Na⁺/K⁺-ATPase activity proportionally. This is supported 124 
by metabolic evidence showing 25-44% reductions in brain glucose and oxygen metabolism during deep NREM 125 
sleep, with REM sleep showing partial rebound of firing rates21. Based on this evidence, we partition overall brain 126 
ion regulation activity as 50% during wake, 15% during NREM, and 35% during REM sleep states (Figure 2; Table 127 
S1). 128 

Peripheral Ion Regulation 129 

Even at rest, skeletal muscle consumes significant energy to maintain ionic balance. In resting human quadriceps, 130 
for example, Na⁺/K⁺-ATPase and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) together account for 131 
approximately 25% of muscle oxygen use1. Given that skeletal muscle comprises ~40% of human body mass, this 132 
implies a whole-body contribution to SMR of ~10-12% from peripheral ion regulation. Although peripheral 133 
tissues like skeletal muscle and viscera require ionic gradient maintenance continuously, activity is also 134 
modulated by postural tone and other factors dependent on sleep-wake cycles, with high tonic muscle activation 135 
during waking periods necessitating increased Na⁺/K⁺-ATPase and SERCA activity22. Conversely, muscle tone is 136 
reduced during NREM and almost completely absent during REM due to active brainstem inhibition of 137 
motoneurons22–24. Therefore, energetic demand for peripheral ion regulation is likely to follow a similar pattern 138 
to brain ion regulation across sleep-wake states (Figure 2; Table S1). 139 

Protein Synthesis and Cellular Repair 140 

Whole-body protein turnover is a major component of maintenance metabolism, with protein synthesis and 141 
degradation together accounting for 18-25% of standard metabolic rate1. Wakefulness is associated with basal 142 
protein turnover, but sleep – particularly NREM – is the primary period for upregulation of genes involved in 143 
protein synthesis and folding25,26. Additional support comes from sleep deprivation studies showing that 144 
prolonged wake suppresses these pathways, which rebound during recovery sleep27. Accordingly, we have 145 
partitioned these costs to reflect higher biosynthetic activity during sleep (Figure 2; Table S1). 146 

Thermoregulation 147 

Thermoregulation is a key component of maintenance metabolism in endotherms, typically accounting for 148 
approximately 10-15% of SMR under resting conditions at or near thermoneutrality1. While this cost primarily 149 
reflects active thermoregulatory control mechanisms, sleep strongly modulates these thermoregulatory 150 
activities in a state-dependent manner. During wakefulness, thermoregulatory reflexes are fully functional, 151 
allowing precise control of core body temperature28. In contrast, NREM sleep is associated with a mild 152 
suppression of thermoregulatory control, including reductions in core and cortical temperature and decreased 153 
responsiveness to thermal challenges29. Although heat continues to be produced by basal metabolic processes, 154 
the defensive mechanisms that maintain temperature set points are downregulated. During REM sleep, 155 
thermoregulatory defenses are almost entirely disengaged or suppressed11,29, possibly to reallocate resources 156 



 

to neural processes30. Based on this evidence, we allocate 70% of thermoregulatory energy expenditure to 157 
wakefulness, 25% to NREM, and 5% to REM.  158 

 159 

Figure 2. Estimated state-dependent allocation of maintenance costs contributing to standard metabolic rate 160 
(SMR). Bars represent the proportion of total SMR attributable to different physiological maintenance processes 161 
when measured during wakefulness, non-rapid eye movement (NREM) sleep, or rapid eye movement (REM) 162 
sleep, generated from the values in Table S1. Values are scaled such that the total SMR measured across all 163 
states sums to 100%.  164 

Overall Analysis 165 

These trends suggest that there is no singular or fixed value for SMR and that true organismal maintenance costs 166 
are best represented as an integrated measure of shifting maintenance processes that are differentially 167 
expressed across sleep-wake states. Specifically, costly processes such as thermoregulation, ion gradient 168 
maintenance, and sensory processing are upregulated during wakefulness. Conversely, protein synthesis, 169 
baseline immunity, and neural plasticity are upregulated during sleep, and especially during NREM. As a result, 170 
the metabolic profile of each state is likely to differ substantially in both magnitude and composition (Table S1, 171 
Figure 2), and so any SMR measurement taken during a single state is likely to capture a biased portion of 172 
maintenance costs, either overrepresenting the energetically intensive demands of wakefulness or 173 
underrepresenting them during sleep. Importantly, this bias is structured by the organism’s sleep architecture, 174 
which can vary with context, individual traits, and species.  175 

An important caveat to our analysis is that the baseline SMR values and process contributions underlying Table 176 
1 have been derived from studies that were likely affected by the same sleep-wake biases we discuss here, being 177 
measured under uncontrolled or unspecified sleep-wake conditions. As such, they may already reflect state-178 
dependent sampling artefacts instead of true physiological costs. This creates a somewhat circular problem, 179 
because we are using potentially biased data to quantify the magnitude of bias in metabolic rate measurements. 180 
However, this limitation highlights a key motivation for measurement refinements and the conceptual shift we 181 
are proposing. Not only are new methods needed to improve future studies, but they are required to 182 



 

retrospectively validate (or correct) existing metabolic rate data that may have been affected by unrecognised 183 
sleep-wake artefacts. 184 

Consequences of Overlooking State-Dependent Maintenance Costs 185 

The unequal partitioning of maintenance processes across sleep and wakefulness creates two broad problems: 186 
(1) Sleep architecture will influence whole-animal SMR estimation and misrepresent maintenance costs (Figure 187 
3, 4); and (2) Measuring SMR during only one state accounts for only a portion of maintenance processes, and 188 
so the magnitude of observed effects of a factor or treatment on SMR will vary depending on the maintenance 189 
processes that are affected and the state in which SMR is measured (Figure 5). For example, if a wake-190 
predominant process like substrate cycling is upregulated due to a treatment, sleep-only SMR measurements 191 
won't accurately reflect this change in maintenance costs. 192 

Estimating error in SMR from state-limited sampling 193 

To examine the first type of error, we developed a model that explored how state-specific SMR measurements 194 
diverge from true 24-hour maintenance costs under varying sleep-wake schedules and REM sleep proportions 195 
(Figure 3; see Supplement 2 for details). This simulation illustrates the error produced when SMR is estimated 196 
solely during either sleep or wakefulness, using partitioning estimates shown in Figure 2 and Table S1. When 197 
SMR is measured exclusively during sleep (Figure 3A), estimated values increasingly underestimate the true 198 
integrated 24-hour maintenance costs as the proportion of the day normally spent awake increases. On the 199 
other hand, if SMR is measured only during wakefulness (Figure 3B), estimates increasingly overestimate true 200 
24-hour maintenance costs as the duration of unmeasured sleep increases. Notably, both types of bias will be 201 
exacerbated in individuals or species with a higher proportion of REM sleep, which is associated with particularly 202 
low metabolic activity.  203 

 204 

Figure 3. Predicted error in standard metabolic rate estimation when measured exclusively during wake or 205 
sleep. Percent error in estimated standard metabolic rate (SMR) is shown as a function of the proportion of the 206 
day normally spent awake for a given individual or species, assuming SMR is measured only during sleep (A) or 207 



