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Abstract 20 

Species distribution models (SDMs) provide valuable information to aid conservation decisions, 21 

particularly in landscapes where economic and biodiversity priorities compete. Generating SDMs for 22 

species that rely on discrete habitat types for different activities (e.g. roosting or foraging) can be 23 

challenging, and result in outputs that are not appropriately tailored for end use. We collated expert-24 

validated occurrence records for ghost bats (Macroderma gigas) and Pilbara leaf-nosed bats 25 

(Rhinonicteris aurantia), two threatened species in a region of intensive mineral extraction in north-26 

western Australia. We generated spatial layers describing roosting and foraging habitat separately 27 

through literature review, expert consultation, and a novel neighborhood approach that inferred 28 

foraging habitat around roosts using summary metrics of key environmental predictors. Habitat 29 

suitability was then predicted using an ensemble SDM (averaging tuned-Maxent, Boosted Regression 30 

Trees, and Random Forest models). Through iterative consultation and co-design with end-users, 31 

outputs were refined into a spatial tool tailored for conservation decision-making. Roosting habitat 32 

for both species was largely predicted by moderately complex terrain and presence of major iron 33 

formations, as well as moderate terrain complexity and high vegetation diversity in the surrounding 34 

foraging neighborhood. Only 5–6% of predicted habitat occurred within conservation estate, while 35 

over 70% overlapped areas under mining tenure, with many known roosts located close to operational 36 

mines. Our approach demonstrates how explicitly modelling complex habitat use and co-designing 37 

SDMs with end-users can produce tools that better support landscape-scale habitat assessments across 38 

a region with competing priorities. 39 
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 40 

Introduction 41 

Species distribution models (SDMs) are well-established tools in biodiversity research with a 42 

diversity of conservation applications (Zurell et al., 2022). Despite the increasing availability of 43 

SDMs, evidence of their use in on-ground decision-making remains limited (Guisan et al., 2013; 44 

Zurell et al., 2022). This is partly due to the difficulty non-specialists face in interpreting model 45 

outputs, and because models are often developed without a clear understanding of the decision-46 

making context in which they are applied (Guisan et al., 2013; Villero et al., 2017). Various 47 

frameworks have been proposed to create SDMs that are fit for purpose by involving end-users, such 48 

as species experts and environmental policy-makers, in all aspects of the modelling process (Sofaer, 49 

Jarnevich, et al., 2019; Villero et al., 2017). This is important when managing threatened species, 50 

where well informed SDMs can aid in effective decisions for conservation that minimize impacts on 51 

population viability. 52 

 53 

Threatened species management can benefit from SDMs that help identify habitat critical to survival, 54 

although modelling this habitat can be complex when species use multiple, distinct habitat types for 55 

different purposes across large spatial scales (Lamb et al., 2020). While intense field surveying and 56 

telemetry can be used to explore habitat use (Crispim-Mendes et al., 2024), the time and resources 57 

required to generate such fine-scale, spatially and temporally resolved data often lag behind the urgent 58 

timelines of conservation decision-making. When habitat requirements shift seasonally, occurrence 59 

data can be partitioned to understand temporal change (e.g., Vignali et al., 2021), as implemented in 60 

multi-state SDMs which have been used to model suitable breeding and non-breeding habitat (Frans 61 

et al., 2018). However, in practice, decision-making often relies on integrating existing occurrence 62 

records from multiple projects, time periods, and sources (Sofaer, Jarnevich, et al., 2019). In these 63 

cases, the time-series data required for modelling shifting habitat are rarely available, especially for 64 

species that rely on distinct habitat types daily. 65 

 66 

Bat species rely on distinct habitat for diurnal roosting and nocturnal foraging. Roosts can be limited 67 

and patchily distributed throughout the landscape (Cramer et al., 2016), while nocturnal foraging can 68 

take individuals many kilometers from roosts to feed and rehydrate (Lundy et al., 2012). Foraging 69 

habitat may also be limited, patchy and only accessible if within bats nightly flight distance 70 

(Fonderflick et al., 2015). Little is known of the impact on bat population dynamics when roost or 71 

foraging habitat is removed or fragmented, particularly for species with high dispersal capacity 72 

(Umbrello et al., 2022).  73 
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 74 

Two threatened bat populations occur in the Pilbara bioregion (Cramer et al., 2016, 2022), a 75 

biologically diverse and distinctive region in north-western Australia. The ancient and complex 76 

geology of the Pilbara (Pepper et al., 2013) has resulted in rich mineral deposits, particularly of iron 77 

ore, leading to rapid expansion of the mining industry over the past 60 years (McKenzie et al., 2009), 78 

with 84% of this area currently under mining tenure (Department of Energy, Mines, Industry 79 

Regulation and Safety, 2024a). The ghost bat (Macroderma gigas) and the Pilbara leaf-nosed bat 80 

(Rhinonicteris aurantia Pilbara form) roost in caves that overlap with economically valuable ore 81 

deposits in the Pilbara. Both are listed as Vulnerable under the Western Australian Biodiversity 82 

Conservation Act 2016 and Federal Environment Protection and Biodiversity Conservation Act 1999 83 

(EPBC Act), where they are recognized as Matters of National Environmental Significance. Both 84 

species are predicted to decline over the next 20–40 years due to increased disturbance, alteration or 85 

removal of roost caves by mining operations (Woinarski et al., 2014). Multiple stakeholder workshops 86 

have identified that a better understanding of species’ distributions, and the location of critical 87 

roosting and foraging habitats, are key priorities to effectively conserve and manage populations of 88 

these species (Bradley et al., 2024; Cramer et al., 2016, 2022). 89 

 90 

Here, we applied a co-design approach to develop habitat suitability models for M. gigas and R. 91 

aurantia in the Pilbara. Expert-validated roost records were used as anchor points to define species-92 

specific ‘foraging neighborhoods’ based on known nightly foraging distances. We then characterized 93 

the environment at roost sites and within surrounding neighborhoods to identify attributes associated 94 

with roosting and foraging habitat, guided by ecologically grounded hypotheses (Table 1, Table S1). 95 

This approach allowed us to infer key environmental requirements for both habitat types, even in the 96 

absence of fine-scale movement data. With end-user input, we refined the SDMs into a practical 97 

decision-support tool to inform environmental impact assessments, survey design, threatened species 98 

management, and conservation prioritization; key priorities in a region undergoing intensive resource 99 

development. 100 

 101 

Methods 102 

Study species and location 103 

Our study focused on two obligate cave roosting species, M. gigas (150 g) and R. aurantia (8.4 g), 104 

which both have disjunct distributions in the Pilbara, separated from northern populations in the 105 

Kimberley by over 450 km of sand dune habitat lacking suitable roost caves. Both species have 106 

narrow physiological tolerance to variation in temperature and humidity and, as such, must shelter in 107 

deep, humid caves during the day which maintain stable temperature (Baudinette et al., 2000; Kulzer 108 
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et al., 1970). In the Pilbara, suitable natural roosts occur in ore-bearing strata and ‘artificial’ roosts in 109 

historical 20th century mine shafts (Cramer et al., 2016, 2022). Both roost types are limited, and 110 

subject to disturbance, collapse (in the case of historical mines) and future destruction from mining 111 

development (Woinarski et al., 2014). 112 

 113 

Occurrence records 114 

Cleaning and expert consultation – we obtained occurrence records for both species from multiple 115 

sources, including the Western Australian Threatened Species database (Department of Biodiversity, 116 

