

1 **Pollinator specialisation fails to explain rapid speciation in terrestrial orchids**

2 Jamie B. Thompson^{1*}, Eric R. Hagen^{2,3*}, Elizabeth A. Forward^{1,4}, Oscar Alejandro Pérez-
3 Escobar⁵, James W. Clark⁶, James Ackerman⁷, Nicholas K. Priest⁶

4

5 ¹ School of Biological Sciences, University of Reading, Whiteknights, Reading, UK

6 ² Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada

7 ³ Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI,
8 USA

9 ⁴ Department of Genetics, Evolution and Environment, University College London, London, UK

10 ⁵ Royal Botanic Gardens, Kew, Richmond, UK

11 ⁶ Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK

12 ⁷ Department of Biology, University of Puerto Rico, San Juan, PR, USA

13 * These authors contributed equally to the study

14

15 **Abstract**

16 Pollinator attraction is central to the reproductive biology and ecology of flowering plants, and
17 pollinator specialisation has long been thought of as a driving force of species generation.
18 Orchids are central to this idea, which dates back to Darwin's work on pollinator-driven floral
19 evolution. However, most macroevolutionary evidence for the speciation hypothesis comes from
20 studies of genera or tribes, leaving broad-scale patterns unresolved. Here, we reconstruct the
21 evolution of pollination strategy in the species-rich terrestrial orchid subfamily Orchidoideae,
22 and test whether speciation rate is shaped by pollinator specialisation. We identify numerous
23 transitions among reward-based, deception-based, and autonomous pollinator attraction
24 strategies, but along evolutionarily constrained pathways. Curiously, we find that speciation rates
25 are not significantly impacted by pollinator specialisation, a result that is robust to differences
26 both in methodological approaches and definitions of specialisation. Despite shaping ecological
27 interactions and microevolutionary divergence, pollinator specialisation does not influence rates
28 of speciation on macroevolutionary scales. Our findings support a growing view that the origins
29 of plant biodiversity involve complex interactions between traits, ecological opportunities, and
30 environmental contexts, rather than by single force in isolation.

31

32 **Main**

33 Orchids are one of the most speciose angiosperm families, with some ~29,500 species found in
34 nearly every terrestrial ecosystem^{1–3}. They are also among the most celebrated, having held the
35 attention of evolutionary biologists since Darwin's early work on their relationships with
36 pollinators⁴. Darwin hypothesised that the adaptation of floral traits in response to pollinator
37 interactions could drive reproductive isolation, leading to speciation into numerous forms. A
38 great deal of orchid variation, especially floral morphology, is linked to their extraordinary
39 variety of specialised pollination strategies^{5–8}. These range from mutualistic interactions
40 involving nectar, oils, or sleep-site rewards, to deceptive strategies like food mimicry, brood-site

41 deception, and sexual deception ^{5,9}, and attract diverse pollinators, predominantly insects. One
42 iconic example of the latter is the sexually deceptive *Ophrys*, which trick male bees and wasps
43 into pollination by having flowers that resemble female insects, and by mimicking female
44 pheromones ^{10,11}. However, whether the divergences associated with specialised pollination
45 adaptations scale to shape broad macroevolutionary patterns remains uncertain.

46
47 Pollinator specialisation has long been proposed as a mechanism for driving diversification,
48 particularly in genera where small shifts in floral traits may lead to rapid reproductive isolation
49 ^{12,13}. Population divergence is expected to follow transitions between pollinators and pollination
50 strategies, as floral traits, pollinator behaviour, and patterns of pollen movement are altered by
51 coevolutionary interactions ^{14–17}. If these microevolutionary processes repeatedly generate
52 divergence, leading to speciation, their accumulation through time will accelerate diversification
53 at broader taxonomic scales ^{18,19}. This model remains influential in investigations into the origins
54 of diversity in orchids ^{20–24}, other flowering plant clades ^{25–27}, and across angiosperms more
55 broadly ^{28–30}. However, evidence for this pattern across larger orchid groups is mixed. Some
56 studies suggest a link between pollinator specialisation and speciation rates ^{12,13}, while others
57 suggest other factors, such as geographical shifts and environmental change ^{2,31–34}, and adaptive
58 traits such as epiphytism and CAM photosynthesis (in Epidendroids ^{20,21}) are more powerful
59 predictors of diversification.

60
61 However, pollinator specialisation is not a single or consistently defined concept. At broad
62 macroevolutionary scales, specialisation is often considered in terms of pollination strategies
63 such as sex deception and pollen reward ^{5,6,13,20,35}. Similarly, specialisation can be expressed
64 through pollination syndromes, which are shared suites of floral traits that are associated with
65 particular pollinator groups, such as Hymenoptera and Lepidoptera ^{17,36–38}. At the finest
66 ecological scales, specialisation presents as highly specific interactions between plants and
67 pollinators, including one-to-one species relationships ^{6,39–41}. These highly-specific relationships
68 characterise a large portion of orchid species ⁵. Perhaps the best known is *Angraecum*
69 *sesquipedale*, which inspired Darwin's famous prediction of a hawkmoth with a very long
70 tongue, whose existence was later confirmed ⁴². These different concepts of specialisation
71 capture distinct evolutionary processes and consequently, evaluating the role of specialisation in
72 orchid diversification requires testing different definitions.

73
74 One challenge in identifying the correlates of orchid diversification is data limitations.
75 Phylogenies of large lineages (family or sub-family) that are well sampled at the species level,
76 critical for analyses characterising diversification rate heterogeneity ⁴³, have only recently
77 become available ^{2,31}. As a result, most previous research into pollinator evolution has focussed
78 on smaller lineages, such as individual genera or tribes ^{12,13}. It is worth noting that the taxonomic
79 sampling still remains incomplete, especially compared to animal clades such as the mammals
80 and birds, for which complete phylogenies are available ^{44,45}. However, methods for detecting

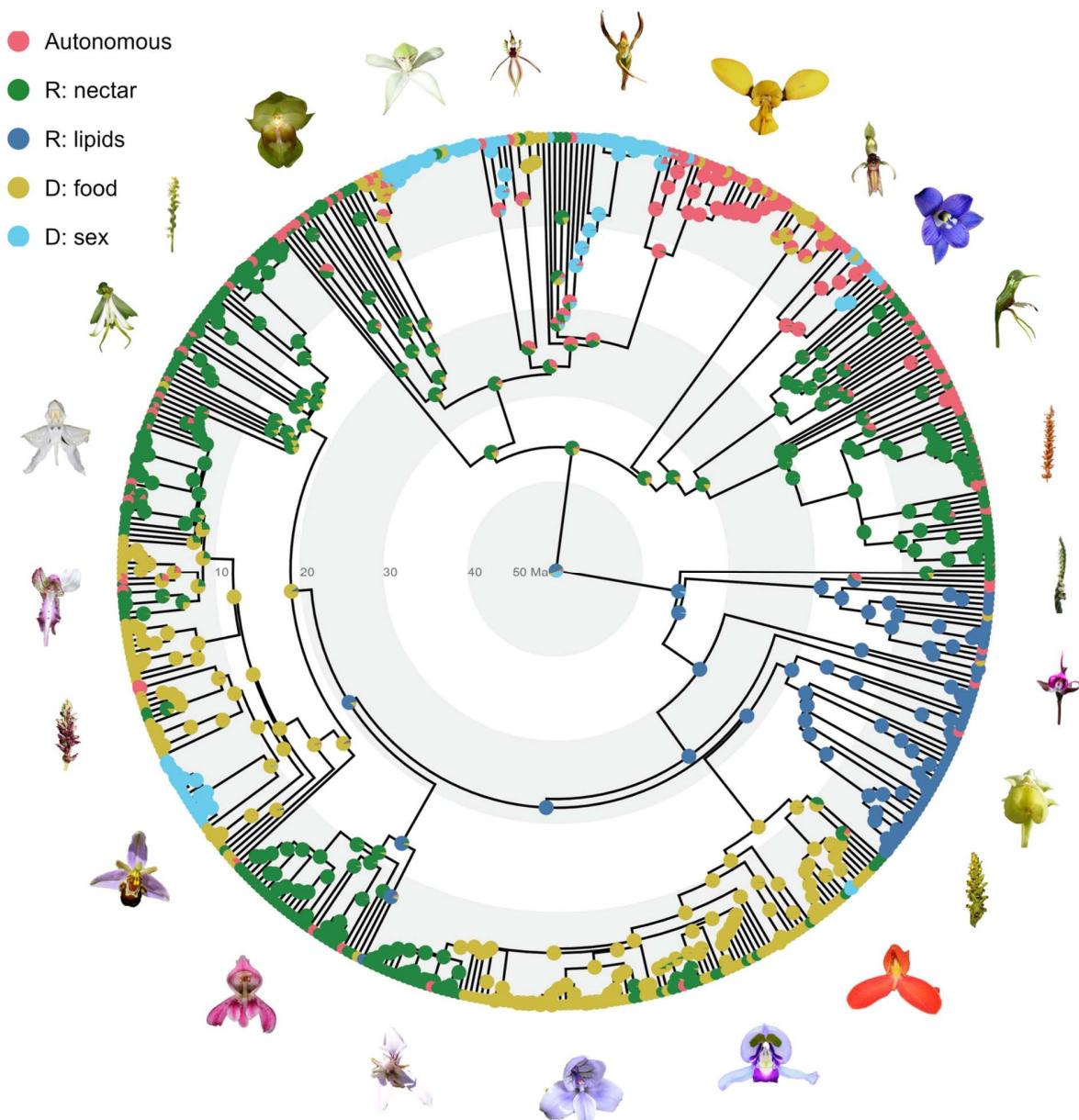
81 rate-heterogeneity and trait-dependent diversification can accommodate incomplete and even
82 imbalanced phylogenetic sampling^{43,46-50}. This allows for inference of broad-scale patterns when
83 data are sparse, provided taxonomic coverage is representative and sampling biases are modelled
84 appropriately. Similarly, data on pollinator variation has historically had poor coverage across
85 the diversity of orchid lineages, a problem that is also encountered in other families⁵¹⁻⁵³.
86 However, a recent compilation of pollinator data has been published which samples the majority
87 of orchid genera⁵. This compilation records different levels of specialisation including pollinator
88 strategy, pollinator identity such as Lepidoptera, as well as numbers of pollinators for orchids, at
89 species level. The taxonomic coverage at species level is ~10%, which is similar to datasets for
90 other plant families^{26,51,54}, and is comparable to datasets successfully used to explore pollinator-
91 dependent diversification, in orchids²⁰ and other families²⁶. Although there are taxonomic gaps,
92 there is now the framework for investigating the macroevolution of pollination in the orchids on
93 the largest scales.