 

only during wakefulness (B). Errors are expressed relative to the true integrated 24-hour SMR. The model 208 
assumes a fixed contribution of each state to SMR (wake = 44%, NREM = 37%, REM = 19%; Figure 1; Table 1). 209 

Effects of state-dependent partitioning on SMR and aerobic scope estimation 210 

We then developed an individual-based model to examine how variation in sleep architecture may bias 211 
estimates of both SMR and aerobic scope (Supplement 2 for details). Specifically, we simulated repeated 212 
overnight measurements for a population of individuals differing in their true integrated SMR, total sleep 213 
duration, and proportion of REM sleep, allowing us to examine how these factors interact to produce 214 
misestimates of SMR. We found that although the proportion of SMR missed during sleep-only sampling remains 215 
constant, individuals with higher true SMRs experience larger absolute errors (Figure 3A). Importantly, this error 216 
in SMR estimation carries over to affect calculations of aerobic scope (Figure 3B). While MMR was held constant 217 
across states, SMR varies due to differing maintenance demands during wakefulness, NREM, and REM sleep. 218 
Consequently, using sleep-based SMR measurements to infer aerobic capacity may overestimate the 219 
performance capacity achievable during wakefulness. Notably, calculations of aerobic scope provide an example 220 
where state-specific SMR values, rather than a 24-hour integrated SMR value, are most appropriate, since the 221 
latter would reflect average aerobic capacity across a circadian cycle, whereas state-specific values more 222 
accurately represent performance limits relevant to the behavioural or ecological context being studied during 223 
a given state (e.g. wakefulness). 224 

 225 

 226 

Figure 4. Simulated effects of overnight measurements on estimates of SMR and aerobic scope, and the 227 
influence of sleep architecture. (A) Each point represents a simulated diurnal individual (n = 200), measured on 228 
each of five nights (five points per individual). The x-axis shows true standard metabolic rate (SMR), defined as 229 
the ideally measured and time-integrated average over 24 hours and accounting for partitioned energy use 230 
across wake, NREM, and REM states. The y-axis shows the SMR that would be estimated if measured during a 231 
fixed 12-hour overnight window. The dashed red line represents points where sleep-estimated SMR equals the 232 
true time-integrated SMR. (B) Aerobic scope (MMR-SMR) is shown for each sleep-wake state, based on 233 
simulated state-specific SMR values.  234 

Impact of state-restricted SMR measurements on detection of treatment effects 235 

To examine how state-dependent maintenance processes can bias estimates of treatment or environmental 236 
effects on SMR estimates, we developed an individual-based model that simulates how SMR and specific process 237 
costs are partitioned across sleep-wake states (Supplement 2 for model details). A hypothetical inhibitor 238 
treatment was applied in this simulation that reduced costs of protein synthesis by 50% across all sleep-wake 239 



 

states. Treatment effects were calculated both from the 24-hour integrated SMR estimates, and those based 240 
only from measurements during sleep (NREM and REM), while allowing individuals to vary in total sleep duration 241 
and the proportion of REM within sleep. Due to the upregulation of protein synthesis during sleep, sleep-only 242 
measurements show a greater effect size as compared to the true integrated daily treatment effect (Figure 4A 243 
and C), suggesting that apparent among-individual variability in treatment responses may partly reflect 244 
differences in sleep architecture, rather than true physiological heterogeneity. For example, a treatment that 245 
alters thermoregulatory costs or ion regulation (predominantly active during wakefulness), or protein synthesis 246 
(mainly during sleep), could be substantially underestimated or entirely missed if measurements are taken 247 
during the wrong state (Figure 4A, B). 248 

249 
Figure 5. Consequences of state-dependent maintenance costs for detecting treatment or environmental 250 
effects on metabolic rate. (A) Simulated 24-hour timeline of standard metabolic rate (SMR) under baseline and 251 
treatment conditions. Black line represents the shifting SMR baseline, calculated from the integrated costs of all 252 
maintenance processes, which vary with behavioural state (wake, NREM sleep, REM sleep; Figure 1). Coloured 253 
lines show treatment-induced metabolic costs for three hypothetical experimental manipulations: a protein 254 
synthesis inhibitor (green), an ion transport blocker (blue), and thermal stress (orange). Costs for each process 255 
are relative to baseline SMR at any timepoint, and relative to the background cost of each process (0 = no change 256 
from process background). Shading denotes periods of wakefulness (light yellow) and sleep (grey); purple 257 
represents a period of sleep metabolic rate measurement; dark yellow represents a period of wake 258 
measurement. (B) Heat map showing how treatment effects depend on the timing of SMR measurements. 259 
Values indicate the proportion of maximum treatment effect that would be detected if sampling were restricted 260 
to wake, NREM, REM, or a 24-hour integrated period. Each treatment shows maximum effect size  (1.0) during 261 
the sleep-wake state when the targeted maintenance process is most active: protein synthesis during NREM 262 
sleep, ion regulation during wake, and thermoregulation during wake. (C) Results of simulation showing the 263 
discrepancy between estimated treatment effects of a protein-synthesis inhibitor, based on sleep-only sampling 264 
and the true 24-hour integrated effect, across 200 individuals over five days each (Supplement 3). Each point 265 
represents a single individual-day. Treatment effects of the hypothetical protein inhibitor were applied only to 266 
sleep-active processes, and individual variation in sleep duration and REM:NREM ratio causes systematic bias 267 
when sampling is restricted to sleep, relative to the total time-integrated SMR. Both axes show treatment effects 268 
as percent change relative to the total time-integrated value for SMR. 269 



 

Ecological and Evolutionary Consequences 270 

Sleep-Wake Partitioning as an Evolutionary Constraint 271 

The partitioning of maintenance functions across sleep-wake states has implications for evolutionary constraints 272 
on maintenance metabolism. If specific maintenance processes are prioritized during specific sleep stages, then 273 
their expression is limited by the amount and architecture of sleep that an organism can accommodate. For 274 
example, enhanced cellular repair or immune function may require increased NREM sleep, but this may be 275 
evolutionarily constrained in species facing high predation risk or strong selection for vigilance 31. Conversely, 276 
species with consolidated or prolonged sleep may afford investment in metabolically costly processes that occur 277 
during sleep, facilitating different metabolic adaptations. Overall, selection on maintenance efficiency could 278 
favour specific sleep patterns, while ecological sleep constraints may limit evolutionary options for maintenance 279 
costs. These linkages could generate relationships among sleep architecture, behaviour, and physiology that 280 
may remain undetectable if maintenance costs are measured without accounting for sleep-wake state, masking 281 
potential roles for sleep architecture as a hidden axis of life-history trade-offs and physiological trait evolution. 282 