Conservation and Attractions, 2019) (downloaded in 2019‒2020), the Department of Biodiversity, 117 

Conservation and Attractions (DBCA) Species and Communities Program (2022), the DBCA M. 118 

gigas scat database (obtained from genetic monitoring, 2015–2023; see Thavornkanlapachai et al. 119 

2024; Umbrello et al. 2025) and R. aurantia roost locations provided by R. Bullen. We excluded: 1) 120 

records collected prior to  2000 due to potential inaccuracy of coordinates; 2) records from outside of 121 

the Pilbara (defined by the bioregional boundary, see DCCEEW 2020); 3) records found in carparks, 122 

likely to be road strike bats that have been moved from their natural habitat; 4) records with accuracy 123 

greater than 1 km or fewer than four decimal points; and 5) duplicate records within the same 1 km2 124 

pixel (based on rasters described below) to reduce the effects of sampling bias (Reddy & Dávalos, 125 

2003). We then used expert consultation and information about survey methodology to determine 126 

whether records represented roosting or non-roosting individuals, assuming non-roosting individuals 127 

were foraging or in transit between roosts. 128 

 129 

Macroderma gigas – most confirmed records meeting the criteria above were identified as roosting 130 

sites (n = 156; Figure S1); acoustic detections are rare due the species low intensity calls (Pettigrew 131 

et al., 1986). We excluded non-roosting records from our main dataset (n = 41) but retained this 132 

‘foraging’ subset (n = 36 after cleaning) for qualitative validation of our model, described below. 133 

Given our primary goal was to identify potential natural roosting habitat for this species, we excluded 134 

records found in artificial caves, i.e. historical mine shafts or rail culverts (n = 15) resulting in 141 135 

expert-confirmed roosting records in naturally forming caves for subsequent modelling. 136 

 137 

Rhinonicteris aurantia – Most of the records were foraging individuals as R. aurantia roost caves are 138 

cryptic and difficult to locate; only 64 are known, 50 of which have been located within an accuracy 139 

of <1 km (Figure S1). As described above, we excluded non-roosting records (n = 517) and retained 140 

291 records obtained through acoustic detections as a ‘foraging’ subset, assuming that these represent 141 

bats in flight that are foraging, travelling to forage or disperse. We excluded records found in artificial 142 

caves (n = 11), resulting in 39 expert-confirmed roosting records in naturally forming caves for 143 
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subsequent modelling. Of these, most are considered permanently occupied roosts (n = 28). The 144 

remaining 11 records, located in the northern Pilbara, may not be occupied year-round but were 145 

retained to balance confidence in roost status with the need for an adequate sample size for modelling. 146 

 147 

Spatial layers 148 

We obtained or derived rasters that represent two functionally discrete habitat requirements: roosting 149 

and foraging habitat. We defined a priori biological hypotheses based on species life history for how 150 

environmental variables may influence roosting and/or foraging habitat suitability (Table 1; Table 151 

S1), including aridity, temperature, precipitation, soil moisture, elevation, geology, landform, terrain, 152 

vegetation, water and wind speed.  153 

 154 

Roosting habitat – We prepared rasters by reprojecting them to UTM50S, cropping to the smallest 155 

raster extent (which encompassed the Pilbara bioregion), resampling to the same pixel size and origin, 156 

then aggregating by mean to a 1 km2 resolution (for more detail see Shaw et al., 2023). Spatial layers 157 

available as vector data (i.e., polygons) were also rasterized to this extent and resolution. 158 

 159 

Foraging habitat – Rasters were prepared as described above, and then further processed to describe 160 

the ‘foraging neighborhood’ using moving window calculations with the focal function in the raster 161 

package (Hijmans, 2024a). We defined this as a 12 or 20 km radius around the focal cell, for M. gigas 162 

and R. aurantia (respectively). This distance is based on recorded nightly flight distances travelled in 163 

one direction from roosts and represents a ‘likely’ average maximum foraging distance for each 164 

species (Augusteyn et al., 2018; Bat Call WA, 2021; Bullen et al., 2023). 165 

 166 

For continuous climate and vegetation variables, we calculated the neighborhood mean and standard 167 

deviation to describe the average and the heterogeneity across the foraging area. We also used 168 

categorical vegetation data, summing the total amount of preferred and non-preferred vegetation (i.e., 169 

sum of cells containing specified vegetation type) and the Shannon diversity index of different 170 

vegetation types across the foraging neighborhood, calculated in the R package vegan (Oksanen et 171 

al., 2024). We described terrain complexity as the proportion of highly rugged terrain (ruggedness) 172 

and steep cliffs (relative elevation) in the foraging neighborhood by summing the total number of 173 

cells with values in the top percentiles (we tested three options: the 5th, 10th, or 20th percentile). 174 

Finally, the total availability of potential riparian habitat and water was described by summing the 175 

number of cells within 1 km of a watercourse within the foraging neighborhood. 176 

 177 

Modelling approach 178 
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We modelled habitat suitability for both species with three widely used approaches that were among 179 

the top performing models identified by Valavi et al. (2022): tuned MaxEnt v3.4.1 (Phillips et al., 180 

2006, 2017), boosted regression trees (BRT; Friedman, 2002; Elith et al., 2008), and random forests 181 

with down-sampling (RF; Breiman, 2001) in R 4.4.0 (R Core Team, 2024). We generated 10,000 182 

random background points per species and split occurrence roost records into three data subsets (60% 183 

for model training, 20% for hyperparameter tuning, and 20% for evaluation and testing) to avoid 184 

overfitting and enable model validation on independent datasets (Hastie et al., 2009; Phillips & 185 

Dudík, 2008). The same background points and data partitions were used across all algorithms. We 186 

also trialed generating background points that accounted for bias by using other bat species’ 187 

occurrence records to represent sampling effort (e.g. see von Takach et al. 2020), but this yielded 188 

results similar to the random background approach and is not presented here. 189 

 190 

MaxEnt models were tuned using the R package SDMtune (Vignali et al., 2020), and following the 191 

methods described in Shaw et al. (2023). In brief, the M. gigas training dataset was split into four 192 

cross-validation folds to account for spatial nonindependence with the ‘checkerboard2’ method in 193 

ENMeval (Muscarella et al., 2014; Radosavljevic & Anderson, 2014). We did not split the R. aurantia 194 

training data into cross-validation folds, as we had a limited sample size of occurrence records and 195 

preliminary results suggested that further sub-setting resulted in a poorly calibrated model. We 196 

removed correlated variables (Spearman’s |rs| > 0.7), tuned model hyperparameters, and then 197 

performed further variable reduction by optimizing for the best model based on the area under the 198 

receiver operating characteristic curve (AUC ROC) (Fielding & Bell, 1997). Although we used a data-199 

driven approach to variable selection, we only included variables for which we had a priori biological 200 

hypotheses for how they influence habitat suitability (Table 1; Table S1). 201 

 202 

The selected variables were then used to fit BRT and RF models in the R packages gbm v2.2.2 203 

(Ridgeway, 2024) and randomForest v4.7-1.1 (Liaw & Wiener, 2002), using R code adapted from 204 

Valavi et al. (2022). For RF, we converted the response variable to a factor (presence/absence) for 205 

classification, using 5000 trees and default settings for other parameters. We applied down-sampling 206 

to account for the known sensitivity towards low ratios of presence to background points (Chen et 207 

al., 2004; Valavi et al., 2021). BRT models were implemented using stochastic gradient boosting 208 