94

95 The subfamily Orchidoideae (~5,000 species) are an ideal study system for this hypothesis.
96 Unlike their sister subfamily Epidendroideae, in which rapid diversification is associated with
97 epiphytism and Crassulacean acid metabolism (CAM) photosynthesis^{20,21}, Orchidoideae are
98 predominantly terrestrial; are extremely widespread, especially in the extratropical regions³¹;
99 and are characterised by exceptional diversity in pollination strategies, having evolved both
100 reward-based and deceptive strategies⁵. Furthermore, many genera, such as *Gymnadenia*,
101 *Herminium*, *Ophrys* and *Orchis* were the subjects of Darwin's early observations underlying his
102 coevolutionary hypothesis⁴. Understanding the evolution of pollination strategy diversity, and
103 impacts on diversification dynamics, is critical for fundamental evolutionary knowledge, but also
104 for conservation. As global pollinator populations continue to decline^{55,56}, the diversity of
105 pollinator-dependent orchids is threatened⁵⁷. By understanding how past evolutionary dynamics
106 have, or have not, changed in response to pollinator shifts, we may improve our ability to predict
107 how orchids, many of which are threatened with extinction³, will fare in the future.

108

109 Here, we investigate the evolutionary dynamics of pollination strategy in terrestrial orchids.
110 Using a large phylogeny³¹ and a curated dataset of pollination⁵, we reconstruct the evolution of
111 pollination strategies, and test for associations between diversification rates and different types
112 of specialisation at the levels of pollination strategy, taxonomic identity of pollinators, pollinator
113 number and functional specificity. To do this, we use character-free diversification methods that
114 are designed to accommodate incomplete and imbalanced taxonomic sampling^{46,47}. Our results
115 reveal frequent but constrained transitions among pollination strategies, but no consistent
116 relationship between specialisation and speciation rate. These findings suggest that while
117 pollinator specialisation contributes to ecological and reproductive diversity, it plays a limited
118 role in shaping macroevolutionary patterns of diversification across terrestrial orchids.

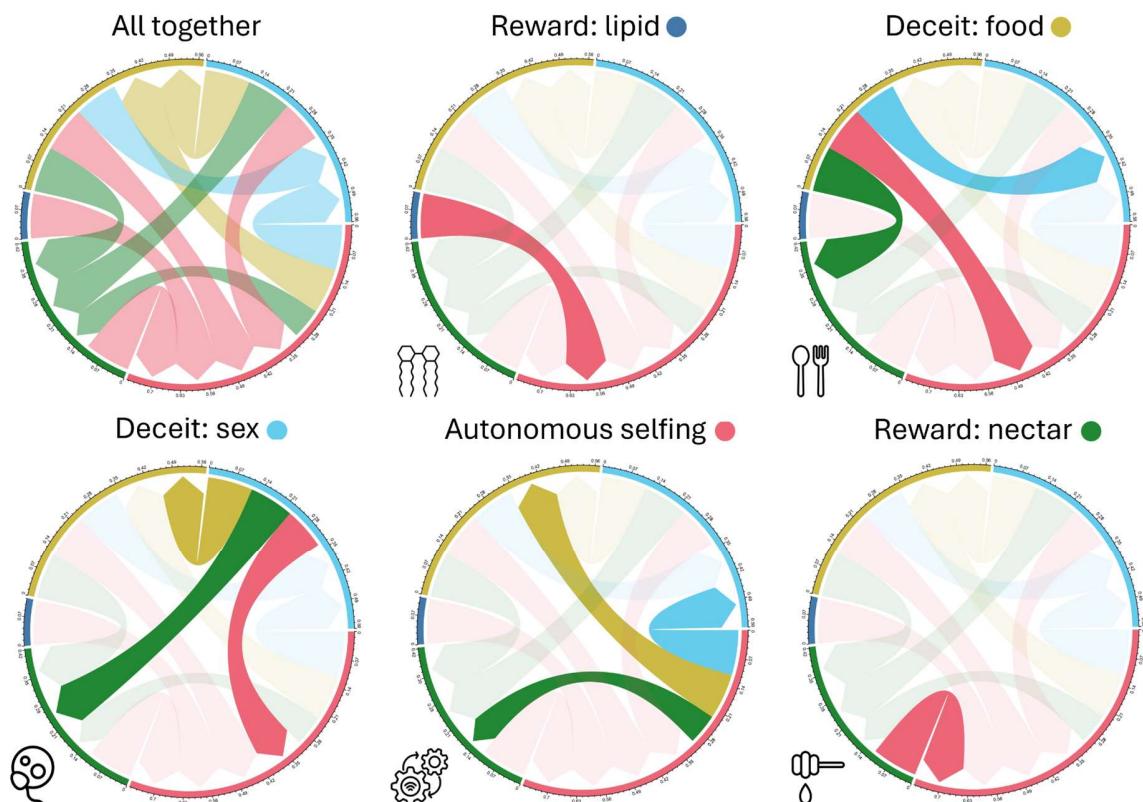

119

120 **Results**

121 **Evolutionary model and ancestral states**

122 We investigated the evolutionary gains and losses of pollination strategies in a taxonomically
123 comprehensive sample of Orchidoideae, comprising 485 species in 88 genera (~10% of species
124 and ~43% of genera ¹). We reconstructed ancestral states after comparing support for six
125 different transition models (equal rates (ER), symmetrical (SYM) and all-rates-different (ARD)),
126 all with and without hidden rates ⁵⁸. The best-supported model was ARD without hidden states
127 (AIC weight ~ 1), indicating variation and asymmetry in transition rates among strategies.
128 Ancestral states of the deepest nodes were relatively weak; the highest supported root state is
129 lipid reward (root state probability 0.47), and there is weaker support for other strategies. The
130 earliest branches are predominantly reward-based, with nectar reward in branches leading to
131 tribes Diurideae, Codonorchideae and Cranichideae and lipid reward in branches leading to tribe
132 Orchideae. Transition counts among pollination strategies were highly asymmetric (Supp Mat),
133 with the most frequent from nectar reward to autonomous selfing (median # transitions = 51),
134 followed by from food deception to nectar reward (median n = 30), then autonomous selfing to
135 food deception (median n = 19). Transitions into sex deception were rare, with low counts from
136 food deception (median n = 3) and autonomous selfing (median n = 9). Notably, lipid reward
137 appears evolutionarily constrained, with transitions away from it (median n = 12) but none
138 toward it, consistent with its early origin and subsequent persistence within Orchideae.