Repeatability and Heritability of Metabolic Traits 283 

Repeatability describes trait consistency within individuals, while heritability estimates the proportion of trait 284 
variation that is due to genetic differences. Both measures determine whether traits like SMR are likely to 285 
respond to selection. However, if metabolic measurements are influenced by unmeasured variation in sleep 286 
architecture, SMR estimates may reflect transient sleep-wake states, as opposed to stable physiological traits. 287 
This would artificially inflate within-individual variability and reduce repeatability, especially if sleep patterns 288 
fluctuate across measurement days. Conversely, if sleep architecture is stable within individuals but varies 289 
consistently among individuals, the corresponding sleep-biased SMR estimates may appear more repeatable 290 
than the true 24-h integrated maintenance expenditure32,33 and SMR heritability estimates may partially reflect 291 
genetic variation in sleep architecture rather than maintenance metabolism.  292 

The Scaling of Metabolic Rates with Body Mass 293 

For more than a century, researchers have sought general "scaling laws" describing how metabolic rate changes 294 
with body size34–37. However, accumulating evidence suggests that metabolic scaling exponents vary 295 
systematically with species lifestyle38,  thermal environment39,40, ontogenetic stage41, and activity level38,42. Our 296 
framework suggests that part of this variation may stem from overlooked differences in sleep-wake architecture 297 
across body sizes. Traditional scaling models assume SMR reflects consistent maintenance processes across 298 
organisms, but if these processes are differentially expressed across sleep-wake states, and sleep-state 299 
partitioning varies with body size, SMR scaling may include hidden biases. Smaller animals sleep more but have 300 
shorter, fragmented cycles and higher relative SMRs13, meaning that over a given time interval, their SMR 301 
measurements may sample a broader range of slee-wake states. Larger animals tend to exhibit reduced but 302 
more consolidated sleep13, potentially producing more state-specific but less representative SMR 303 
measurements. Furthermore, if specific maintenance functions scale differently with body mass and are 304 
differentially regulated across sleep states, apparent scaling exponents may reflect sampling window bias or 305 
process-specific measurement bias, rather than fundamental physiological rules, introducing unrecognized 306 
variability in metabolic scaling. 307 

Ontogenetic Patterns and Developmental Energetics 308 

Sleep architecture changes markedly during early development43. Altricial mammals can spend 80-100% of their 309 
early postnatal sleep in REM, whereas precocial species maintain relatively stable, adult-like sleep-state 310 
proportions from birth or hatching44. Because REM sleep is associated with particularly low metabolic activity, 311 
SMR measured during sleep in young altricial animals may underestimate true maintenance costs, potentially 312 
confounding species comparisons of developmental energetics or intraspecific metabolic scaling. Moreover, 313 
because costly processes such as protein synthesis and neural plasticity are preferentially active during sleep, 314 



 

SMR estimates incorporating wake periods may underestimate the energetic costs of growth and brain 315 
development in young animals. While sleep architecture continues to change across entire lifespans, exact 316 
patterns differ among species. In humans, for example, sleep quality and consolidation decreases with aging, 317 
while laboratory rodent studies show increasing sleep duration and intensity with age45,46. Overall, age-related 318 
changes in sleep may create measurement biases that vary both across species and throughout lifespans, with 319 
potential implications for comparative studies of aging and senescence.  320 

Links Between Metabolic Traits and Behaviour 321 

Over the last two decades, interest has surged in quantifying relationships between SMR and behaviour47,48. 322 
However, if maintenance costs differ systematically between sleep and wakefulness, then measuring SMR during 323 
sleep and behavioural data during wakefulness is effectively sampling from different physiological baselines. As 324 
such, using SMR values from one state to predict behaviour may be meaningless without cross-state correlation 325 
in total maintenance costs. This issue may also obscure observations of behavioural syndromes. Differences in 326 
boldness, vigilance, or exploration could influence how individuals sleep within respirometry setups, with more 327 
timid individuals sleeping less deeply or more briefly. These differences would affect measured SMR, creating 328 
spurious correlations between metabolism and wake-measured behavioural phenotypes driven by sleep-wake 329 
state variation during SMR measurement. In addition, SMR-behaviour correlations commonly vary across 330 
environmental gradients like temperature or food availability49, and this phenomenon is typically interpreted as 331 
an environmentally induced shift in trait covariance. However, some observed covariance shifts may reflect 332 
artefacts from inconsistent sleep state partitioning during SMR estimation, especially if environmental factors 333 
alter sleep architecture. Additionally, single-state SMR measurements only capture a subset of specific 334 
maintenance processes, so correlation variations may be due to shifts among sleep-predominant maintenance 335 
processes, while relationships involving waking processes may remain unobserved and therefore undetectable. 336 

Recent work also shows that social stress and dominance hierarchies can alter individual sleep architecture, with 337 
dominant and subordinate individuals differing in REM duration and sleep fragmentation50. Aside from direct 338 
effects of sleep variation on metabolic costs and recovery from conflict, the widely observed associations 339 
between SMR and aggression or dominance51 may be partly mediated by variable sleep-wake states during SMR 340 
measurement between dominants and subordinates, and not solely due to intrinsic metabolic phenotypes. 341 

Thermal Performance Curves of Aerobic Scope 342 

Thermal performance curves for aerobic scope are widely used to assess physiological limits of ectotherms under 343 
different thermal environments, identify thermal optima, and predict climate change vulnerability52. However, 344 
sleep-wake partitioning of SMR could introduce unacknowledged error in aerobic scope estimation across 345 
temperatures. Since SMR is often measured during resting periods that may include varying sleep proportions, 346 
temperature-driven shifts in sleep duration or architecture may systematically bias SMR estimates. Additionally, 347 
if animals sleep more deeply or longer at certain temperatures, and if these sleep states involve lower metabolic 348 
costs, SMR measured during those periods will be artificially low. This would inflate aerobic scope estimates due 349 
to reduced maintenance costs captured during sleep-heavy measurement windows, as opposed to true 350 
physiological optimization. Such biases could affect thermal performance curves by exaggerating peaks, shifting 351 
optima, or confounding performance limits, all due to effects of temperature on sleep architecture in addition 352 
to direct effects on SMR itself. Moreover, interspecific or interindividual comparisons could become complex if 353 
temperature sensitivity of sleep differs among taxa or individuals, as these differences could appear as variation 354 
in aerobic performance instead of measurement artefacts. 355 

Calming Effects of Conspecifics and Social Buffering of Stress 356 

Numerous studies report that the presence of conspecifics reduces measured metabolic rates in social species, 357 
often interpreted as a calming or stress-buffering effect53,54. However, if these measurements are taken during 358 
quiescent periods (e.g. night time), an alternative explanation is that conspecific presence modulates sleep 359 
architecture55, leading to changes in the proportions of REM and NREM sleep being observed. For example, 360 



 

decreased risk perception in the presence of conspecifics may lead to longer or deeper NREM sleep56, or less 361 
fragmented sleep cycles, thereby reducing the contribution of metabolically costly waking states during the SMR 362 
measurement window. Conversely, isolation or social stress might fragment sleep or increase the time spent 363 
awake, elevating apparent SMR. This would mean that the observed metabolic changes may reflect indirect 364 
shifts in the sleep-state composition during measurement instead of direct decreases in  maintenance or routine 365 
costs via stress reduction. If true, this reinterpretation could alter how we view social buffering effects and their 366 
implications for energy budgets in group-living species. 367 