(Friedman, 2002), with tree complexity set to 1 for R. aurantia and 5 for M. gigas (i.e., to account for 209 

small versus larger sample sizes), a learning rate of 0.001, a bag fraction of 0.75, and five cross-210 

validation folds. Background points were down weighted to have a total weight equal to the sum of 211 

presences weights. 212 

 213 
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To generate the final model, predictions from the tuned MaxEnt, RF, and BRT models were rescaled 214 

between 0 and 1 and an unweighted average was calculated to create an ensemble model. Only models 215 

with AUCROC values of ≥ 0.7 were included in the ensemble. The ensemble predictions and associated 216 

variance were calculated for evaluation and the former was mapped across the study area. 217 

 218 

Model evaluation 219 

We evaluated continuous model predictions for the tuned MaxEnt, RF, BRT and ensemble using three 220 

threshold-independent metrics that capture different elements of model performance: AUCROC, area 221 

under the precision-recall gain curve (AUCPRG), and Pearson correlation (COR) between predicted 222 

likelihood and presence-absence testing data. Using a range of metrics provides information relevant 223 

to different ecological applications (Valavi et al., 2022). Note that predictions based on presence-only 224 

models are not expected to be well calibrated, as shown in a large multi-species dataset, where most 225 

models achieved a COR <0.225 (Valavi et al., 2022). 226 

 227 

Thresholding continuous model predictions to produce binary maps is often necessary in 228 

conservation, for example, to identify important habitat (Guillera-Arroita et al., 2015). To convert the 229 

ensemble model's continuous predictions into a binary presence-absence layer, we applied the 230 

maximum sensitivity plus specificity thresholding method. This approach optimizes the trade-off 231 

between these features, ensuring a balanced rate of true positives and true negatives and minimal 232 

misclassification errors. We then evaluated the binary ensemble predictions using the True Skill 233 

Statistic (TSS; Allouche et al., 2006), which provides a measure of model performance by balancing 234 

true positive and true negative rates. Because background data were used as pseudo-absences, they 235 

only provide an approximation of true absence, which can influence the accuracy of estimates. 236 

Therefore, TSS was reported alongside threshold-independent metrics described above, which are 237 

well-suited to presence-only models; together providing a comprehensive assessment of the ensemble 238 

model’s performance. 239 

 240 

To characterize uncertainty in the final decision support layers, we assessed model agreement across 241 

the three ensemble components (tuned MaxEnt, RF, and BRT). Binary presence–absence maps for 242 

each model were generated using the approach described above. We then treated the ensemble binary 243 

layer as the reference and compared each individual model’s binary predictions to it, calculating the 244 

number of models that agreed with the ensemble prediction (presence or absence) at each grid cell. 245 

This agreement layer allowed us to identify areas where predictions were consistently supported 246 

across all models (low uncertainty) versus areas where ensemble predictions were driven primarily 247 

by one or two models (moderate to high uncertainty). This approach provided a spatially explicit 248 
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indicator of confidence in ensemble predictions and helped identify locations where conservation 249 

recommendations should be interpreted with caution. 250 

 251 

Descriptive statistics 252 

To further evaluate our model predictions and validate assumptions about foraging behavior, we 253 

compared the location of records in the ‘foraging’ data subsets to the predicted roosting habitat in our 254 

binary presence-absence map. We calculated the distances between foraging records and the nearest 255 

predicted roost locations to explore whether foraging individuals were largely found within our pre-256 

designated foraging neighborhoods as defined above. 257 

 258 

To understand how known roost locations and predicted habitat for threatened bats are distributed 259 

across mining land tenures in the Pilbara (a potentially threatening process), we sourced and 260 

combined spatial information about mining tenements (Department of Energy, Mines, Industry 261 

Regulation and Safety, 2024a) and protected areas (Department of Climate Change, Energy, the 262 

Environment and Water 2022) (see Appendix S1 for details). We calculated the percentage of 263 

predicted roosting habitat within each tenure type using the ‘ratioOverlap’ function from the 264 

changeRangeR v 1.1.0 (Galante et al., 2024) package by overlaying the binary presence-absence and 265 

the land-use layer. To compare model predictions with actual roosting locations, we also calculated 266 

the percentage of known roosting locations, both natural and artificial, within each tenure type. Roost 267 

locations were thinned to one point per roost, so that percentages represent roost locations rather than 268 

individuals. 269 

 270 

To quantify how many roosts are potentially impacted by mining activities, we sourced information 271 

on the location of both operating mines and those under development (Department of Energy, Mines, 272 

Industry Regulation and Safety, 2024b). We first counted the number of mines within the foraging 273 

neighborhood of each species. This distance represents the ‘potential impact zone’ which would 274 

plausibly impact bats by restricting or disturbing foraging or roosting habitat. Next, we generated a 275 

raster using the ‘distance’ function in terra (Hijmans, 2024b), where each pixel represents the distance 276 

to the nearest mine. Known M. gigas and R. aurantia roost locations were then overlaid to determine 277 

the distance of each roost to the nearest mine. For visualization, we masked out distances beyond 20 278 

km, as areas further than this are less likely to affect either species’ daily activities. 279 

 280 

Decision support tool development 281 

To enhance the interpretability and accessibility of model outputs for conservation decision-making, 282 

we developed a categorical map layer based on the ensemble model binary predictions for each 283 
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species. The goal of this tool was to integrate expert-validated roost records, modelled habitat 284 

suitability, and species-specific foraging neighborhoods to provide a spatial overview of habitat use 285 

by the two threatened bats species across the Pilbara. Maps were shared as a QGIS v3.32.3-Lima 286 

(QGIS Development Team, 2025) project with a written guidance document and short explanatory 287 

video to assist stakeholders with interpretation and application. 288 

 289 

To refine and evaluate the applicability of the tool, we sought targeted feedback from invited 290 

stakeholders involved in conservation planning and environmental regulation for these species within 291 

the Pilbara region, including staff from consultancies and three regulatory agencies, DBCA, Western 292 

Australian Department of Water and Environment (DWER) and the Australian Department of Climate 293 

Change, Energy, the Environment and Water (DCCEEW). Participants were asked to assess the 294 

relevance of the outputs to their decision-making contexts, how they interpreted the habitat 295 

categories, and whether any aspects could be misused or misinterpreted. Feedback was gathered 296 

through a structured form (Table S2) and subsequent in-person and online meeting, and contributors 297 

were invited to co-author the final publication. Revisions were made to both the spatial outputs and 298 

supporting guidance material in response to this consultation, reported below.  299 

 300 

Results 301 

Variable selection 302 

Macroderma gigas – Five variables were retained in the final MaxEnt model after tuning and variable 303 

reduction, including terrain ruggedness (VRM; percent contribution = 41.9%), iron ore formation 304 

(percent contribution = 36.4%), and annual precipitation (percent contribution = 6.0%) for roosting 305 

habitat, and vegetation diversity (percent contribution = 12.4%) along with the total amount of steep 306 

terrain (the top 5th percentile of relative elevation; percent contribution = 3.3%) within the foraging 307 

neighborhood (Figure 1a). Univariate response curves indicated habitat suitability at roosting sites 308 

was driven by moderate terrain ruggedness, the presence of major iron ore formations, and annual 309 

precipitation within the mid-range for the Pilbara (Figure 1b). Foraging habitat suitability was driven 310 

by high vegetation diversity and a moderate amount of steep terrain in the foraging neighborhood 311 