139



140
 141 **Figure 1. Phylogenetic distribution of pollinator attraction strategies in Orchidoideae.** Tips
 142 and nodes are coloured by pollination strategy: autonomous selfing/agamospermy (red), nectar
 143 reward (green), lipid reward (dark blue), food deception (yellow), and sex deception (light blue).
 144 Pie charts at internal nodes represent posterior probabilities of ancestral states based on 300
 145 stochastic character maps estimated with an all-rates-different transition model, using corHMM
 146 ⁵⁸. The root state is uncertain, with highest support for a lipid reward strategy. Flower
 147 photographs are provided under Creative Commons licences, sourced primarily from Flickr and
 148 Wikimedia Commons (details in Supp Mat), and are positioned approximately at their respective
 149 species or genera in the tree, but spaced for visual clarity.
 150

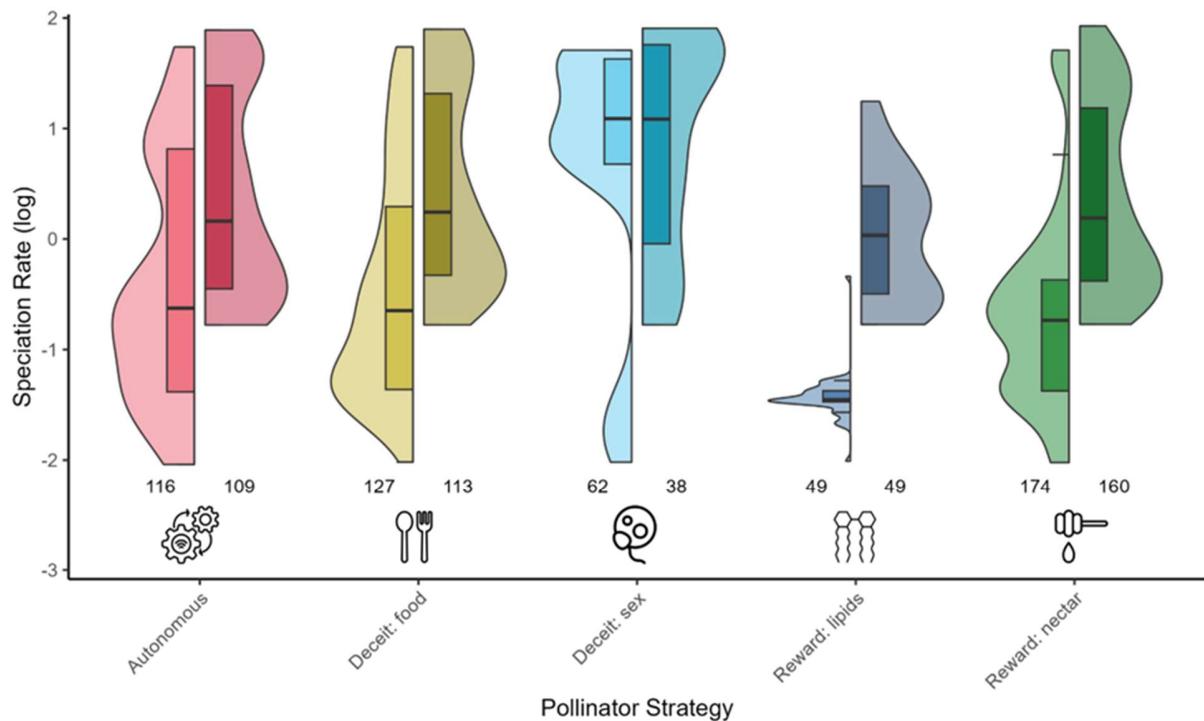
151 **Directional transitions and trait lability**

152 Given the uncertainty in ancestral states, we further explored transition rates using an ARD
153 reversible-jump MCMC framework, which, unlike corHMM models, incorporates rate
154 uncertainty and infers support for whether transitions actually occurred⁵⁹. Results suggest that
155 certain strategies, especially food deception and sex deception, are relatively labile and have
156 transitioned to several other states. Autonomous selfing is also evolutionary labile and transitions
157 to food and sex deception. In contrast, reward-based strategies, particularly lipid, are more
158 constrained. Lipid reward only significantly transitions to autonomous selfing, and no strategies
159 transition to lipid reward at a significant rate. Nectar reward similarly shows low lability, with
160 significant transitions only to autonomous selfing, although several strategies transition to nectar
161 reward.

162

163

164 **Figure 2. The complex evolution of diverse pollination strategies in Orchidoideae.** Reward-
165 based strategies are less evolutionarily labile than deception-based strategies, and autonomous
166 selfing is a common macroevolutionary destination. (Top left) A chord diagram showing all
167 significantly non-zero pairwise transition rates among pollination strategies, estimated using an
168 all-rates-different model with reversible-jump MCMC. Chord widths are proportional to
169 posterior median transition rates. Following this are individual plots of directionality of
170 transitions from each focal strategy, individually. Icons are provided under Creative Commons
171 licences, sourced from The Noun Project (details in Supp Mat).


172 **Speciation rates are not strongly shaped by pollination strategy**

173 We tested whether pollinator attraction strategies are associated with differences in tip-speciation
174 rate estimated with two character-independent diversification methods (BAMM⁴⁶ MiSSE⁴⁷)
175 (Fig. 3). Rates are heterogeneous across both methods, but associations with strategies are not
176 significant. Species with the lipid reward strategy exhibited the lowest average tip speciation
177 rates with narrow variance (BAMM mean = 0.25, SD = 0.07; MiSSE mean = 1.23, SD = 0.86).
178 In contrast, sex-deceptive species had the highest average speciation rates but with broad
179 variance (BAMM mean = 2.98, SD = 1.85; MiSSE mean = 3.18, SD = 2.16). Species with
180 autonomous selfing, food deception, and nectar reward have intermediate mean speciation rates,
181 broad variances, and heavily overlapping distributions (Fig. 3). The STRAPP test using BAMM
182 rates was insignificant, when treating the small number of polymorphic combinations as distinct
183 states (e.g., autonomous selfing with nectar reward) (Kruskal-Wallis $p = 0.091$). Similarly, a
184 PGLS on MiSSE speciation rates also did not differ significantly (for most comparisons, $p >$
185 0.44; one marginally significant effect at $p = 0.048$ that is unlikely to be robust given multiple
186 comparisons and very low explanatory power, $R^2 = 0.02$). We also found no significant impacts
187 after removing polymorphic species (BAMM Kruskal-Wallis $p = 0.11$; MiSSE $p > 0.15$, in all
188 cases), when binarising each strategy (BAMM Mann-Whitney $p > 0.05$; MiSSE $p > 0.05$, in all
189 cases), and when categorising species broadly, comparing autonomous selfing versus reward-
190 based versus deception-based strategies (BAMM Kruskal-Wallis $p = 0.14$; MiSSE $p > 0.91$, in
191 all cases) (Supp Mat). The bimodal distribution of BAMM speciation rates among sex-deceptive
192 species is shaped by monotypic and small genera such as *Leporella* and *Spiculaea*.