Improving Our Understanding of Environmental Change 368 

Our framework suggests environmental change research faces two challenges: (1) overlooking real physiological 369 
effects on specific maintenance processes; and (2) misinterpreting sleep-wake changes as metabolic impacts. 370 
Environmental stressors may cause metabolic effects confined to specific sleep-wake states, due to effects on 371 
specific maintenance processes, but researchers could miss these impacts if measuring metabolic rates during 372 
the wrong period. For example, aquatic acidification or salinity changes can alter ion regulation in marine 373 
organisms57, but since this may primarily occur during wakefulness, sleep-only measurements could 374 
underestimate associated energetic costs and impacts. Conversely, some reported environmental effects on 375 
metabolism may actually reflect sleep architecture changes rather than direct physiological costs. Noise 376 
pollution, light pollution, or habitat disturbance can fragment sleep or alter time spent in different sleep states 377 
during measurement periods58, leading to apparent "metabolic effects" that represent shifts in sampled sleep-378 
wake states instead of true changes in underlying maintenance costs. Climate warming might simultaneously 379 
impose real thermoregulatory costs (primarily during wakefulness) while altering sleep duration or quality, 380 
confounding direct temperature effects with sleep-mediated measurement window changes. Indeed, 381 
environmental factors may operate through multiple pathways: direct effects on maintenance processes, 382 
indirect effects through sleep-wake architecture changes, and measurement artifacts from state-dependent 383 
sampling (Figure 1). Disentangling these mechanisms will be important for understanding true physiological 384 
impacts of environmental change. 385 

Re-Evaluating Basal Metabolism: A Path Forward 386 

Given the potential for substantial error in SMR estimation due to unaccounted variation in sleep-wake 387 
architecture, it is critical to develop strategies that can mitigate or quantify this source of bias. Here we outline 388 
a range of possible approaches, from the ideal but logistically demanding to more feasible alternatives. The most 389 
appropriate option will also depend on factors such as cost and alignment with specific research goals. 390 

Defining an Integrated Daily Maintenance Expenditure 391 

Although logistically untenable in most situations, at least for now, a “gold standard” for estimating maintenance 392 
metabolism would move beyond the assumption of a static maintenance cost and to capture an integrated daily 393 
maintenance expenditure (IDME): the total energetic cost of maintenance processes across all sleep-wake states 394 
over a full circadian cycle. This would ideally involve continuous or high-resolution measurement of metabolic 395 
rate across 24 hours (or longer), with concurrent classification of sleep-wake state to allow state-specific 396 
partitioning of energy use. Depending on the organism, this could be achieved using respirometry or doubly 397 
labeled water paired with electrophysiological, behavioural, or indirect indicators of sleep-wake state59 (e.g. EEG 398 
in mammals or birds, accelerometry or infrared video tracking in fishes or invertebrates). The goal would be not 399 
just to average metabolic rate across time, but to weight it by the proportion of time spent in each state and the 400 
specific processes active during those periods. To be clear, this is logistically challenging, or even impossible, 401 
with existing technology and especially in non-model organisms. However, such an approach would offer the 402 
most ecologically and evolutionarily relevant estimates of baseline metabolism, reflecting how organisms 403 
actually allocate energy to maintenance functions over time, rather than how they perform in an artificially static 404 
physiological state. 405 



 

A conceptual model for estimating integrated daily maintenance expenditure (IDME) can be formalized as a 406 
time-weighted sum of state-specific metabolic rates: 407 

 408 

Mi = mean metabolic rate during state i (e.g., wakefulness, NREM sleep, REM sleep) 409 

Ti = proportion of the 24-hour period spent in state i (such that ∑Ti=1) 410 

n = number of behavioural states considered (typically three for mammals and birds: wake, NREM, REM) 411 

This equation assumes that each behavioural state has a characteristic metabolic rate and that total 412 
maintenance cost is the sum of these rates scaled by the time spent in each state. If empirical data are available, 413 
Mi can be measured directly; otherwise, state-specific correction factors can be applied to standard SMR values. 414 
For example, if quiet wake SMR is used as a baseline, literature-derived multipliers (e.g. 0.83 for NREM, 0.44 for 415 
REM, Table S1) can be applied to approximate taxa and state-specific contributions. This substitution is not ideal, 416 
but is conceptually analogous to how generalised metabolic scaling exponents are often applied to datasets to 417 
correct for the effects of body mass, when data for that exact species or size range is not available. Similarly, the 418 
time allocation terms (Ti) can be derived from electrophysiological data (e.g., EEG/EMG recordings in mammals), 419 
automated behavioural tracking (e.g. posture analysis or motion sensors), or estimated from published sleep 420 
architecture profiles for a given species. In cases where species-specific data are unavailable, approximate values 421 
can be obtained from related taxa or scaled using known allometric or ecological correlates of sleep duration. 422 
This formulation allows estimation of daily maintenance costs in a way that reflects both temporal partitioning 423 
of behaviour and differential expression of maintenance functions across states. However, if generalised 424 
estimates for sleep-state multipliers are being used, this would not address biases in SMR estimation that occur 425 
at the individual level, due to among-individual variation in sleep architecture 32,33 426 

Enhancing Current Methods Through Sleep-State Inference 427 

Existing approaches may be improved by developing better inferences about the sleep-wake state during SMR 428 
measurement. These refinements may serve as intermediate solutions that improve the biological realism of 429 
SMR estimates, particularly in systems where direct state identification is challenging but behavioural and 430 
metabolic data are available at high temporal resolution. In this way, existing methodologies can evolve toward 431 
more informed estimates of maintenance metabolism, even in the absence of full IDME capability. 432 

For instance, measuring oxygen uptake across full circadian cycles may help capture a broader range of sleep-433 
wake states60, although without clear identification of which states are being recorded, estimates will remain 434 
biased toward lower-cost sleep phases. This is particularly relevant in intermittent-flow respirometry, where the 435 
method of SMR calculation itself may introduce hidden state-associated bias. Approaches such as using a lower 436 
quantile of MO₂ values to define SMR61 may disproportionately represent sleeping periods, particularly in 437 
individuals with greater sleep needs, leading to underestimates of true time-integrated SMR. Similarly, the use 438 
of the mean of the lowest normal distribution61 will not resolve this issue unless data span multiple circadian 439 
cycles; even then, the resulting SMR estimate is likely to reflect metabolically quiescent phases such as REM 440 
sleep. 441 

However, these same methods could be refined to disentangle sleep- and wake-dominant energy costs. If 442 
repeated patterns emerge across the diel cycle – such as distinct frequency distribution peaks in oxygen uptake 443 
values60, these may correspond to specific sleep-wake states and could be used to partition SMR into state-444 
specific components. Pairing such analyses with infrared video tracking or automated motion detection would 445 
allow coarse classification of behavioural state, helping to align metabolic estimates with sleep-wake 446 
architecture. In aquatic systems using intermittent-flow respirometry 62,63, another promising strategy would be 447 