(Figure 1b). However, it is important to note that univariate response curves do not account for 312 

interactions between variables, which may influence these preferences. 313 

 314 

Rhinonicteris aurantia – Fourteen variables were retained in the final, tuned R. aurantia bat MaxEnt 315 

model, though nine of these contributed less than 5% to the model. Roosting habitat variables 316 

included iron ore formation (percent contribution = 43.5%), terrain steepness (relative elevation; 317 

percent contribution = 15.0%), elevation (percent contribution = 11.0%), and weathering intensity 318 
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(percent contribution = 2.0%) (Figure 1c). Foraging habitat suitability was influenced by the total 319 

amount of rugged terrain (the top 5th percentile of VRM; percent contribution = 8.4%), vegetation 320 

diversity (percent contribution = 6.9%), variation in the minimum temperature of the coldest month 321 

(percent contribution = 3.6%), total amount of low/poor vegetation (percent contribution = 3.0%), 322 

variation in isothermality (percent contribution = 2.4%), moisture seasonality (percent contribution 323 

= 1.2%), total amount of water/riparian habitat (percent contribution = 1.0%), variation in forest cover 324 

(percent contribution = 0.9%), average wind speed at 10 km altitude (percent contribution = 0.7%), 325 

and average amount of spinifex (percent contribution = 0.45%) in the foraging neighborhood (Figure 326 

1d). Univariate response curves suggested that R. aurantia habitat suitability was primarily driven by 327 

presence of major iron ore formations, moderate terrain steepness, higher elevations, and, to a lesser 328 

extent, less weathered roost sites indicative of rocky outcrops (Figure 1d; Figure S2). Foraging 329 

suitability was associated with a moderate amount of highly rugged terrain and high vegetation 330 

diversity (Figure 1d; Figure S2). Although the remaining variables had low individual contributions, 331 

their inclusion emphasizes the role of diverse vegetation, moderate climate variation, and consistent 332 

forest cover in foraging areas. As above, interactions between variables were not considered in the 333 

univariate response curves. 334 

 335 

Model evaluation 336 

All models demonstrated strong predictive performance (AUCROC > 0.9; Table 2). For M. gigas, RF 337 

and BRT models were slightly better at discriminating between presence and absence locations than 338 

the tuned MaxEnt model (AUCROC = 0.919 [tuned Maxent]; 0.960 [RF]; 0.962 [BRT]) whereas R. 339 

aurantia models showed similar performance (AUCROC = 0.970 [tuned Maxent]; 0.977 [RF]; 0.961 340 

[BRT]) (Table 2). The M. gigas models showed higher precision when predicting presences (AUCPRG 341 

= 0.927 [tuned Maxent]; 1.000 [RF]; 0.913 [BRT]) than the R. aurantia models; with the latter 342 

showing higher performance when using the tuned MaxEnt and RF models compared to the BRT 343 

model (AUCPRG = 0.875 [tuned Maxent]; 0.812 [RF]; 0.624 [BRT]) (Table 2). The M. gigas models 344 

were also better calibrated than the R. aurantia models (M. gigas: COR = 0.212 [tuned Maxent]; 345 

0.183 [RF]; 0.186 [BRT], R. aurantia: COR = 0.158 [tuned Maxent]; 0.085 [RF]; 0.083 [BRT]) (Table 346 

2), with the tuned MaxEnt models performing best for both species and within the range expected 347 

when using presence-only data. 348 

 349 

All models met criteria for inclusion in the ensemble (Table 2), resulting in high performing ensemble 350 

models for M. gigas (AUCROC = 0.960, AUCPRG = 1.000, COR = 0.198) and R. aurantia (AUCROC = 351 

0.973, AUCPRG = 0.937, COR = 0.105). Ensemble predictions for both species highlighted high 352 

habitat suitability across the southern Pilbara, variable suitability in the northern Pilbara, and low 353 
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suitability in the central valley and coastal lowlands (Figure S3). Concordance across model 354 

predictions for the three component models was generally high for M. gigas (variance: maximum = 355 

0.19; mean = 0.005), while model predictions were slightly more variable for R. aurantia (variance: 356 

maximum = 0.26; mean = 0.02). Using the maximum sensitivity plus specificity thresholding method, 357 

ensemble models were converted to binary presence-absence maps (Figure 2a‒b) using thresholds of 358 

0.3 for M. gigas and 0.45 for R. aurantia. The binary layers also performed well (TSS: M. gigas = 359 

0.917; R. aurantia: 0.943; Table 2). 360 

 361 

Descriptive statistics 362 

Analyses to determine the distance between foraging records and nearest predicted roost locations 363 

confirmed that foraging bats were largely found within the expected foraging neighborhood, with M. 364 

gigas averaging 2.87 km from the nearest predicted roosts and R. aurantia, 3.43 km (Figure 2a‒b). 365 

Maximum distances observed were 16.56 km for M. gigas and 53.73 km for R. aurantia, with 8% 366 

versus 1% of foraging records falling outside of the foraging neighborhood, respectively. This 367 

suggests that these may have been dispersing individuals (rather than foraging), that some suitable 368 

roosting habitat was not identified by our models, or that these represent outliers. Most of the 369 

modelled area was classified as potential dispersal habitat (44%) or foraging habitat (30%) for both 370 

species. Habitat suitable for both species (5%) was more extensive than habitat unique to either 371 

species (M. gigas = 3%; R. aurantia = 2%). Known roost sites, including natural and artificial caves, 372 

represented less than 0.1% of the total area. 373 

 374 

Macroderma gigas and R. aurantia roosts substantially overlapped areas under mining tenure (Figure 375 

3a), and many roosts fell within the ‘potential impact zone’ of operating mines (Figure 3b‒c). For M. 376 

gigas, predicted habitat was primarily located within exploration licenses (44.3% live, 20.3% 377 

pending), with lower percentages in conservation areas (5.4%), mining leases (4.3% live, 1.5% 378 

pending) and other mining tenure (4.2% live, 1.8% pending). Actual roost locations, however, were 379 

predominantly within live mining leases (78.8%, with an additional 7.1% pending), exploration 380 

licenses (11.5% live, 3.8% pending) and other mining tenure (1.3% live, 1.3% pending), with a 381 

smaller fraction in conservation areas (0.6%). Rhinonicteris aurantia showed a similar pattern, with 382 

the majority of predicted habitat found within exploration licenses (44.7% live, 20.5% pending), 383 

followed by conservation areas (5.5%), mining leases (4.4% live, 1.5% pending), and other mining 384 

tenure (4.2% live). Actual R. aurantia roost locations were mainly found within live mining leases 385 

(60.0%, with an additional 16.0% pending) and exploration licenses (24.0% live, 4.0% pending), 386 

followed by other mining tenure (4% live) and only 2% in conservation areas. 387 

 388 
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Most mines within the study area were open pit (open pit = 269; pond = 15; decline = 1) and 389 

operational (operating = 260; under development = 25). The average distance of M. gigas roosts to 390 

mine sites was 14.1 km, with a median distance of 5.7 km (range: 0.2–96.2 km). For R. aurantia, the 391 

average distance was 16.2 km, with a median of 9.7 km (range: 0.6–96.6 km) (Figure 3c). On average, 392 