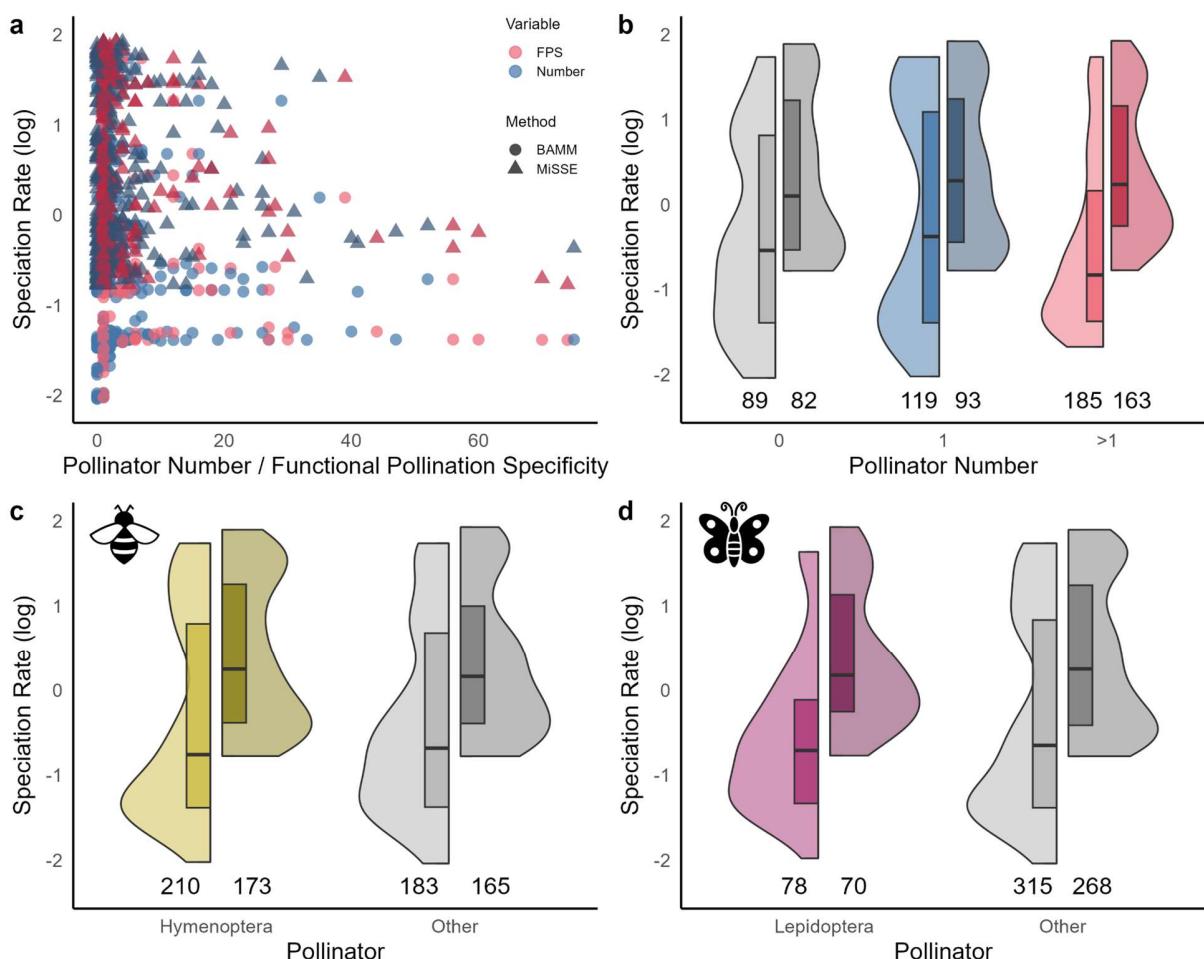
193

194

195

196

197 **Figure 3. Speciation rates vary across pollination strategies but differences are not statistically**
 198 **significant.** Half-violin plots show the distribution of log-transformed tip speciation rates
 199 estimated using BAMM (left) and MiSSE (right), grouped by pollination strategy. Speciation
 200 rates differ due to different underlying assumptions between the methods, especially regarding
 201 accounting for incomplete sampling. Sample sizes are indicated below half-violins. Sample sizes
 202 differ because we pruned some short branches before analysis with MiSSE, to avoid issues
 203 associated with formal SSE models. While species with sex deception tend to have higher median
 204 rates and those with lipid rewards lower, statistical tests indicate that differences among
 205 strategies are not significant ($p > 0.05$), when background rate heterogeneity and effects of
 206 shared ancestry are accounted for. Icons are provided under Creative Commons licences,
 207 sourced from The Noun Project (details in Supp Mat).


208

209

210 **Pollinator specificity and identity are not associated with diversification rates**

211 We tested whether speciation rates are shaped by pollinator number, functional pollination
 212 specificity (FPS, defined as the number of pollinator families multiplied by the number of
 213 pollinator orders⁵), broadly-discretised specialisation level (generalist versus specialist versus
 214 autonomous), and dominant pollinator order (Hymenoptera and Lepidoptera). Across all tests,
 215 we found no significant association with speciation rates (Fig. 4). Pollinator number and FPS
 216 (Fig. 4a) showed wide variation across species but did not correlate with tip speciation rates.
 217 Neither significantly predicted speciation (BAMM pollinator number Spearman $p = 0.81$, MiSSE
 218 $p = 0.99$; BAMM FPS $p = 0.80$; MiSSE $p = 0.69$), including when excluding autonomous selfing
 219 species with zero pollinators (BAMM number $p = 0.65$, MiSSE $p = 0.94$; BAMM FPS $p = 0.76$,

220 MiSSE $p = 0.73$). Similarly, speciation rates did not differ significantly among autonomous
 221 selfing, generalist, and specialist species (BAMM Kruskal-Wallis, $p = 0.82$; MiSSE $p > 0.89$, in
 222 all cases) (Fig. 4b). Nor is there a significant impact of pollination by Hymenoptera (BAMM
 223 Mann-Whitney, $p = 0.84$; MiSSE $p = 0.93$) (Fig. 4c), or Lepidoptera (BAMM Mann-Whitney, p
 224 = 0.87; MiSSE $p = 0.87$) (Fig. 4d).
 225

226
 227 **Figure 4: Speciation rates are not significantly influenced by pollinator specialisation.** (a)
 228 Scatterplot showing no correlation between speciation rate and either pollinator number or
 229 functional pollinator specificity. (b) Violin plots comparing generalist and specialist species
 230 (autonomous selfing species are not shown but were included in statistical tests). Speciation
 231 rates by Hymenoptera versus others (c), and Lepidoptera versus others (d). Statistical tests for
 232 all comparisons were non-significant ($p > 0.05$). Icons are provided under Creative Commons
 233 licences, sourced from The Noun Project (details in Supplementary Information).
 234

235 **Discussion**

236 Orchids have long captured the attention of evolutionary biologists and horticulturalists with
237 their remarkable floral adaptations ^{1,2,4,5,20,22}. The idea that pollination drives orchid
238 diversification dates back to Darwin, who linked orchid variation to interactions with insect
239 pollinators ⁴. Later work expanded this to a broader theory of pollinator-driven speciation across
240 angiosperms ^{13,60}, which remains a powerful hypothesis. In our study, by analysing the most
241 comprehensive available phylogeny of any orchid subfamily ³¹ and pollinator dataset ⁵, we find
242 no strong link between speciation and pollinator specialisation, a result that is robust to
243 methodological differences. Our results contradict long-standing expectations that pollinator-
244 mediated microevolutionary divergences accumulate to shape macroevolution ^{18,19}. We suggest
245 that other factors, such as environmental forces and complex ecological interactions, may play a
246 larger role, the latter of which is a hypothesis gaining strength in different taxa ^{5,20,31,61-65}.

247 **Transition patterns reflect ecological lability and evolutionary constraint**

248 Pollination strategies in terrestrial orchids are evolutionarily labile, showing frequent transitions
249 among strategies and ecological flexibility. However, transitions are asymmetric, suggesting that
250 floral evolution is constrained ⁶⁶⁻⁶⁸. Some strategies, especially food deception, nectar reward,
251 and autonomous selfing, are common evolutionary destinations. In contrast, lipid reward and
252 sexual deception states are rarely gained. These patterns likely reflect a combination of
253 developmental constraints, physiological trade-offs, and ecological selection pressures ^{69,70}.
254 Reward-based strategies such as nectar and lipid production often involve substantial honest
255 investment in pollinator attraction, and may be more advantageous in environments with reliable
256 pollinator communities. Once lost, these strategies may be difficult to regain, especially if
257 alternatives such as deception or selfing provide adequate reproductive success. In contrast,
258 deceptive strategies may offer a lower-cost method of dishonest pollinator attraction ^{41,69}, able to
259 evolve without the same level of investment into nectar or lipid production. The relative rarity of
260 sexual deception may reflect the greater ecological specificity involved when flowers mimic
261 female bees ^{10,11}, while the infrequent gains of lipid reward are explained by historical
262 contingency. It may have been ancestral in the entire subfamily and remains stable within tribe
263 Orchidaceae.

264
265
266 Transitions to autonomous selfing are common, although the specific origin strategies differ by
267 method. Given that up to 88% of orchids are self-compatible ⁵, autonomous selfing may be a
268 readily accessible and low-cost strategy when pollinators are scarce or unreliable. Asymmetric
269 transitions may therefore reflect both physiological costs of floral evolution and ecological
270 selection for reproductive success. However, it must be noted that this pattern could also arise
271 from data scarcity. As Ackerman et al. ⁵ acknowledge, a substantial proportion of species
272 classified as autonomously selfing were scored based on indirect evidence, such as high fruit set
273 without observed pollinators, rather than experimental exclusion trials. In fact, only 44% of the
274 species in the total dataset assigned to autonomous selfing or agamospermy were supported by

275 experimental data. This introduces the possibility that the prevalence of autonomous selfing may
276 be overestimated, especially when recorded from fieldwork or short-term studies, where
277 pollinators may simply go undetected. Given that many orchids are visited infrequently and
278 require extended observation to confirm pollination, caution is warranted in interpreting the
279 evolutionary accessibility or prevalence of this particular strategy.

280

281 **Pollination specialisation is not a universal driver of diversification**

282 Our results challenge long-standing hypotheses that pollination specialisation, assessed under
283 different definitions covering broad and finer scales, promotes orchid speciation. This is difficult
284 to reconcile with decades of theory on pollination-mediated divergences, but supports findings
285 that orchid macroevolution is shaped by other forces beyond pollination⁵⁰. While important
286 examples of rapid speciation through pollinator shifts have been documented in iconic genera
287 such as *Ophrys*¹² and *Disa*^{13,35}, these appear clade-specific rather than universal processes. In
288 our results, this clade-specific pattern is observed comparing speciation rates in larger sex
289 deceptive genera against monotypic and depauperate genera, such as *Leporella* and *Spiculaea*.
290 While some deceptive species certainly do speciate more rapidly, this is not a universal pattern
291³⁵.