 

to pair activity measurements with oxygen uptake slopes on a per-phase basis, generating a large number of 448 
slope-activity pairs from which could be used to calibrate the relationship between spontaneous movement and 449 
oxygen uptake. This would allow researchers to extrapolate to an estimated SMR at zero activity, yielding a more 450 
realistic estimate of maintenance costs during wakefulness. However, this approach requires the ability to 451 
quickly quantify and align activity with each oxygen uptake measurement. As such, it highlights the need for 452 
improved video acquisition systems and automated analytical pipelines capable of extracting activity metrics at 453 
high temporal resolutions.  454 

State-Specific Metabolic Profiling 455 

While IDME offers the most comprehensive estimate of baseline energy use, it is not always necessary, or even 456 
desirable, depending on the research question. In many cases, state-specific SMR measurements may be the 457 
most appropriate approach, particularly when the behavioural or physiological state during measurement aligns 458 
with the focal process under investigation. For example, if the aim is to understand energy constraints on 459 
locomotion, predator avoidance, or other active behaviours, SMR and aerobic scope measured during quiet 460 
wakefulness may offer more meaningful insight than a time-averaged value diluted by metabolically depressed 461 
sleep phases. Conversely, studies focused on immunity, cellular repair, or protein synthesis may benefit from 462 
sleep-specific SMR measurements, particularly if these processes are known to be upregulated during NREM 463 
sleep12. Instead of prescribing a single ideal measurement strategy, we suggest that researchers explicitly match 464 
their SMR measurement window to the behavioural or ecological state most relevant to their hypothesis, and 465 
interpret their results accordingly. This state-matching approach offers a pragmatic and conceptually sound 466 
alternative when full 24-hour measurement is not feasible. 467 

Understanding and Acknowledging the Extent of Bias 468 

In some cases, simply acknowledging and quantifying these types of bias may be sufficient. Or, if researchers 469 
can confirm (or reasonably assume) that maintenance costs are similar between the measurement window and 470 
the behavioural context of interest (e.g. day vs. night), then some level of state-related error may be tolerable. 471 
After all, respirometry already involves accepted approximations – such as using oxygen uptake as a proxy for 472 
true energy expenditure62. Our framework highlights an additional, but to date overlooked, source of variation 473 
that can now be assessed and, where necessary, addressed. 474 

Avenues for Future Research 475 

Confirming the extent to which SMR fluctuates with sleep-wake state across individuals, species, and contexts 476 
will require targeted empirical research (Table 1). For example, many of our estimates of state-partitioning are 477 
indirect and based on up or down-regulation in organ or tissue functioning, as opposed to direct measures of 478 
state- and process-dependent energy expenditure1,12. Increased direct measurements of metabolic rate across 479 
sleep-wake states, especially using high-resolution methods that can distinguish NREM and REM, are needed to 480 
confirm the predicted shifts in energetic allocation. In addition, naturally divergent sleep architectures across 481 
species or ecotypes offer opportunities to test whether state partitioning contributes to apparent interspecific 482 
differences in SMR. For example, comparing high-REM and low-REM phenotypes, or animals exposed to 483 
chronically fragmented vs. consolidated sleep31,56, may help disentangle true physiological divergence from 484 
measurement artefacts. Contrasting diurnal vs. nocturnal mammals, cave vs surface-dwelling morphs of the 485 
same species (e.g. cavefish), or animals exposed to varying environmental conditions that alter sleep 486 
architecture14,15 could also offer powerful systems for testing whether variation in REM/NREM balance 487 
corresponds to predictable shifts in measured metabolic rate.  488 

Further, little is currently known about how transitions between sleep states affect maintenance costs. Our 489 
models implicitly assume a rapid or instantaneous switch in physiological function when transitioning between 490 
sleep states, but this is also unlikely to reflect biological reality. Transitional periods may involve partial or 491 
overlapping activation of maintenance processes, and in species with highly fragmented sleep, carry-over effects 492 
between states could meaningfully alter the relative costs and timing of metabolic costs of specific processes12,14. 493 



 

Understanding these transitional dynamics will be essential for refining both empirical measurements and 494 
modelling approaches. 495 

Conclusions 496 

While SMR is often treated as a within-individual physiological constant, we suggest that this assumption is rarely 497 
met in reality. Across taxa, maintenance processes are partitioned across sleep and wakefulness, and even within 498 
individuals, sleep architecture can change with size, context, and environment. These effects introduce a 499 
fundamental source of physiological variation that is overlooked in metabolic studies, but could systematically 500 
bias the estimation, interpretation, and application of SMR across fields. 501 

It is worth asking: under what conditions would sleep-state partitioning of maintenance costs not affect the 502 
measurement or interpretation of SMR? For this to be the case, several biologically implausible criteria would 503 
need to be met. First, all maintenance processes would need to operate at equivalent intensity across 504 
wakefulness, NREM, and REM sleep, or at least have their sum total of energetic costs be equal across these 505 
states. As we have discussed, this condition is at odds with well-documented down-regulation of some 506 
maintenance processes during sleep and upregulation of others. Second, individuals would need to exhibit 507 
minimal among- and within-individual variation in daily sleep-wake cycles and sleep architecture (e.g., 508 
REM:NREM ratios), such that any fixed measurement window captures the same metabolic profile across 509 
animals and days. Finally, downstream uses of SMR estimates – such as comparisons across individuals or 510 
species, or calculations of aerobic scope or energy budgets – would need to be unaffected by any sleep-wake 511 
biases in SMR measurements and involve only the same behavioural or physiological states in which SMR was 512 
measured.  513 

Taken together, these conditions are not only unlikely, but biologically unrealistic. In light of growing evidence 514 
for state-dependent variation in maintenance metabolism, it is no longer tenable to assume that SMR reflects a 515 
fixed energetic baseline. Moving forward, researchers should consider if and how sleep-wake state is accounted 516 
for in metabolic measurements, and the implications of state-limited sampling on the traits, comparisons, and 517 
inferences they seek to draw. By abandoning the fiction of a constant metabolic baseline, we can build a more 518 
accurate and biologically grounded understanding of organismal energetics. 519 
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Table 1: Empirically testable predictions arising from a state-partitioned view of standard metabolic rate 685 
(SMR). Implications range from experimental design to broader evolutionary and ecological theory. 686 

# Prediction Rationale Possible Test Implications 

1 SMR measured during 
wakefulness (e.g. 
extrapolating MR to zero 
activity) will exceed SMR 
measured during sleep. 

  

Wakefulness involves 
higher costs for 
thermoregulation, 
sensory processing, and 
ion gradients. 

Compare SMR from 
sleep vs. quiet wake in 
same individuals. 

Highlights importance of 
behavioural state control 
in metabolic protocols, 
attempts to correlate MR 
with behaviour. 

2 Endotherms will show larger 
errors in SMR estimation 
during sleep than 
ectotherms. 

Thermoregulatory 
effort is downregulated 
during sleep in 
endotherms. 