M. gigas roosts had 3 mines within their ‘potential impact zone’ (median = 1, range = 1–12), while 393 

R. aurantia roosts had 3.54 mines on average (median = 2.5, range = 1–12). 394 

 395 

Decision support tool development 396 

Qualitative stakeholder feedback 397 

Stakeholders agreed that SDM outputs will complement their existing risk assessment workflows for 398 

each species. Most participants had not built SDMs themselves, although many had previously used 399 

model products to design ecological surveys, assess development proposals and support decisions 400 

under environmental legislation. Feedback highlighted four principal needs: understanding potential 401 

cumulative impacts, identifying survey or conservation priorities, estimating habitat availability and 402 

risk, and guiding landscape-scale planning. Stakeholders emphasized the importance of species-403 

specific layers, explicit uncertainty classes and terminology that avoids unintended regulatory triggers 404 

or risks misinterpretation (Table 3). Because roost locations are sensitive, they acknowledged the 405 

need for a balance between data sharing and protecting threatened species location information and 406 

asked that model confidence and limitations be stated plainly. Terms such as ‘critical habitat’, 407 

‘predicted absence’ or ‘predicted presence’ were considered misleading unless clearly defined. 408 

 409 

Tool revisions 410 

To meet these needs, we produced 1 km² decision support maps (Figure 2) containing four habitat 411 

layers: known roosts, potential roosting habitat, potential foraging habitat and potential dispersal 412 

habitat. Each was labelled low, moderate or high uncertainty according to ensemble agreement. 413 

Artificial roosts omitted from model training were added to the known-roost layer. Language was 414 

standardized to ‘potential roosting/foraging/dispersal habitat’ to reflect uncertainty, and the phrase 415 

‘critical habitat’ was removed. Although species-specific layers are required for regulatory 416 

assessments, a combined map was retained for strategic conservation planning. 417 

 418 

We also supplied additional tools in the final QGIS project to support decision-making, such as 419 

obscured point layers for natural and artificial roosts, rasters showing distance to roosts and to mining 420 

infrastructure, tenure delineating Conservation Reserve System boundaries and mining tenements, 421 

and the continuous habitat suitability ensemble SDMs for users who wish to set their own thresholds. 422 
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Additionally, we provide geoPDFs so that users without specialist software can access the 423 

information. 424 

 425 

Discussion 426 

We used a novel neighborhood-based SDM approach for two threatened bat species to capture distinct 427 

habitat uses (roosting and foraging). By pairing this with an iterative co-design process, we generated 428 

outputs that deliver ecological insight and meet the practical needs of end-users, ensuring our SDMs 429 

are truly fit-for-purpose in a landscape with competing conservation and economic priorities. Even 430 

with limited data, our models performed well and showed that most known and predicted roosting 431 

and foraging habitat occurs on active or pending mining tenure, underscoring the urgency of better 432 

planning tools. Stakeholder feedback indicated that the tool we developed will help to streamline 433 

environmental impact evaluations and enable more proactive, evidence-based decisions. This will 434 

support strategic conservation planning for bats that are sensitive to landscape scale threats in the 435 

Pilbara. We outline the ecological insights, management implications, and remaining challenges 436 

below. 437 

 438 

Model performance and biases 439 

Despite the difference in sample size, ensemble models for M. gigas and R. aurantia both performed 440 

well (AUCROC ≥ 0.96). Rigorous data screening likely contributed to this outcome, with expert 441 

validation ensuring that each retained record genuinely represented a roost, minimizing early 442 

misclassification noise. The large M. gigas dataset resulted in parsimonious models with tight 443 

agreement across algorithms, indicating a high confidence ensemble model. For R. aurantia, the 444 

limited number of validated roost records (n = 39) fell well below the recommended threshold of 100 445 

presences (Van Eupen et al., 2021), increasing the risk of overfitting. To mitigate this, we applied 446 

multiple safeguards: highly correlated variables were removed prior to tuning, non-informative 447 

variables were excluded, and models were averaged across three algorithms in an ensemble 448 

framework. This ensemble approach helps reduce model-specific variance and improve generality, 449 

particularly with small or noisy datasets (Dormann et al., 2018),and has been demonstrated to perform 450 

well when using tuned and/or high-performing component models (Valavi et al., 2021). Until more 451 

validated R. aurantia records are detected, this integrated approach, combining expert screening, 452 

variable reduction, model tuning, and model averaging, provides the most robust path forward. In the 453 

meantime, areas predicted to have no suitable habitat for R. aurantia should be interpreted with 454 

caution, as limited data may constrain the model’s ability to extrapolate to novel or underrepresented 455 

environments. 456 

 457 
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There was a strong geographic bias in where the input data was collected, as most records were 458 

collected near mines during environmental impact assessment surveys associated with developments. 459 

With no adjustment for a strong sampling bias, presence-background models will model a 460 

combination of environmental suitability and sampling intensity, as the two cannot be untangled 461 

(Fithian et al., 2015; Phillips et al., 2009; Valavi et al., 2022). However, our preliminary exploration 462 

into using bias layers based on sampling intensity did not improve model performance. This suggests 463 

that the strong ecological dependence on iron-bearing geology (Armstrong, 2001; Armstrong & 464 

Anstee, 2000), which also drives survey effort, overwhelms artefacts introduced by spatial sampling 465 

bias. This result aligns with broader modelling studies showing that species with narrow ecological 466 

requirements are more reliably predicted from presence-only data than generalists, whose 467 

distributions are more sensitive to the way absences are generated (Brotons et al., 2004). Without 468 

independent absence data, presence-background models based on these key geophysical predictors, 469 

and further refined with foraging variables, appear to provide a good approximation of habitat 470 

suitability for both species. 471 

 472 

Ecological insights 473 

For both species, roosting habitat suitability was driven by rugged or steep terrain, and iron-rich strata, 474 

indicative of the deep, cave systems where these species are known to occur (Armstrong, 2001; 475 

Armstrong & Anstee, 2000). Elevation and precipitation also contributed to habitat suitability for 476 

both species, possibly because areas with higher rainfall and elevation may offer cooler, more humid 477 

cave environments that reduce the risk of desiccation (Baudinette et al., 2000; Kulzer et al., 1970). 478 

These key variables aligned very strongly with previous knowledge of the species (Table 1; Table S1) 479 

and demonstrates the degree of overlap in ‘niche space’ between them. 480 

 481 

While our understanding of roosting habitat is comparatively comprehensive, knowledge of foraging 482 

ecology of either species has been lacking (Cramer et al. 2016, 2022). By embedding ‘foraging 483 

neighborhoods’ around each roost, our neighborhood-SDM provides the first landscape-scale view 484 

of key environmental characteristics of likely foraging areas. Across both species, the most important 485 

foraging variable was high vegetation diversity: heterogeneous mosaics of riparian habitat, mulga 486 

vegetation, open woodlands and spinifex out-performed any single vegetation class or variables 487 

describing proximity-to-water. For R. aurantia, dense and structured vegetation, particularly riparian 488 

vegetation (Bat Call WA, 2021; McKenzie & Bullen, 2009), is considered high quality foraging 489 

habitat presumably due to the increased biomass of flying insects (Fukui et al., 2006). Macroderma 490 

gigas are thought to prefer to forage in more open areas with an availability of perching trees (Bullen 491 

et al., 2023; Tidemann et al., 1985). Our modelling suggests a mosaic of vegetation types may supply 492 
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both prey biomass and vantage points during long commuting flights. Moderate amounts of rugged 493 

terrain within the neighborhood also increased suitability, possibly because a heterogeneous 494 

landscape also supports diverse habitats and offers both shelter and open space for foraging and 495 

dispersal. While water availability is thought to be a vital component of foraging habitat for R. 496 

aurantia (Bat Call WA, 2021), it did not emerge as a strong predictor in our models. Water variables 497 

were moderately correlated with other retained variables such as terrain and weathering intensity, 498 

suggesting that water may be indirectly captured. Alternatively, our spatial summaries of water may 499 

not fully reflect its functional role for this species. Nonetheless, these high-level insights provide a 500 

baseline for further fine-scale studies, providing spatial hypotheses to be tested. 501 