292

293 The absence of a consistent effect of pollinator specialisation on speciation is consistent with
294 patterns reported elsewhere in Orchidaceae, using much sparser data. Using a sparse
295 phylogenomic reconstruction (sampling ~0.68% of species), Givnish et al.²⁰ found that although
296 deceit pollination increased overall richness of orchids, it was not associated with accelerated
297 diversification. Similarly, they did not detect a significant effect of either pollination by
298 Hymenoptera or Lepidoptera. Givnish et al.²⁰ instead found strong impacts of pollinia,
299 epiphytism, CAM photosynthesis and tropical distributions. Similarly, Gravendeel et al.²¹
300 reported no association between pollinator specialisation and species richness across orchid
301 subfamilies, instead finding a stronger impact of epiphytism in some genera.

302

303 One explanation for this pattern may lie in the demographic context of orchid reproduction. As
304 Tremblay et al.²² describe, many orchids are pollen-limited and have skewed reproductive
305 success. A few individuals achieve pollination while the majority do not. In this context,
306 pollinator specialisation may constrain reproductive assurance, thereby reducing the potential for
307 long-term speciation. Furthermore, even flexible or rapidly evolving pollination strategies may
308 not increase the probability of speciation, especially if gene flow remains limited or inconsistent.
309 Another potential explanation lies in abiotic forces, which can shape macroevolutionary
310 dynamics beyond the effect of adaptive traits⁶¹. Recently, Thompson et al.³¹ demonstrated that
311 speciation in Orchidoideae is associated with global cooling throughout the Cenozoic, and Guo
312 et al.³² found an impact of sea level on *Paphiopedilum* diversification. Similarly, Pérez-Escobar
313 et al.³⁴ found that Neotropical epiphytic orchid diversification was associated with the abiotic
314 forces of Andean uplift and geographic shifts, rather than different pollinators. Subsequent work

315 by Pérez-Escobar et al. ⁷¹ strengthened this by showing that environmental sex determination
316 (ESD) is associated with increased diversification in Neotropical epiphytic orchids, but ESD
317 itself is triggered to evolve by habitat fragmentation and climatic instability. Therefore, the
318 impact of reproductive traits on diversification is likely to be context-dependent, shaped by
319 interactions with abiotic forces and lineage-specific constraints.

320
321 Our results are robust to differences and uncertainty of diversification rate estimation methods
322 ^{72,73}, and to the incomplete and uneven taxonomic sampling that currently characterises
323 phylogenies for plant groups ⁷⁴⁻⁷⁷. Our methods were designed to explicitly accommodate
324 imbalanced sampling and have successfully explored pollinator-dependent diversification under
325 similar levels of sampling (~12% of cactus species, ²⁶), and much weaker (~0.68% of orchid
326 species in ~24% of genera, ²⁰). Our analysis includes 485 species from 88 genera (~10% of
327 species, ~43% of Orchidoideae genera ¹), with some unevenness in sampling, notably 99 species
328 of *Disa*. But this is not necessarily a drawback, as *Disa* is a model genus for pollination biology
329 because it captures a wide range of pollination strategies ^{13,35,78}. Although BAMM and MiSSE
330 differ in their exact estimated tip speciation rates and agree only on broad patterns
331 (Supplementary Information), they converge in their associations with pollinators. This
332 concordance between methods, and their different treatments of missing data, suggests that our
333 result is not a statistical artefact resulting from incomplete data.

334
335 **The complexity of triggering rapid diversification**
336 Our results highlight that rapid diversification in orchids likely arises from complex interactions
337 among ecological, geographic, and evolutionary factors, rather than from single forces like
338 pollination strategy. This contributes to the growing appreciation showing that triggers of
339 diversification are rarely explained by simplistic models ^{49,61,62,79}. While pollination strategy in
340 terrestrial orchids is certainly a powerful driver of ecological differentiation ²², it does not
341 consistently trigger increased diversification. Recent work in another diverse family also found
342 this pattern. It was previously thought that pollinator divergence was a driver of cactus
343 diversification ²⁶, but by extensively sampling biotic and abiotic variables, Thompson et al. ⁶¹
344 found that pollinator divergence is not among the strongest predictors. Subsequent work found
345 that while pollinators shape cactus floral morphology, neither pollinator nor floral morphology
346 influences diversification rates, and it is the rate of floral evolution that drives speciation ^{31,80}.
347 Across cacti, diversification was shaped by a complex combination of interacting abiotic and
348 biotic forces ^{61,80}, and it is likely that a similar pattern drives orchid evolution ^{2,20,31,65}.

349
350 The traditional narrative that key traits can act in isolation as direct drivers of speciation is being
351 overhauled, and the multifactorial nature of evolution is becoming clearer. Bouchenak-Khelladi
352 et al. ⁶³ offer a useful framework for interpreting these patterns. They argue that adaptive
353 radiations require not only adaptive traits but also the optimal ecological conditions, which they
354 delimit as “backgrounds”, “triggers”, and “modulators”. In orchids, pollination strategy may

355 serve as a modulator, i.e., a context-dependent trigger that facilitates divergence when coupled
356 with ecological opportunity or environmental change, but it cannot drive radiation in isolation.
357 Bouchenak-Khelladi et al. ⁶³ also distinguish “polymorphic” traits, which are labile and variable
358 and can promote diversification by allowing species to partition ecological niches or undergo
359 reproductive isolation, from “simple” traits, which are conserved and necessary for survival.
360 Polymorphic traits do not necessarily trigger radiations, but they can facilitate or maintain one
361 once it begins. The recovered lability of pollination strategies, and the different ways in which
362 they mediate interactions with the environment and other organisms, may fit this description of
363 polymorphic traits. Unless matched with extrinsic triggers or ecological shifts, pollinator strategy
364 alone may not lead to accelerated diversification of terrestrial orchids ^{34,61}. Further work should
365 begin to integrate all forces hypothesised to be important simultaneously within an analytical
366 framework, to understand the conditions in which pollinator transitions do or do not accelerate
367 orchid diversification, as recently suggested ^{5,65}.

368

369 **Materials and methods**

370 **Pollinator strategy data**

371 Data on pollinator attraction strategy were sourced from a recently published and comprehensive
372 database of orchid reproductive biology ⁵. These data were assembled from an exhaustive search
373 of literature published since Darwin ⁴, and scored attraction strategies as deceit-based (sex and
374 food deceit) or reward-based (fragrance, nectar, oil, and sleeping site). Taxonomy was corrected
375 against the World Checklist of Vascular Plants ⁸¹ using the R package *rWCVP* ⁸². The majority
376 of species names were exactly matched to species in WCVP, and the few “fuzzy matches” were
377 checked manually. Species names with multiple matches were resolved automatically by keeping
378 the accepted name where exactly one was accepted and keeping a synonym (as opposed to
379 invalid or illegitimate names) when exactly one was a synonym. Finally, synonyms were
380 corrected to their accepted name, and duplicates that resulted from the correction steps were
381 removed. Species were categorised based on autonomous selfing/agamospermy (119 species),
382 nectar reward (174 species), lipid reward (50 species), sleep site reward (four species), brood-site
383 deception (two species), food deception (131 species) and sex deception (65 species). A small
384 number of species (50) were scored for more than one category, which were either the result of
385 more than one category being operational or of conflicting source reports.

386

387 **Phylogenetic framework**

388 The cleaned dataset was matched with species from a recently published molecular phylogeny ³¹,
389 and species not sampled in the dataset were pruned for analysis, ultimately leaving 485 species.
390 This phylogeny was chosen because it is currently the most taxonomically comprehensive
391 phylogeny for subfamily Orchidoideae, with 1,475 of ~5,000 species sampled. It was constructed
392 using the supermatrix approach, sampling up to nine commonly-sequenced nucleotide loci
393 publicly available in GenBank, and it was calibrated against geological time with RelTime ⁸³,

394 using robust phylogenomic estimates implemented as secondary calibrations^{20,83}, given the lack
395 of an extensive fossil record for Orchidaceae².