Compare state-specific 
SMR across endo- and 
ectotherms. 

SMR bias may differ 
systematically across taxa, 
complicating cross-
species comparisons. 

3 Species or individuals with 
higher REM sleep 
proportions will show greater 
underestimation of SMR 
when measured during sleep. 

REM is metabolically 
less costly; higher REM 
skews measured values 
downward. 

Measure REM 
proportion and compare 
to error magnitude. 

REM duration may act as 
a hidden source of inter-
individual or interspecies 
variation. 

4 Individuals or species with 
larger or more neuron-dense 
brains will show a greater 
error in SMR estimation 
during sleep. 

More brain ion 
regulation as a 
maintenance cost 
during wake. 

Compare state-specific 
SMR across species with 
different brain sizes or 
neuron densities. 

 

SMR variation within and 
across species may be 
partially due to biases 
associated with 
misestimation of total 
brain costs. 

5 Trait correlations with SMR 
(e.g. boldness, activity) 
depend on sleep architecture 
during measurement. 

Sleep traits modulate 
the underlying 
maintenance processes 
being measured. 

Control for or stratify 
analyses by sleep 
profile. 

Some reported 
physiological-behavioural 
links may be artefacts of 
sleep-state variation. 

6 Apparent context-dependent 
shifts in SMR-trait 
relationships may reflect 
altered sleep architecture, 
not true metabolic plasticity. 

Environmental variables 
(e.g. temperature) 
affect sleep and 
thereby SMR estimates. 

Simultaneously track 
sleep and SMR across 
environments. 

Reframes some plasticity 
findings as measurement 
artefacts, not 
physiological change. 



 

7 Species with high 
maintenance demands (e.g., 
immune or neural activity) 
will exhibit longer or more 
consolidated sleep.  

Sleep permits efficient 
expression of these 
functions. 

Correlate maintenance 
traits and sleep duration 
across species. 

Suggests evolutionary 
linkage between sleep 
architecture and 
physiological capacity.  

8 Sleep architecture and 
related SMR estimation error 
will show a phylogenetic 
signal. 

  

Sleep-metabolism 
integration may follow 
evolutionary 
trajectories. 

Map traits and error 
onto phylogenies. 

Affects how metabolic 
traits are interpreted in a 
comparative or 
macroevolutionary 
context.  

9 Environmental factors that 
fragment sleep will increase 
measured SMR. 

Wake periods during 
measurement inflate 
apparent baseline 
metabolism.  

Compare SMR and sleep 
in disturbed vs. 
controlled settings. 

Redefines “stress effects” 
on metabolism as partly 
sleep-modulated. 

10 Treatment effects on 
metabolism will be state-
dependent, with sleep-active 
interventions showing 
stronger effects during sleep 
measurements and wake-
active interventions during 
wake measurements. 

Maintenance processes 
are temporally 
partitioned; 
interventions affecting 
specific processes are 
only detectable when 
those processes are 
most active. 

Compare SMR responses 
to stress during sleep vs. 
wake measurements. 

Inconsistent treatment 
effects may reflect 
measurement timing 
instead of biological 
variation. 
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Supplement 1. State-Dependent Partitioning of Maintenance Energy Costs Contributing to SMR 698 

Table S1. Estimated state-dependent partitioning of energy required for maintenance processes and the 699 
putative contribution of each process to basal/standard metabolic rate (SMR). Depending on the process, 700 
state-partition values were derived from a combination of direct physiological measurements and indirect 701 
evidence from gene expression, metabolic tracer studies, and neuroimaging. In most cases, contributions to SMR 702 
were estimated from published estimates, but these are typically based on data collected during a single state 703 
(e.g., sleep or quiet wakefulness); as a result, they may not reflect the full energetic cost of a function across the 704 
full sleep-wake cycle. Uncertainty rankings indicate the strength of empirical support (Low = well-quantified; 705 
Moderate = indirect inference; High = speculative). We follow Rolfe & Brown (1997)1 in recognizing that organ-706 
level ‘service functions’ (e.g., liver detoxification, heart functioning, motor control of breathing) contribute 707 
significantly to whole-body energy use. However, the energetic costs of these functions are already at least 708 
partially represented within the cellular processes included in our table (e.g., ion regulation, protein synthesis, 709 
substrate cycling), and their state-dependent partitioning is difficult to resolve. For this reason, we do not treat 710 
service functions as a separate category.  711 

 712 

Neural Plasticity / Memory Consolidation 713 

Neural plasticity refers to the restructuring of synaptic connections through strengthening, weakening, or 714 
remodeling, and involves energy-intensive activities such as protein synthesis, receptor modulation, and neural 715 
reorganization. Based on in vivo ATP imaging during NREM, it is estimated that ~10% of cortical ATP during sleep 716 
is directed toward plasticity-related processes2. When scaled to the cortex’s overall contribution to total SMR 717 
(~20% in humans; 1) and expanded to account for additional plasticity demands in other brain structures, we 718 
estimate that neural plasticity contributes approximately 4% of whole-body SMR. Plasticity is not distributed 719 
evenly across behavioural states; as described by the synaptic homeostasis hypothesis3, synaptic strength 720 
accumulates during wakefulness as new information is encoded, but is selectively downscaled during NREM 721 
sleep to restore efficiency. These NREM-linked changes are supported by dendritic calcium bursts that coincide 722 
with sleep spindles and signal localized increases in energy use4. REM sleep contributes a second wave of 723 
plasticity, characterized by hippocampal-cortical replay of activity patterns from prior waking experience, 724 
thought to underlie memory consolidation5. Reflecting the combined but distinct contributions of NREM and 725 
REM, we allocate 45% of plasticity-related energy use to NREM, 35% to REM, and 20% to wake. 726 

Sensory Processing 727 

Sensory processing is a metabolically active function of the cortex, particularly during wakefulness when animals 728 
must monitor and respond to external stimuli. Sensory cortical regions (e.g., visual, auditory, and somatosensory 729 
cortices) represent a major share of cortical volume and synaptic activity during wakefulness. Given that the 730 
cerebral cortex accounts for ~20% of whole-body SMR1, and that a significant portion of cortical signaling is 731 
dedicated to sensory integration during wake, it is reasonable to estimate that sensory processing contributes 732 



 

~3-5% of SMR. This does not include energy used by subcortical sensory relays (e.g. thalamus) or alertness-733 
related sensory gating. To conservatively account for these components and reflect continuous sensory 734 
engagement during wake, we assign 5% of SMR to sensory processing. Sensory cortical activity declines 735 
significantly during NREM sleep6 and is largely disengaged during REM sleep despite high overall brain activity7. 736 