 502 

Both bats share extensive suitable habitat around banded-iron formations and the ensemble for M. 503 

gigas aligns closely with the species confirmed Pilbara range, whereas the R. aurantia model 504 

highlights several high-uncertainty hotspots, most notably in the north-west Pilbara. These outliers 505 

mark priority targets for surveys to confirm whether R. aurantia is truly absent from these areas (the 506 

current expert view), or whether unmodelled factors explain the mismatch. Adopting a ‘survey-and-507 

refine’ loop, where yearly presences-absence records are used to validate and update models, would 508 

help improve accuracy and support better decision-making into the future. Integrated species 509 

distribution models (iSDMs), which combine opportunistic presence-only records with even small 510 

amounts of survey-derived absence data, are a promising approach for this purpose and have been 511 

shown to outperform presence-only models in cross-validation (Mäkinen et al., 2024). 512 

 513 

Implications 514 

Our modelled predictions indicated suitable habitat in conservation reserves within the Pilbara, 515 

especially Karijini National Park, despite very few known roosts in this location. This suggests that 516 

either, the current reserve system is inadequate at protecting preferred bat habitat, or that these areas 517 

are under-surveyed. Our spatial tool could help target survey effort to locate roosts within 518 

conservation estate. SDMs have a proven track record in guiding population discovery, for example, 519 

field validation of an SDM for the federally threatened herb Macbridea alba uncovered six previously 520 

unknown populations in the south-eastern United States (Johnson et al., 2023). 521 

 522 

The mainland Pilbara bioregion is ~178,500 km2 (McKenzie et al., 2009) and 84% of this is under 523 

mining tenure (Department of Energy, Mines, Industry Regulation and Safety, 2024a). Our results 524 

confirm that a significant proportion of known and predicted bat habitat is under active mining lease, 525 

with much more under exploration licenses, meaning these areas could be mined in the future 526 

(Woinarski et al., 2014). Under the Commonwealth EPBC Act, proponents must show they have 527 



 

16 

 

avoided and minimized significant impact on matters protected under national environment law 528 

before a development can be approved. Current guidance recommends mapping known roosts and 529 

‘likely foraging habitat’ to help determine if the impact is significant (Threatened Species Scientific 530 

Committee, 2016). By incorporating known and potential roost habitat alongside the foraging 531 

neighborhood, our tool can help inform targeted surveys, identify locations where development may 532 

be more appropriate (i.e. where habitat suitability is low, pending on-ground validation), and support 533 

the implementation of avoidance and mitigation measures. The mapped foraging areas broadly 534 

encompass the potential foraging records we identified, suggesting that the models effectively capture 535 

this important habitat type, enabling better informed decision-making for these species. 536 

 537 

The integration of SDMs into decision support tools is most effective when they are co-designed with 538 

end-users (Sofaer, Jarnevich, et al., 2019; Villero et al., 2017). In our context, this includes 539 

stakeholders recommending decisions in relation to environmental approvals, offset strategies, and 540 

management plans, and we were able to build on a wealth of prior engagement focused on the region 541 

and target species (Bradley et al., 2024; Cramer et al., 2016, 2022). Such collaborative approaches 542 

align with best practice in conservation planning, where stakeholder participation is important to 543 

maximize the usefulness of decision support tools and encourage the uptake of scientific knowledge 544 

(Cvitanovic et al., 2016). Through our engagement process, several issues were identified that we 545 

would not have anticipated without stakeholder involvement. For example, stakeholders advised 546 

caution around terminology, with terms like ‘critical habitat’ having specific regulatory meaning, and 547 

‘predicted absence’ and ‘predicted roosting habitat’ carrying potential interpretive risks if not clearly 548 

defined. For example, end-users may overinterpret model outputs and incorrectly assume that 549 

predicted habitat equates to species presence (and thereby suitable for locating conservation ‘offset’ 550 

areas to mitigate species impacts without on ground validation) or that areas of predicted absence 551 

require no further survey or no consideration of potential impact to species. This feedback directly 552 

informed the final content provided as guidance material to users with clear guidance on the tool’s 553 

limitations and appropriate use. This feedback strongly aligns with the recommendations of Sofaer et 554 

al. (2019a), who stress the importance of transparent communication and targeted guidance when 555 

delivering SDMs to support conservation decision-making. Our experience reflects broader calls to 556 

incorporate user needs and policy and or regulation context from the outset to improve the uptake, 557 

relevance, and trust in decision support tools (Rose et al., 2016). 558 

 559 

Future directions 560 

Our co-designed SDMs provide high level information to support decision-makers assessing impacts 561 

on both threatened bat species in the Pilbara, but tools to assess or quantify the effects of the 562 
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cumulative impacts of development activities at a landscape scale are sorely needed. Because 563 

environmental impact assessment occurs on a project-to-project basis, decision-makers often lack up-564 

to-date and integrated information on activities occurring across multiple sites. This makes it difficult 565 

to evaluate how localized impacts (e.g., dust, noise, vibration) affect the regional population. 566 

Assessing cumulative impact will require information and spatial data that captures the footprint of 567 

development, and real-time information on which roosts and surrounding foraging habitat have been 568 

affected or lost. Finer ecological knowledge, such as seasonal patterns of roost use and foraging, and 569 

sex-specific differences in roost occupancy, will also improve understanding of how disturbance 570 

influences meta-population dynamics. While our decision support tool is a first step towards more 571 

informed planning in the region, fragmentation indices and population viability models (PVAs) will 572 

be critical to assess whether new developments could trigger local extinction or severely limit bat 573 

movement in specific areas (López-Wilchis et al., 2021; Theobald et al., 2020). Furthermore, updating 574 

models with new data, or adopting a ‘survey-and-refine’ loop, will ensure that this tool remains useful 575 

into the future.  576 

 577 

Conclusion 578 

Our results demonstrate that robust SDMs that capture complex habitat use can be developed even 579 

with limited data, particularly when expert-validated records and ecologically meaningful variables 580 

are used. High model performance for both threatened bat species supports the reliability of these 581 

predictions, despite geographic sampling biases. Model results suggest that iron ore, complex or steep 582 

terrain and vegetation diversity are important characteristics of roosting and foraging habitat for these 583 

species. While the models identify potentially suitable habitat, they are not occupancy models and 584 

should not be used as a proxy for species presence without validation. The primary value of these 585 

outputs lies in their ability to guide targeted surveys, inform impact assessments, and support more 586 

strategic conservation planning. By integrating species ecology, expert review, and co-design with 587 

decision-makers, this work advances the application of SDMs as practical decision support tools, 588 

applicable to other taxa facing overlapping development pressures within the Pilbara and in similar 589 

resource-driven landscapes globally. 590 
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Tables and Figures 893 

Table 1. Roosting and foraging environmental variables for Macroderma gigas and Rhinonicteris 894 

aurantia (see Table S1 for species specific hypotheses). 895 

Environmental 

variables 

Habitat type Spatial layer/s 

Aridity Roosting, foraging Aridity indices (ADI, ADM, and ADX)1 

Elevation Roosting Digital elevation model (DEM)2 

Geology Roosting Iron ore3 (rasterized polygon data using the following iron formation 

hierarchy: major, minor, not present) 