396

397 **Model selection, ancestral state reconstruction and transition rates**

398 To identify the evolutionary mode of pollinator strategy, model selection was performed using
399 hidden Markov transition models with the R package *corHMM*⁵⁸. Six models were estimated: all
400 rates different (ARD), equal rates (ER) and symmetrical (SYM), all with and without hidden
401 rates, and were compared with Akaike information criterion weights (AICw). After initial
402 investigation, the two states with very few species were removed (sleep site reward, n = 4; brood
403 site deception = 2). Rare states are known to introduce artifacts to estimated transition rates
404^{67,84,85} and increase uncertainty around ancestral states (Meade, personal communication), which
405 they did here in initial discarded analyses. After identifying the best model based on AIC weight,
406 300 SIMMAPs were estimated to explore uncertainty of ancestral states⁸⁶. To explore transition
407 rates further, an ARD model was estimated in reversible-jump Markov chain Monte Carlo
408 (MCMC) analyses using the MultiState module in BayesTraitsV3
[\(www.evolution.reading.ac.uk/\)](http://www.evolution.reading.ac.uk/). This rj-MCMC approach was chosen because it automatically
409 allows rates to be zero if there is not enough evidence for their existence⁵⁹. A hyperexponential
410 prior was applied to each transition rate, with the mean of the exponential drawn from a uniform
411 0-100. 51 million generations were sampled every 5,000 after discarding the first 1 million as
412 burn-in. Convergence was checked with the R package *coda*⁸⁷, ensuring effective sample sizes
413 of >1,000. In both corHMM and rj-MCMC analyses, polymorphic species were included,
414 allowing transitions to reflect the full range, and uncertainty, of pollination strategies observed.
415

416

417 **Estimating speciation rate variation**

418 To estimate speciation rates, we used two character-independent methods that differ in approach
419 and assumptions, especially regarding the setting of incomplete sampling fractions. This follows
420 recent recommendations that tip-rate patterns be evaluated with more than one method, since
421 different estimators capture different aspects of diversification dynamics and can behave
422 inconsistently across phylogenies⁷². Namely, we used Bayesian Analysis of Macroevolutionary
423 Mixtures (BAMM, 36) and Missing State Speciation and Extinction (MiSSE, 37). BAMM is
424 widely used and has been implemented on this phylogeny of Orchidoideae previously³¹; MiSSE
425 is a newer model, but has been used to conduct *post hoc* tests for drivers of diversification in
426 various clades, including in animals⁸⁸, plants⁸⁹, and fungi⁹⁰. We solely considered variation in
427 speciation rate because extinction rates inferred with BAMM are thought to be unreliable⁹¹,
428 whereas speciation rates are more accurate⁹². We opted to use character-independent methods
429 instead of character-dependent SSE models because the pollinator data currently available for
430 Orchidoideae are too sparse to accurately account for incomplete sampling of states⁵, which is a
431 crucial step for character-dependent SSE models⁹³. Instead, BAMM and MiSSE account for
432 incomplete sampling with clade-specific and global sampling fractions, respectively. Both of
433 these tools have benefits and pitfalls: Clade-specific fractions allow for different lineages to have

434 different sampling fractions, which is important when genetic sequencing has been biased to
435 particular groups, as is very common in plants. However, BAMM has been criticised because it
436 can distort likelihood calculations, potentially leading to spurious inferences of rate shifts⁹⁴.
437 Further criticism of BAMM beyond the issue of clade-specific fractions^{91,95} has been defended
438 statistically^{92,96}. We believe that by implementing both approaches, in accordance with recent
439 suggestions for studies of tip diversification rates (58), we can provide a good and
440 complementary understanding of overall diversification patterns. We used the BAMM-estimated
441 rates of Thompson et al³¹, where clade-specific sampling fractions were implemented at genus
442 level, and 9,000 samples of the Bayesian posterior were estimated, accounting for uncertainty in
443 parameter estimation (detailed methodological procedure in³¹). Unlike BAMM, MiSSE, which
444 is implemented in the R package *hisce*⁴⁹, is a maximum-likelihood model that treats
445 diversification as a set of up to 26 different hidden states to capture rate heterogeneity across the
446 phylogeny⁴⁷. Using the generateMiSSEGreedyCombinations function, we generated 30 possible
447 model structures, each of which differed in combinations of one to ten turnover (speciation rate
448 plus extinction rate) parameters and one to three extinction fraction (extinction rate divided by
449 speciation rate) parameters, as in⁸⁹. Because short terminal branches can bias SSE models⁴⁹,
450 some of which are present in our Orchidoideae tree due to recent radiations in orchids^{2,31}, we
451 pruned the 200 shortest tips from the phylogeny before analysis. We ran MiSSE for each of these
452 model structures using the function MiSSEGreedy, implementing a global sampling fraction of
453 25.5%¹ to account for incomplete sampling. Using these models, we reconstructed marginal
454 ancestral states with the MarginalReconMiSSE function, then extracted model-averaged tip
455 diversification rates using the command GetModelAveRates. These two methods, BAMM and
456 MiSSE, provide complementary estimates of speciation rate that differ as a result of
457 methodological differences, capturing uncertainty inherent to estimating diversification rates
458 72,73,93.

459

460 **Assessing drivers of speciation**

461 To assess drivers of speciation we performed tests on both the BAMM and MiSSE estimates,
462 using slightly different approaches. We used Structured Rate Permutation on Phylogenies
463 (STRAPP) tests⁵⁰ with BAMM-estimated speciation rates⁴⁶, and phylogenetic regressions with
464 speciation rates estimated using the Missing State Speciation and Extinction (MiSSE) model⁴⁷.
465 STRAPP tests were implemented with the R package *BAMMtools* (978) and phylogenetic
466 regressions with the R package *phylolm* (79). Since both are character-independent methods,
467 they relax the assumption that all rate variation is associated with the focal trait, similar to the
468 hidden-rates extensions⁴⁹ of classic formal SSE models⁴⁸. Different tests were performed: (1)
469 binary analyses, which tested each pollination strategy individually while retaining polymorphic
470 species, and included comparisons of generalists (pollinated by >1 species) versus specialists,
471 Hymenoptera-pollinated versus others and Lepidoptera-pollinated versus others; (2) multistate
472 analyses, which tested all attraction strategies simultaneously after removing polymorphic
473 species, and included a three-state comparison grouping species broadly into autonomous,

474 reward-based, and deception-based strategies; (3) count-based analyses, which tested the effects
475 of pollinator number and functional pollinator specificity (FPS, defined as the multiplying counts
476 of pollinator families by orders). STRAPP tests were performed by permuting rates across the
477 tree, while maintaining the position of rate shifts ⁵⁰. Statistical differences were assessed with a
478 Kruskal-Wallis test for the multi-state tests, a Mann-Whitney U test for the binary tests, and a
479 Spearman's rank correlation coefficient for the pollinator count and FPS tests. Equivalent
480 statistical tests of MiSSE-estimated speciation rates were performed using a PGLS approach in
481 the R package *phylolm* (79).

482

483 **Supplementary materials**

484 Code and data used to generate these results is available at [https://github.com/jamie-
485 thompson/orchid_pollinators](https://github.com/jamie-thompson/orchid_pollinators).

486

487 **Acknowledgments**

488 JBT acknowledges the Venditti lab group at the University of Reading for comments on an early
489 draft. OAPE acknowledges support from the Swiss Orchid Foundation and the Sainsbury Orchid
490 Fellowship at the Royal Botanic Gardens, Kew.

491 **References:**

492 1. Chase, M. W. *et al.* An updated classification of Orchidaceae. *Bot J Linn Soc* **177**, 151–
493 174 (2015).

494 2. Pérez-Escobar, O. A. *et al.* The origin and speciation of orchids. *New Phytologist* **242**,
495 700–716 (2024).

496 3. Vitt, P. *et al.* Global conservation prioritization for the Orchidaceae. *Sci Rep* **13**, 6718
497 (2023).

498 4. Darwin, C. *On the Various Contrivances by Which British and Foreign Orchids Are*
499 *Fertilised by Insects: And on the Good Effect of Intercrossing*. (London : J. Murray, 1862).

500 5. Ackerman, J. D. *et al.* Beyond the various contrivances by which orchids are pollinated:
501 global patterns in orchid pollination biology. *Bot J Linn Soc* **202**, 295–324 (2023).

502 6. Schiestl, F. P. & Schlüter, P. M. Floral isolation, specialized pollination, and pollinator
503 behavior in orchids. *Annu Rev Entomol* **54**, 425–446 (2009).

504 7. Lussu, M., De Agostini, A., Cogoni, A., Marignani, M. & Cortis, P. Does size really
505 matter? A comparative study on floral traits in orchids with two different pollination strategies.
506 *Plant Biol.* **21**, 961–966 (2019).

507 8. Dormont, L., Joffard, N. & Schatz, B. Intraspecific Variation in Floral Color and Odor in
508 Orchids. *International Journal of Plant Sciences* (2019) doi:10.1086/705589.

509 9. Gaskell, A. C. Orchid pollination by sexual deception: pollinator perspectives. *Biological*
510 *Reviews* **86**, 33–75 (2011).

511 10. Peakall, R. Pollination by sexual deception. *Curr Biol* **33**, R489–R496 (2023).

512 11. Schiestl, F. P. *et al.* Sex pheromone mimicry in the early spider orchid (*Ophrys*
513 *sphegodes*): patterns of hydrocarbons as the key mechanism for pollination by sexual deception.
514 *Journal of Comparative Physiology A* **186**, 567–574 (2000).