Immune Surveillance and Modulation 737 

Estimates of the energy cost of baseline immune function are not available, but both theoretical and empirical 738 
data suggest that constitutive immune processes (e.g., leukocyte maintenance, low-level cytokine signaling, and 739 
general immune readiness and surveillance) represent a non-trivial portion of the resting metabolic rate8,9. 740 
Although most empirical work focuses on activated immune responses (which can raise metabolism by 15-30%), 741 
baseline maintenance of immune competency likely involves continuous low-level metabolic investment from 742 
lymphoid organs and leucocyte activity, suggesting these costs are present even in healthy individuals10. Based 743 
on this, a conservative estimate of ~7-8% of SMR for baseline immune metabolism is biologically plausible, 744 
though uncertainty is high due to the lack of direct quantification. Evidence suggests that baseline immunity is 745 
not uniformly distributed across the sleep-wake cycle11,12. Indeed, circadian activity of some immune 746 
components (e.g. cytokines) appears to have neuromodulatory roles that regulate sleep, in addition to their 747 
direct immunological function13. Studies in humans and other animals also show that early NREM sleep coincides 748 
with a hormonal response that favours immune expression, characterized by low cortisol and high growth 749 
hormone, with NREM sleep supporting adaptive immune functions such as antigen presentation, leukocyte 750 
activity, and T-cell activity14. Disruptions to sleep reliably alter immune gene expression10, further suggesting 751 
that sleep facilitates important immune processes. In contrast, REM is thought to contribute little to baseline 752 
immune functioning, as it coincides with rising cortisol, reduced growth hormone, and increased sympathetic 753 
activation14. Together, these findings suggest NREM sleep is the primary period of baseline immunological 754 
maintenance and coordination, while wake supports more peripheral immune readiness and REM contributes 755 
minimally (Table 1). However, the precise energetic costs of these processes remain uncertain and likely vary 756 
across species, tissues, and immune functions. 757 

Glymphatic Metabolite Clearance 758 

Glymphatic clearance is the convective exchange of cerebrospinal and interstitial fluid that facilitates metabolic 759 
waste removal from the brain and is upregulated during sleep. While the energetic cost of this process has not 760 
been directly quantified, it likely imposes appreciable ATP usage associated with glial activity, cerebrospinal fluid 761 
movement, and vascular-neural coupling. Based on this rationale, we tentatively estimate glymphatic function 762 
to contribute approximately 5% of standard metabolic rate (SMR), reflecting the likely contribution of glial and 763 
vascular processes during peak glymphatic activity, but should be interpreted cautiously due to the absence of 764 
direct measurements. Glymphatic function is known to be strongly state-dependent. During NREM sleep, there 765 
is a 2-fold increase in clearance compared to wake15, then a reduction during REM16. Based on this evidence, we 766 
assign 60% of glymphatic metabolic activity to NREM sleep, 30% to wake, and 10% to REM. 767 

Nitrogenous Waste Processing 768 

It has been estimated that nitrogenous waste management contributes approximately 2% of standard metabolic 769 
rate in mammals1. The temporal expression of nitrogenous waste processing exhibits pronounced circadian 770 
partitioning linked to both protein turnover cycles and kidney function rhythms, though the evidence of changes 771 
in metabolic costs remain mostly indirect and inferred through changes in kidney activity. Glomerular filtration 772 
rates, for example, display strong circadian rhythmicity, with maximum values during daytime and minimum 773 
values at night17. Experimental evidence demonstrates that renal hormonal control differs fundamentally 774 
between sleep and wake states18. During sleep, aldosterone pulses are mainly related to plasma renin activity 775 
(PRA) oscillations, whereas during waking periods, aldosterone pulses are primarily associated with cortisol 776 



 

pulses. Furthermore, PRA shows oscillations strongly linked to REM-NREM cycles, with NREM sleep linked to 777 
increasing PRA and REM sleep associated with decreased PRA18. These state-dependent differences in renal 778 
regulation suggest that metabolic costs of nitrogenous waste processing vary across states. Based on these 779 
considerations and documented circadian variations in hepatic and renal function, we provisionally assign 45% 780 
of nitrogenous waste processing costs to wakefulness, 35% to NREM sleep, and 20% to REM sleep, though 781 
uncertainty surrounds these estimates given limited direct quantification of state-dependent waste metabolism 782 
across different taxa. 783 

Substrate Cycling 784 

Substrate cycling refers to ATP-consuming biochemical loops involving opposing metabolic pathways (e.g., 785 
lipolysis and lipogenesis, triglyceride and fatty acid turnover) that allow rapid shifts in fuel usage and metabolic 786 
regulation. Rolfe & Brown (1997) estimated that substrate cycling contributes approximately 7.5% of SMR, based 787 
on modelling cycles across liver, muscle, and adipose tissue. More recent studies (e.g.19) have shown that 788 
substrate switching – indicated by fluctuations in respiratory quotient – continues across the sleep-wake cycle, 789 
particularly during transitions in and out of REM sleep, supporting the view that although substrate cycling is 790 
most pronounced during waking periods, when fuel demands are highest, it is also modulated by sleep. NREM 791 
sleep is associated with increased lipolysis, growth hormone release, and free fatty acid availability, all of which 792 
support ongoing hepatic and adipose substrate cycling20,21. During REM sleep, bursts of sympathetic activity and 793 
increased brain glucose uptake further sustain metabolic flexibility. Based on this, we assign 60% of substrate 794 
cycling energy use to wakefulness, and 20% each to NREM and REM, reflecting both continuous background 795 
cycling. 796 

Gluconeogenesis 797 

Gluconeogenesis and glycogen metabolism are essential components of energy homeostasis, particularly during 798 
fasting or extended periods without food intake, such as overnight sleep. Although their energetic cost is often 799 
overlooked, Rolfe & Brown (1997) estimated that gluconeogenesis could account for 3-6% of SMR in mammals. 800 
This includes both hepatic glucose production and brain glycogen turnover, which is known to fluctuate across 801 
sleep-wake states. According to the glycogenetic hypothesis, brain glycogen is depleted during wakefulness due 802 
to high neuromodulatory activity and replenished during NREM sleep, a process supported by increased 803 
glycogen synthase activity and reduced sympathetic tone22. In contrast, glycogen breakdown and gluconeogenic 804 
demand rise during wakefulness, particularly during prolonged wake or energy stress, when glucose needs 805 
increase in both peripheral tissues and the brain. REM sleep appears to contribute minimally to net glycogen 806 
turnover, although bursts of neuronal activity may elevate local glucose oxidation. Based on these patterns, we 807 
estimate the contribution of gluconeogenesis and glycogen metabolism to SMR at 4%, and partition the cost as 808 
60% to NREM, 35% to wakefulness, and 5% to REM, reflecting the anabolic and catabolic phases of carbohydrate 809 
cycling across the sleep-wake cycle. 810 

Residual Background Processes 811 

A portion of standard metabolic rate reflects baseline cellular functions that are essential for survival but not 812 
strongly influenced by behavioural state. Rolfe and Brown (1997) estimated that these background processes 813 
account for approximately 5-8% of SMR, depending on the species and tissue type. This component is thought 814 
to remain relatively constant across sleep-wake states, as it reflects the irreducible energetic cost of maintaining 815 
basic membrane potential, resting mitochondrial function, and low-level enzymatic activity. For this reason, we 816 
assign a value of 6% of SMR to background maintenance functions and apply it evenly across wake, NREM, and 817 
REM. 818 
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Supplement 2: Simulations of State-Dependent SMR and Experimental Error 869 