Landform Roosting Weathering intensity index (WII)4,5 

Precipitation Roosting, foraging BIOCLIM precipitation variables (B12-B17)6 

Soil moisture Foraging BIOCLIM soil moisture variables (B29-B33)6 

Temperature Roosting, foraging BIOCLIM temperature variables (B03-B07 and B10-B11)6 

Terrain Roosting, foraging Vector ruggedness measure (VRM)4,7, relative elevation at 250 m4,8 

Vegetation Foraging Mulga vegetation9, low/poor vegetation9 (bare/open ground/plains) and 

vegetation diversity9,10, persistent forest cover11,12, Spinifex density13 

Water Foraging Natural perennial water availability14-16 (i.e. excluding artificial water 

points, and inland flats subject to inundation or flooding) 

Wind Foraging Windspeed at 10 m and 50 m altitude17 

Data sources: 1Harwood et al. (2016); 2Gallant et al. (2011); 3Department of Mines, Industry Regulation and Safety 896 
(2020); 4Wilford (2012); 5Wilford & Roberts (2018); 6Harwood (2019); 7Evans et al. (2023); 8ESRI (2018); 9Department 897 
of Primary Industries and Regional Development (2019); 10Oksanen et al. (2024); 11Furby et al. (2007); 12Furby (2018); 898 
13Rampant et al. (2019); 14Landgate (2012) ; 15Landgate (2017) ; 16Landgate (2019); 17Davis et al. (2023). 899 
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Table 2. Threshold independent evaluation metrics providing measures of predictive performance for 900 

each model algorithm, including area under the receiver operating characteristic curve (AUCROC), 901 

area under the precision-recall gain curve (AUCPRG), Pearson correlation between the predicted 902 

likelihood of presence and the presence-absence testing data (COR), the maximum sensitivity plus 903 

specificity threshold used to convert continuous predictions into binary presence-absence layers, and 904 

the resulting True Skill Statistic (TSS). 905 

Model AUCROC AUCPRG COR TSS Threshold 

M. gigas   

Maxent (tuned) 0.919 0.929 0.212 - - 

Random Forest (down-sampled) 0.960 1.000 0.183 - - 

Boosted Regression Trees 0.962 0.913 0.186 - - 

Ensemble 0.960 1.000 0.198 0.917 0.300 

R. aurantia      

Maxent (tuned) 0.970 0.875 0.158 - - 

Random Forest (down-sampled) 0.977 0.812 0.085 - - 

Boosted Regression Trees 0.961 0.624 0.083 - - 

Ensemble 0.973 0.937 0.105 0.943 0.450 

  906 
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Table 1. Summary of main feedback themes from end-users with detail on the action taken to 907 

address the feedback. 908 

Feedback theme Detail Change implemented 

Timeframe of input data Be explicit with date range of input data 

as roosts continue to be discovered 

In spatial metadata and tool materials clearly 

state the date range on input occurrence and 

environmental data 

Visualize each species 

separately 

Decisions are made on each species 

independently, and they need to be 

separated in the tool 

Re-processed the binary raster to have a 

predicted roosting and foraging layer for 

each species 

Use of ‘critical habitat’ The phrase ‘critical habitat’ has specific 

meaning under different legislation (e.g., 

BC Act vs. the EPBC Act) 

Ensure all terminology for output layers 

does not include legislated phrases or words 

if it does not encompass those categories. 

Rename binary layer as ‘potential roosting’ 

and ‘potential foraging’ habitat 

Accessibility Difficulty with downloading files, 

installing QGIS or using QGIS.  

Color consistency – prefer same for both 

species.  

Color contrast - increase 

Ensure spatial tool is publicly accessible in 

different formats (e.g., spatial package and 

geoPDF). Other opportunities to make the 

tool more accessible and interactive will be 

investigated in the future. Adjust color 

schemes and for separated species ensure 

the colors are the same. 

Potential foraging habitat 

and predicted absence 

Areas outside of the foraging 

neighborhood (12 or 20 km) that are 

considered high value (e.g., riparian 

vegetation, watercourses etc.) are not 

captured. These areas could be important 

for foraging by dispersing bats. Further, 

categorizing areas as ‘predicted absence’ 

suggests these areas provide no value, 

but they are likely to be important for 

dispersal.  

Updated guidance document to emphasize 

that the foraging neighborhood represents 

the most ‘likely’ foraging areas, and rename 

‘predicted absence’ to ‘potential dispersal 

habitat’. 

  909 
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 910 

Figure 1. Contribution of the full variable set (refer to Table 1 for variable descriptions) towards the 911 

final tuned MaxEnt model (a) and univariate response curves for the top 5 ranked variables (b) for 912 

Macroderma gigas; and for Rhinonicteris aurantia (c-d; see Figure S2 for remaining R. aurantia 913 

response curves). Roosting variables (in red) represent the environment at the focal location, whereas 914 

foraging variables (teal) represent the environment in the surrounding ‘foraging’ neighborhood. 915 

Vertical tick marks in b and d (rug plots) represent presence (top) and background (bottom) locations.  916 
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 917 

Figure 2. Decision support tools for a) Macroderma gigas and b) Rhinonicteris aurantia, based on 918 

modified presence–absence maps derived from ensemble model binary layers. Maps integrate known 919 

roost locations, foraging neighborhoods, and model uncertainty (grey = outside of the study area). 920 

Insets show high-resolution detail (pixel size = 1 km²) for a selected area. Violin plots with overlaid 921 

boxplots display the distribution of distances from foraging records (n) to the nearest predicted 922 

roosting habitat for each species. Note that x-axis labels are shown in panel b.  923 
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 924 

Figure 3. a) Map displaying different land-use tenure types across the Pilbara, where L = live and P 925 

= pending, with known roost locations represented by white circles (Macroderma gigas) and triangles 926 

(Rhinonicteris aurantia); b) map with known roost locations (as previously described) displaying the 927 

distance to nearest mine (operational and in development) up to a 20 km ‘impact zone’, which 928 

includes the foraging range of both species; and c) heat maps illustrating the percentage of predicted 929 

roosting habitat and known roost locations within different tenure types (live, with pending in 930 

brackets for mining tenure), and violin plots (with overlayed boxplots) showing the distribution of 931 

distances to the nearest mine site for known roost locations for each species.932 
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Supporting Information 
 

 

Appendix S1. 

Land-use tenure data were sourced on the 5th of February 2024 from two primary spatial layers: 

mining tenements (Department of Energy, Mines, Industry Regulation and Safety, 2024) and 

protected areas (Dept of Climate Change, Energy, the Environment & Water, 2022). To generate a 

single tenure classification layer suitable for analysis, categories within the mining tenement dataset 

were first standardised by merging similar tenement types. Specifically, general purpose leases 

included both 'General purpose lease' and 'General purpose lease S.A.'; mining leases included 

'Mining lease', 'Mineral lease S.A.' and 'Mining lease S.A.'; and miscellaneous licences included both 

'Miscellaneous licence' and 'Miscellaneous licence S.A.'. 

A hierarchical scheme was then applied to resolve overlapping tenure types, retaining only the 

category likely to have the highest potential for disturbance to threatened bat habitat within each 

overlapping area. The hierarchy, from highest to lowest impact, was: The hierarchy, from highest to 

lowest impact, was: mining lease, general purpose lease, miscellaneous licence, retention licence, 

exploration licence, prospecting licence, conservation area (including reserves, national parks, 

conservation parks, Indigenous Protected Areas), and temporary reserves or pending additions to the 

National Reserve System. 