515 12. Breitkopf, H., Onstein, R. E., Cafasso, D., Schlüter, P. M. & Cozzolino, S. Multiple shifts
516 to different pollinators fuelled rapid diversification in sexually deceptive *Ophrys* orchids. *New*
517 *Phytol* **207**, 377–389 (2015).

518 13. Johnson, S., Linder, H. & Steiner, K. Phylogeny and radiation of pollination systems in
519 *Disa* (Orchidaceae). *Am J Bot* **85**, 402 (1998).

520 14. Van der Niet, T., Peakall, R. & Johnson, S. D. Pollinator-driven ecological speciation in
521 plants: new evidence and future perspectives. *Ann Bot* **113**, 199–212 (2014).

522 15. Schiestl, F. P. & Schlüter, P. M. Floral isolation, specialized pollination, and pollinator
523 behavior in orchids. *Annu. Rev. Entomol.* **54**, 425–446 (2009).

524 16. Rymer, P. D., Johnson, S. D. & Savolainen, V. Pollinator behaviour and plant speciation:
525 can assortative mating and disruptive selection maintain distinct floral morphs in sympatry? *New*
526 *Phytol.* **188**, 426–436 (2010).

527 17. Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R. & Thomson, J. D.
528 Pollination syndromes and floral specialization. *Annu. Rev. Ecol. Evol. Syst.* **35**, 375–403 (2004).

529 18. Schlüter, D. *The Ecology of Adaptive Radiation*. (OUP Oxford, 2000).

530 19. van der Niet, T. & Johnson, S. D. Phylogenetic evidence for pollinator-driven

531 diversification of angiosperms. *Trends Ecol Evol* **27**, 353–361 (2012).

532 20. Givnish, T. J. *et al.* Orchid phylogenomics and multiple drivers of their extraordinary
533 diversification. *Proc Biol Sci* **282**, (2015).

534 21. Gravendeel, B., Smithson, A., Slik, F. J. W. & Schuiteman, A. Epiphytism and pollinator
535 specialization: drivers for orchid diversity? *Philos Trans R Soc Lond B Biol Sci* **359**, 1523–1535
536 (2004).

537 22. Tremblay, R. L., Ackerman, J. D., Zimmerman, J. K. & Calvo, R. N. Variation in sexual
538 reproduction in orchids and its evolutionary consequences: a spasmodic journey to
539 diversification. *Biol J Linn Soc* **84**, 1–54 (2004).

540 23. Cozzolino, S. & Widmer, A. Orchid diversity: an evolutionary consequence of
541 deception? *Trends Ecol Evol* **20**, 487–494 (2005).

542 24. van der Niet, T. & Johnson, S. D. Patterns of plant speciation in the Cape floristic region.
543 *Mol Phylogenet Evol* **51**, 85–93 (2009).

544 25. Kessler, M., Abrahamczyk, S. & Krömer, T. The role of hummingbirds in the evolution
545 and diversification of Bromeliaceae: unsupported claims and untested hypotheses. *Bot. J. Linn.
546 Soc.* **192**, 592–608 (2020).

547 26. Hernández-Hernández, T., Brown, J. W., Schlumpberger, B. O., Eguiarte, L. E. &
548 Magallón, S. Beyond aridification: multiple explanations for the elevated diversification of cacti
549 in the New World Succulent Biome. *New Phytol* **202**, 1382–1397 (2014).

550 27. Barreto, E. *et al.* Macroevolution of the plant-hummingbird pollination system. *Biol Rev
551 Camb Philos Soc* **99**, 1831–1847 (2024).

552 28. Stephens, R. E., Gallagher, R. V., Dun, L., Cornwell, W. & Sauquet, H. Insect pollination
553 for most of angiosperm evolutionary history. *New Phytol* **240**, 880–891 (2023).

554 29. Asar, Y., Ho, S. Y. W. & Sauquet, H. Early diversifications of angiosperms and their
555 insect pollinators: were they unlinked? *Trends Plant Sci* **27**, 858–869 (2022).

556 30. Evolution of insect pollination and angiosperm diversification. *Trends in Ecology &
557 Evolution* **7**, 46–49 (1992).

558 31. Thompson, J. B., Davis, K. E., Dodd, H. O., Wills, M. A. & Priest, N. K. Speciation
559 across the Earth driven by global cooling in terrestrial orchids. *Proc Natl Acad Sci U S A* **120**,
560 e2102408120 (2023).

561 32. Guo, Y.-Y., Luo, Y.-B., Liu, Z.-J. & Wang, X.-Q. Reticulate evolution and sea-level
562 fluctuations together drove species diversification of slipper orchids (*Paphiopedilum*) in South-
563 East Asia. *Mol Ecol* **24**, 2838–2855 (2015).

564 33. Givnish, T. J. *et al.* Orchid historical biogeography, diversification, Antarctica and the
565 paradox of orchid dispersal. *Journal of Biogeography* **43**, 1905–1916 (2016).

566 34. Pérez-Escobar, O. A. *et al.* Recent origin and rapid speciation of Neotropical orchids in
567 the world's richest plant biodiversity hotspot. *New Phytol* **215**, 891–905 (2017).

568 35. Johnson, S. D., Hobbhahn, N. & Bytebier, B. Ancestral deceit and labile evolution of
569 nectar production in the African orchid genus *Disa*. *Biology Letters* (2013)

570 doi:10.1098/rsbl.2013.0500.

571 36. Kessler, M., Abrahamczyk, S. & Krömer, T. The role of hummingbirds in the evolution
572 and diversification of Bromeliaceae: unsupported claims and untested hypotheses. *Bot J Linn Soc*
573 **192**, 592–608 (2019).

574 37. Ollerton, J. *et al.* A global test of the pollination syndrome hypothesis. *Ann Bot* **103**,
575 1471–1480 (2009).

576 38. Kriebel, R. *et al.* The evolution of Ericaceae flowers and their pollination syndromes at a
577 global scale. *Am J Bot* **110**, e16220 (2023).

578 39. Johnson, S. D. & Steiner, K. E. Generalization versus specialization in plant pollination
579 systems. *Trends Ecol. Evol.* **15**, 140–143 (2000).

580 40. Xu, S., Schlüter, P. M. & Schiestl, F. P. Pollinator-driven speciation in sexually deceptive
581 orchids. *Int. J. Ecol.* **2012**, 285081 (2012).

582 41. Schiestl, F. P. On the success of a swindle: pollination by deception in orchids.
583 *Naturwissenschaften* **92**, 255–264 (2005).

584 42. Arditti, J., Elliott, J., Kitching, I. J. & Wasserthal, L. T. ‘Good Heavens what insect can
585 suck it’ – Charles Darwin, *Angraecum sesquipedale* and *Xanthopan morganii praedicta*. *Bot J*
586 *Linn Soc* **169**, 403–432 (2012).

587 43. Chang, J., Rabosky, D. L. & Alfaro, M. E. Estimating Diversification Rates on
588 Incompletely Sampled Phylogenies: Theoretical Concerns and Practical Solutions. *Syst Biol* **69**,
589 602–611 (2020).

590 44. Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: Species-level sets
591 of phylogenies for questions in ecology, evolution, and conservation. *PLOS Biology* **17**,
592 e3000494 (2019).

593 45. McTavish, E. J. *et al.* A complete and dynamic tree of birds. *Proc. Natl Acad. Sci. USA*
594 **122**, e2409658122 (2025).

595 46. Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-
596 dependence on phylogenetic trees. *PLoS One* **9**, e89543 (2014).

597 47. Vasconcelos, T., O’Meara, B. C. & Beaulieu, J. M. A flexible method for estimating tip
598 diversification rates across a range of speciation and extinction scenarios. *Evolution* **76**, 1420–
599 1433 (2022).

600 48. Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on
601 speciation and extinction. *Syst Biol* **56**, 701–710 (2007).

602 49. Beaulieu, J. M. & O’Meara, B. C. Detecting Hidden Diversification Shifts in Models of
603 Trait-Dependent Speciation and Extinction. *Syst Biol* **65**, 583–601 (2016).

604 50. Rabosky, D. L. & Huang, H. A Robust Semi-Parametric Test for Detecting Trait-
605 Dependent Diversification. *Syst Biol* **65**, 181–193 (2016).

606 51. Thompson, J. B. *et al.* CactEcoDB: Trait, spatial, environmental, phylogenetic and
607 diversification data for the cactus family. *bioRxiv* (2025). doi:
608 <https://doi.org/10.1101/2025.06.27.661607>

609 52. Kattge, J. *et al.* TRY plant trait database - enhanced coverage and open access. *Glob*
610 *Chang Biol* **26**, 119–188 (2020).

611 53. Weigelt, P., König, C. & Kreft, H. GIFT – A Global Inventory of Floras and Traits for
612 macroecology and biogeography. *Journal of Biogeography* **47**, 16–43 (2020).