Estimating Error in SMR from State-Limited Sampling 870 

To quantify the potential error introduced when basal metabolic rate (SMR) is measured in only a single 871 
behavioural state (e.g., sleep or wakefulness), we produced a deterministic model using R (v4.4.0) to simulates 872 
how state-dependent partitioning of maintenance processes can affect SMR estimates. 873 

We first defined 12 core physiological maintenance processes contributing to SMR (e.g. ion gradient 874 
maintenance, thermoregulation, protein synthesis), based on values derived from literature estimates and 875 
physiological reasoning where required (see Table S1). Each process was assigned: (1) an estimated contribution 876 
to total SMR (%); and (2) proportional activity levels across wake, non-REM (NREM) sleep, and REM sleep. These 877 
activity levels reflect known or inferred patterns of state-dependent up- or down-regulation (e.g. 878 
thermoregulation is active primarily during wake; protein synthesis peaks during NREM sleep). 879 

We then simulated two contrasting SMR estimation approaches: one where measurements are taken exclusively 880 
during wakefulness ("wake-only"), and another where measurements are taken exclusively during sleep ("sleep-881 
only"). In each model, metabolic costs are further partitioned between NREM and REM sleep, varying according 882 
to the proportion of total sleep time the animal spends (or would normally spend, in the case of the “wake-only” 883 
panel) spent in REM (ranging from 10% to 50%). The true SMR for a given individual or species was modelled as 884 
the weighted sum of state-specific SMR values over a full 24-hour period, representing their proportion of time 885 
spent awake versus asleep. Percent error was calculated as the absolute deviation of the wake-only or sleep-886 
only estimate from the true time-integrated SMR. 887 

Simulating the Effects of State-Dependent Partitioning on SMR Estimation 888 

To explore how neglecting sleep-wake partitioning may bias estimates of SMR and aerobic scope, we 889 
constructed a stochastic individual-based simulation in R (v.4.4.0). The model generated a simulated population 890 
of 200 individuals, each undergoing five repeated measurements across five separate days (totaling 1000 891 
observations). The true 24-h integrated SMR for each individual was drawn from a normal distribution centered 892 
at 0.35 (arbitrary units) with a standard deviation of 0.05, producing approximately 2.5-fold variation across the 893 
population. 894 

To introduce biologically plausible within-individual consistency in sleep patterns, each individual was assigned 895 
a baseline trait value for total sleep duration and REM sleep proportion. These values were drawn from normal 896 
distributions (mean = 10 h, SD = 1 for total sleep; mean = 0.25, SD = 0.05 for REM proportion, constrained to 897 
0.05-0.5). On each of the five simulated nights, an individual's sleep architecture was modeled by generating 898 
nightly values from normal distributions centered around their baseline, with additional night-to-night 899 
stochasticity. Specifically, daily total sleep duration was drawn from a normal distribution centered on the 900 
individual's baseline, with a smaller standard deviation (e.g. SD = 0.5 h), while daily REM proportion was similarly 901 
drawn from a normal distribution centered on the individual's REM baseline (SD = 0.025), constrained between 902 
0.05 and 0.5. This structure preserved among-individual differences in sleep architecture while allowing 903 
plausible intra-individual variation across repeated measures. 904 

Each SMR estimate during the 12-hour overnight measurement window was calculated based on the time-905 
weighted expression of metabolic costs during REM and NREM sleep. These were assumed to reflect only partial 906 
contributions of the total maintenance processes expressed during waking hours, with multipliers derived from 907 
literature-based estimates, expressed as proportions of the maintenance costs while awake: 0.436 for REM sleep 908 
and 0.834 for NREM sleep (Table S1). These multipliers were applied to the proportion of time spent in each 909 
sleep stage during the 12-hour window, relative to the individual’s true SMR. Gaussian noise (SD = 0.01) was 910 
added to all measurements to reflect routine technical error during measurements. 911 



 

A single value for maximum metabolic rate (MMR) was independently generated for each individual from a log-912 
normal distribution with a mean centered around 5-fold the population mean SMR and modest variation (log SD 913 
= 0.01). For each individual on each measurement day, we calculated aerobic scope (AS) as the difference 914 
between MMR and multiple SMR estimates: the true time-integrated SMR (reflecting weighted contributions of 915 
wake, NREM, and REM states), the estimated SMR based on a simulated overnight sleep window, and three 916 
separate state-specific SMR values corresponding to wakefulness, NREM sleep, and REM sleep. This allowed us 917 
to compare how the SMR measurement state affects estimates of aerobic scope.  918 

Estimating the impact of state-restricted SMR measurements on detection of treatment effects 919 

To examine how the timing of SMR measurement influences estimates of treatment effects, we developed a 920 
simulation model based on the proportional contributions of various maintenance processes to total metabolic 921 
rate during wakefulness, NREM, and REM sleep. This model was designed to assess error occurring when 922 
experimental treatments differentially affect maintenance processes that are distributed across sleep-wake 923 
states, such that single-state measurements may fail to capture the full impact on maintenance energy use. By 924 
comparing the sleep-only estimates to the integrated 24-hour values, the model demonstrates how estimates 925 
of treatment effects vary not only with individual differences in sleep architecture but also as a function of the 926 
magnitude and state-specificity of the treatment effect. This provides a framework for understanding how 927 
common experimental constraints can lead to systematic underestimation or misrepresentation of the 928 
metabolic consequences of a treatment. 929 

We simulated a protein inhibitor treatment that reduced the metabolic cost of protein synthesis by 50% in all 930 
three states. Baseline state-partitioned contributions for protein synthesis were 1.8% of BMR during wake, 931 
10.8% during NREM, and 5.4% during REM (Table S1). These values were reduced by 50% in a modified dataset 932 
to represent a treatment that impairs protein synthesis across the full 24-hour period. All other maintenance 933 
processes remained unchanged between control and treatment datasets. The model assumes that protein 934 
synthesis is the only directly affected process and that its proportional contributions are state-dependent but 935 
additive. 936 

To incorporate biological variability, we simulated 200 individuals, each measured on 5 separate days. On each 937 
simulated day, total sleep duration was drawn from a normal distribution with a mean of 8 hours per 24 h period, 938 
and a standard deviation of 0.5 hours. The proportion of sleep spent in REM was drawn from a normal 939 
distribution with a mean of 30% and standard deviation of 2.5%. These values were used to calculate state 940 
durations for wake, NREM, and REM on each day. Using these proportions and the state-partitioned metabolic 941 
profiles, we calculated the individual’s total 24-hour integrated daily maintenance expenditure (IDME) under 942 
both control and treatment conditions. This value reflects the sum of each state’s proportional duration 943 
multiplied by the respective state-specific maintenance costs. We then calculated the estimated treatment 944 
effects that would result if measurements were restricted to either wake only or to sleep (NREM and REM 945 
combined) only. These estimates were compared to the true integrated effect by expressing all values as a 946 
percentage of the individual’s baseline 24-hour integrated SMR.  947 