Mining tenements were split into ‘Live’ and ‘Pending’ based on their current approval status. To 

reduce complexity, several tenement types were grouped under a single category, called ‘Other 

mining tenure’. This included: General Purpose Lease, Miscellaneous Licence, Prospecting Licence, 

Retention Licence, and Temporary Reserve. We processed spatial data using the R packages terra v 

1.7-71 (Hijmans, 2024), sf v 1.0-16 (Pebesma, 2018; Pebesma & Bivand, 2023), and rmapshaper v 

0.5.0 (Teucher et al., 2023). 

The resulting layer provides a simplified representation of tenure by retaining only the most relevant 

tenure type per location. 
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Table S1. Roosting and foraging environmental variables for Macroderma gigas and Rhinonicteris aurantia (see Table 1 for description of spatial layers). 

Environmental 

variables 

Habitat 

type 

Macroderma gigas hypotheses Rhinonicteris aurantia hypotheses 

Aridity Roosting, 

foraging 

Unlikely to prefer highly arid areas due to physiological 

constraints1 and lower prey abundances 

Their preferred temperature and humidity for roosting is ~28–32°C and 

85–100% respectively due to physiological constraints1,6,7. The risk of 

desiccation increases the longer foraging bats are outside of their 

preferred conditions 

Elevation Roosting Unlikely to roost in low-lying areas that lack caves2. Where caves 

occur, they may roost within a range of elevations 

Unlikely to roost in low-lying areas that lack caves. Where caves occur, 

they may roost within a range of elevations8,9 

Geology Roosting Known to roost in caves that naturally occur in iron ore 

formations2, compared to other geological types in the Pilbara 

Roosts are closely tied to areas rich in iron ore as these deposits form 

natural caves that are deep/complex enough to provide the microclimate 

conditions that the species depend on8 

Landform Roosting Unlikely to roost in highly weathered areas, but rather in areas with 

exposed bedrock that form caves and overhangs2 

More likely to roost in areas of complex terrain (gorges and 

breakaways) with caves and overhangs8,9 

Precipitation Roosting, 

foraging 

Likely to prefer areas with lower seasonality of precipitation 

indicating more stable prey abundances and humidity levels1. 

Unlikely to prefer very dry areas 

Likely to prefer areas with more stable precipitation and high humidity 

due to desiccation risk1. Unlikely to prefer very dry areas 

Soil moisture Foraging If soil moisture indicates habitat productivity, then lower values 

would indicate less preferred habitat and lower seasonality of soil 

moisture could result in more constant productivity and more 

persistent prey abundance throughout the year if the soil moisture 

is high 

Seem to prefer to forage in riparian or more productive environments 

where soil moisture would be higher. Unlikely to forage in areas with 

low soil moisture due to lower prey abundances and desiccation risk 

Temperature Roosting, 

foraging 

Prefer areas with temperatures within their thermal tolerance limits 

(between 20–38°C)3  

Prefer areas within their thermal tolerance limits (between ~28–32°C)1,6 

Terrain Roosting, 

foraging 

Likely to roost in areas of complex terrain (gorges and 

breakaways) with caves and overhangs2. Seem to prefer not to 

forage in complex terrain4 

Likely to roost in areas of complex terrain (gorges and breakaways) 

with caves and overhangs8. Seem to prefer to forage in areas with 

complex geology and steep areas, less preferred are more open gullies 

with gentler sloped sides and open flat plains9 

Vegetation Foraging Use trees to perch and feed, but dense vegetation could be difficult 

for them to navigate through and spot terrestrial prey items. Bare 

ground may not support enough prey items. 

Preferred foraging habitat is thought to include complex 3-layered 

vegetation structure that includes canopy (e.g. tree-lined watercourses 

or scattered shrubs and trees in gullies8). Denser vegetation is preferred4 
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Environmental 

variables 

Habitat 

type 

Macroderma gigas hypotheses Rhinonicteris aurantia hypotheses 

Water Foraging Have been recorded to forage along ephemeral drainage lines5 and 

water may give an indication of general productivity of an area that 

could yield higher quality foraging habitat. 

Known to visit water sources shortly after emerging from roosts at 

night, which occur 0‒8.7 km from diurnal roosts. All known permanent 

roosts occur within the species flight distance to permanent water9 

Wind Foraging Areas with high winds may make foraging difficult, through 

increasing energy expenditure during daily movements 

Areas with high winds may make foraging difficult, through increasing 

energy expenditure during daily movements 

Data sources: 1Baudinette et al. (2000); 2Armstrong & Anstee (2000); 3Leitner & Nelson (1967); 4McKenzie & Bullen (2009); 5Bat Call WA (2021b); 6Kulzer et al. (1970); 7Armstrong 

(2000); 8Armstrong (2001); 9Bat Call WA (2021a)
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Table S2. Feedback questions sent to decision-makers to refine model outputs and understand end-

user’s experience and familiarity with interpreting and using SDMs. 

 

Number Question 

1 

Do you have experience with Species Distribution Modelling, and have you ever used the model 

outputs in decision-making before (if yes, please provide some brief examples of the decision-making 

context and your confidence level with interpreting the model outputs to make decisions)? 

2 
What specific assessment or other decision-making processes would you use this tool for? Would it 

improve these existing processes beyond information that is currently available to you? 

3 

Please provide a brief description of how you interpret the "potential habitat" categories that form the 

main model output (i.e. the PresAbs_RecordsForaging layer) and how these might inform your 

decision-making? 

4 

How could we refine this tool to improve interpretation and its relevance to the processes identified in 

question 1? (e.g., different categories, explanation for interpretation in the guidance document and 

video, etc.) 

5 

Given your area of experience, would you be concerned that this tool may be used or interpreted in 

ways that may be adverse to its intended use to aid bat conservation? Do you see this tool being 

used/interpreted differently to the processes you identified in question 1? 

6 Do you have any further feedback to provide on how the tool is presented or the support materials?  
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Figure S1. Expert validated Macroderma gigas and Rhinonicteris aurantia occurrence records from 

the Pilbara used in this study. Two major bioregions of the Pilbara, the Chichester and Hamersley, 

shaded grey. Echolocation (assumed to be foraging or dispersing bats) and artificial/rail culvert roost 

records for both species are shown, but were excluded from the modelling. 

  



 

38 

 

 

 

 
Figure S2. Rhinonicteris aurantia response univariate response curves for the remaining nine 

variables selected during MaxEnt modelling (note that all Macroderma gigas variables are presented 

in Figure 1). Roosting variables (in red) represent the environment at the focal location, whereas 

foraging variables (teal) represent the environment in the surrounding ‘foraging’ neighbourhood. 

Vertical tick marks in (rug plots) represent presence (top) and background (bottom) locations. 

BIOCLIM variables are as follows: B06 = minimum temperature of coldest month; B03 = 

isothermality; B31 = moisture index seasonality. 
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Figure S3. Ensemble model projections showing continuous habitat suitability for a) Macroderma 

gigas; and b) Rhinonicteris aurantia across the Pilbara region. Warmer colours indicate higher 

predicted suitability based on environmental and landscape features of each grid cell and its 

surrounding foraging neighbourhood. 
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Figure S4. Combined decision support map for Macroderma gigas and Rhinonicteris aurantia, 

integrating roosting and foraging habitat predictions and known roosting locations for both species. 

The map is based on ensemble model binary layers and shows areas with different habitat uses 

(known or predicted) for each species, and where these overlap. The zoomed inset shows high-

resolution detail (pixel size = 1 km²) for a selected area. 
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