613 54. Abrahameczyk, S. *et al.* A question of data quality-Testing pollination syndromes in
614 Balsaminaceae. *PLoS One* **12**, e0186125 (2017).

615 55. Potts, S. G. *et al.* Global pollinator declines: trends, impacts and drivers. *Trends Ecol
616 Evol* **25**, 345–353 (2010).

617 56. Thomann, M., Imbert, E., Devaux, C. & Cheptou, P.-O. Flowering plants under global
618 pollinator decline. *Trends Plant Sci* **18**, 353–359 (2013).

619 57. Pauw, A. & Hawkins, J. A. Reconstruction of historical pollination rates reveals linked
620 declines of pollinators and plants. *Oikos* **120**, 344–349 (2011).

621 58. Boyko, J. D. & Beaulieu, J. M. Generalized hidden Markov models for phylogenetic
622 comparative datasets. *Methods in Ecology and Evolution* **12**, 468–478 (2021).

623 59. Pagel, M. & Meade, A. Bayesian Analysis of Correlated Evolution of Discrete Characters
624 by Reversible-Jump Markov Chain Monte Carlo. *The American Naturalist* (2006)
625 doi:10.1086/503444.

626 60. Stebbins, G. L. Adaptive radiation of reproductive characteristics in angiosperms, I:
627 pollination mechanisms. *Annu. Rev. Ecol. Syst.* **1**, 307–326 (1970).

628 61. Thompson, J. B., Hernández-Hernández, T., Keeling, G., Vásquez-Cruz, M. & Priest, N.
629 K. Identifying the multiple drivers of cactus diversification. *Nat Commun* **15**, 7282 (2024).

630 62. Siqueira, A. C., Morais, R. A., Bellwood, D. R. & Cowman, P. F. Trophic innovations
631 fuel reef fish diversification. *Nat Commun* **11**, 2669 (2020).

632 63. Bouchenak-Khelladi, Y., Onstein, R. E., Xing, Y., Schwery, O. & Peter Linder, H. On the
633 complexity of triggering evolutionary radiations. *New Phytologist* **207**, 313–326 (2015).

634 64. Sauquet, H. & Magallón, S. Key questions and challenges in angiosperm macroevolution.
635 *New Phytol* **219**, 1170–1187 (2018).

636 65. Ackerman, J. D. *et al.* Persistent Habitat Instability and Patchiness, Sexual Attraction,
637 Founder Events, Drift and Selection: A Recipe for Rapid Diversification of Orchids. *Plants
638 (Basel)* **14**, (2025).

639 66. Cunningham, C. W. Some limitations of ancestral character-state reconstruction when
640 testing evolutionary hypotheses. *Syst. Biol.* **48**, 665–674 (1999).

641 67. Goldberg, E. E. & Igić, B. On phylogenetic tests of irreversible evolution. *Evolution* **62**,
642 2727–2741 (2008).

643 68. Losos, J. B. Convergence, adaptation, and constraint. *Evol* **65**, 1827–1840 (2011).

644 69. Jersáková, J., Johnson, S. D. & Kindlmann, P. Mechanisms and evolution of deceptive
645 pollination in orchids. *Biological Reviews* **81**, 219–235 (2006).

646 70. Armbruster, W. S. Floral specialization and angiosperm diversity: phenotypic divergence,
647 fitness trade-offs and realized pollination accuracy. *AoB Plants* **6**, (2014).

648 71. Pérez-Escobar, O. A. *et al.* Multiple Geographical Origins of Environmental Sex
649 Determination enhanced the diversification of Darwin's Favourite Orchids. *Scientific Reports* **7**,
650 1–12 (2017).

651 72. Ridder, G. I., Smyčka, J., Storch, D., Mooers, A. Ø. & Otto, S. P. Tip rate estimates can
652 predict future diversification, but are unreliable and context dependent. *bioRxiv* (2025). doi:
653 <https://doi.org/10.1101/2025.10.06.680809>

654 73. Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: What are we
655 estimating, and how good are the estimates? *Methods in Ecology and Evolution* **10**, 821–834
656 (2019).

657 74. Ramírez-Barahona, S., Cuervo-Robayo, A. P. & Magallón, S. Assessing digital
658 accessible botanical knowledge and priorities for exploration and discovery of plant diversity
659 across Mesoamerica. *New Phytol.* **240**, 1659–1672 (2023).

660 75. Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. *Am
661 J Bot* **105**, 302–314 (2018).

662 76. Hinchliff, C. E. & Smith, S. A. Some Limitations of Public Sequence Data for
663 Phylogenetic Inference (in Plants). *PLOS ONE* **9**, e98986 (2014).

664 77. Grace, O. M. *et al.* Botanical Monography in the Anthropocene. *Trends Plant Sci* **26**,
665 433–441 (2021).

666 78. Hobbhahn, N., Johnson, S. D., Bytebier, B., Yeung, E. C. & Harder, L. D. The evolution
667 of floral nectaries in *Disa* (Orchidaceae: Disinae): recapitulation or diversifying innovation? *Ann
668 Bot* **112**, 1303–1319 (2013).

669 79. Helmstetter, A. J. *et al.* Trait-dependent diversification in angiosperms: Patterns, models
670 and data. *Ecol Lett* **26**, 640–657 (2023).

671 80. Thompson, J. B. & Venditti, C. Fast evolving flowers drive cactus diversification.
672 *ecoevoRxiv* (2025). <https://doi.org/10.32942/X2PH1C>

673 81. Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. & Paton, A. The World Checklist
674 of Vascular Plants, a continuously updated resource for exploring global plant diversity. *Sci Data*
675 **8**, 215 (2021).

676 82. Brown, M. J. M. *et al.* rWCVP: a companion R package for the World Checklist of
677 Vascular Plants. *New Phytol* **240**, 1355–1365 (2023).

678 83. Tamura, K. *et al.* Estimating divergence times in large molecular phylogenies.
679 *Proceedings of the National Academy of Sciences* **109**, 19333–19338 (2012).

680 84. Sauquet, H. *et al.* The ancestral flower of angiosperms and its early diversification.
681 *Nature Communications* **8**, 1–10 (2017).

682 85. Reyes, E., Nadot, S., von Balthazar, M., Schönenberger, J. & Sauquet, H. Testing the
683 impact of morphological rate heterogeneity on ancestral state reconstruction of five floral traits
684 in angiosperms. *Sci Rep* **8**, 9473 (2018).

685 86. Bollback, J. P. SIMMAP: stochastic character mapping of discrete traits on phylogenies.
686 *BMC Bioinformatics* **7**, 88 (2006).

687 87. Plummer, M., Best, N., Cowles, K. & Vines, K. Convergence diagnosis and output
688 analysis for MCMC. *R. News* **6**, 7–11 (2006).

689 88. Blaimer, B. B. *et al.* Key innovations and the diversification of Hymenoptera. *Nat
690 Commun* **14**, 1212 (2023).

691 89. Hagen, E. R. & Beaulieu, J. M. New beginnings for dead ends: polyploidy, -SSE models
692 and the dead-end hypothesis. *Ann Bot* **134**, 923–932 (2024).

693 90. Sato, H. The evolution of ectomycorrhizal symbiosis in the Late Cretaceous is a key
694 driver of explosive diversification in Agaricomycetes. *New Phytol* **241**, 444–460 (2024).

695 91. Moore, B. R., Höhna, S., May, M. R., Rannala, B. & Huelsenbeck, J. P. Critically
696 evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. *Proc
697 Natl Acad Sci U S A* **113**, 9569–9574 (2016).

698 92. Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM Flawed? Theoretical and Practical
699 Concerns in the Analysis of Multi-Rate Diversification Models. *Syst Biol* **66**, 477–498 (2017).

700 93. Mynard, P. *et al.* Impact of Phylogenetic Tree Completeness and Mis-specification of
701 Sampling Fractions on Trait Dependent Diversification Models. *Syst Biol* **72**, 106–119 (2023).

702 94. Meyer, A. L. S., Román-Palacios, C. & Wiens, J. J. BAMM gives misleading rate
703 estimates in simulated and empirical datasets. *Evolution* **72**, 2257–2266 (2018).

704 95. Meyer, A. L. S. & Wiens, J. J. Estimating diversification rates for higher taxa: BAMM
705 can give problematic estimates of rates and rate shifts. *Evolution* **72**, 39–53 (2018).

706 96. Rabosky, D. L. BAMM at the court of false equivalency: a response to Meyer and Wiens.
707 *Evol* **72**, 2246–2256 (2018).

708 97. Rabosky, D. L. *et al.* BAMMtools: an R package for the analysis of evolutionary
709 dynamics on phylogenetic trees. *Methods in Ecology and Evolution* **5**, 701–707 (2014).

710