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Abstract

DNA-based monitoring of biodiversity has revolutionised our ability to describe communities
and rapidly assess anthropogenic impacts on biodiversity. Currently established molecular
methods for biomonitoring rely heavily on classic metabarcoding utilising short reads, mostly
through Illumina data. However, increasingly more studies use long-read sequencing
technologies, such as Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio),
for analyses of environmental DNA (eDNA) and DNA barcoding. These long-read sequencing
approaches can be advantageous over existing methods by providing increased information
content and opening new avenues for understanding biodiversity at a larger scale.

In this review we provide an overview of studies to date using long-read sequencing platforms
for biodiversity analyses of eukaryotes, from eDNA and community metabarcoding, shotgun
sequencing, and DNA barcoding. We also give detailed information on each step required for
sample processing, data generation and analysis of long-read sequencing datasets for
biodiversity applications. Even though the number of studies using long-read sequencing
technologies is rapidly increasing, clear established guidelines for sample preparation or
analysis of such datasets are lacking. Furthermore, a side by side review for both ONT and
PacBio technologies across different applications has not been presented.

Long-read sequencing platforms provide possibilities for metabarcoding (PCR-based) of both
short and long fragments, shotgun sequencing (PCR-free), or DNA barcoding. ONT platforms
in particular can also allow real time data acquisition while the portability of the MinlON
instrument can support sequencing in the field. PacBio on the other hand can provide highly
accurate reads and can be used to reliably address open questions in ecology and evolution
for difficult to characterise taxa such as microeukaryotes. Streamlining the use of these
technologies could enable sequencing of whole organelles or population level assessments
from environmental samples, which would be a step-change for DNA-based monitoring.
Here we review existing applications, applied methodology, and future perspectives in the
field. Overall we aim to facilitate the use of long-read sequencing technologies by the wider
community, promote best practices for data generation and standardised data reporting that
supports reproducibility, and to encourage open data policies and tools.

Keywords: biodiversity monitoring, DNA barcoding, eDNA, long-read sequencing, metabarcoding,
ONT, PacBio, shotgun
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1. Introduction

Traditional methods for biodiversity assessment rely on taxonomic identification of species, which
require highly specialized taxonomic expertise while they are generally low in throughput, costly, and
potentially invasive (Deiner, Bik, et al., 2017; Ruppert et al., 2019). A global lack of taxonomic
expertise and the need to increase throughput has led to the development of DNA-based methods for
biodiversity assessment over the last 10-15 years (Kelly et al., 2014; Thomsen et al., 2012). These
methods enable novel, non-invasive, and cost-effective biomonitoring solutions which can be
performed at a larger scale (Taberletetal., 2012). This DNA revolution has been built on
metabarcoding, which refers to high throughput sequencing of PCR amplified gene fragments of DNA
derived from environmental (eDNA) or community samples (Alberdi et al., 2017; Deiner, Bik, et al.,
2017). Metabarcoding is most commonly performed using short-read sequencing like lllumina, which
has been the golden standard due to its high efficiency, low error rate, and cost effectiveness.
Nevertheless, the maximum amplicon length allowed through Illlumina sequencing has been ~550 bp
(Deiner, Bik, et al., 2017), but note that the recently released MiSeq i100 supports 500 PE (1000 cycle)
sequencing capability. Targeting short regions provides insufficient information content for taxon
identification, especially for closely related species, and limits the number of available primer binding
sites hence making primer selection more difficult (Egeter et al., 2022).

Increasingly more studies use long-read sequencing as an alternative to classic metabarcoding,
through Oxford Nanopore Technologies (ONT) or Pacific Biosciences (PacBio) sequencers. These
platforms perform single-molecule real-time sequencing (MacKenzie & Argyropoulos, 2023; Rhoads
& Au, 2015), and provide options for longer insert sequences which are not limited to specific read
lengths. Published literature of ONT or PacBio based biodiversity analyses, including applications and
tools, has been rapidly growing (Table 1). Although long-read sequencing is not yet routinely used in
biodiversity analysis, it is becoming more common and it has already been tested in different settings
like aquatic ecosystems, soil or air samples, fungal profiling and more (Doorenspleet, Jansen, et al.,
2025; Heeger et al., 2018; Maggini et al., 2024; Truelove et al., 2019; Urban et al., 2023).

Typical gene markers used for DNA barcoding are also commonly used for metabarcoding work thus
enabling use of existing barcode refence databases (Andujar et al., 2018; Deiner, Bik, et al., 2017;
Ruppert et al., 2019). These markers include the COI, as well as 12S, 16S, ITS and other genes to
support detection of different taxonomic groups (Andujar et al., 2018; Miya et al., 2015; Tedersoo et
al., 2022). Metabarcoding enables the simultaneous analysis of many species providing a broader
understanding of the composition of whole communities (Ruppert et al., 2019). Using longer and
more informative metabarcoding amplicons with ONT and PacBio for metabarcoding may enhance
the taxonomic resolution by covering larger fragments or multiple marker genes. This could help
improve phylogenetic resolution and characterisation of unknown species in complex communities
(Doorenspleet, Jansen, et al., 2025).

Despite ONT suffering high error rates in the past, this issue has been mostly resolved through recent
improvements in chemistry and bioinformatic tools, while sequencing costs have also improved.
Furthermore, ONT offers a unique option, the portable MinlON, which can be used in the field
supporting real time data generation for biodiversity monitoring studies (Krehenwinkel, Pomerantz,
& Prost, 2019; Maestri et al., 2019). The PacBio platform offers highly accurate reads with very low
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error rates (Kucuk et al., 2023). Despite PacBio having been more popular for whole genome
sequencing, it is also implemented for amplicon analysis of environmental samples and for DNA
barcoding (Gueidan & Li, 2022; Jamy et al., 2022; Runnel et al., 2022).

Here we provide an overview of the current applications of long-read sequencing in biodiversity
studies for both ONT and PacBio sequencing technologies. We discuss the areas of DNA barcoding of
individual specimens, PCR-based (metabarcoding) and PCR-free (shotgun) sequencing applications
from eDNA and community samples. We focus on eukaryotes, including a wide range of taxonomic
diversity, though the coverage of different taxa varies due to the varying extent of current
applications. To support practical method uptake by the community, we outline required steps for
sample preparation and bioinformatic analysis as well as future perspectives for long-read based
biodiversity analyses. Ultimately, we aim to facilitate both new and experienced users to fine-tune
their work and to encourage further development in this field.

2. Nanopore sequencing

Nanopore sequencing was developed in the 1990s, but it became generally available with the release
of the portable MinlON instrument by Oxford Nanopore Technologies (ONT) (Branton et al., 2008;
MacKenzie & Argyropoulos, 2023). ONT allows real-time single-molecule sequencing of short to ultra-
long reads, ranging from 50 bp to >4 Mb. A nanoscale protein pore known as the “nanopore”
(MacKenzie & Argyropoulos, 2023) is used to recognise individual nucleotides through the detection
of electrical signals which are emitted as the molecule moves through the nanopore (Fig. 1A) (Wang
et al., 2021). This movement, known as translocation, and its speed are controlled by a motor protein
which is attached at the 5' end of the template strand (Deamer et al., 2016; Wang et al., 2021) (Fig.
1A). Initial ONT releases suffered very low accuracy levels (R6 60% accuracy level) (Rang et al., 2018),
but newer releases have upgraded chemistries, different types of nanopores and motor proteins, and
improved accuracy (R10 nanopores: 99% read accuracy, 400-450 bases/sec translocation
rate)(Srivathsan et al., 2021; Wang et al. 2021).

Existing ONT instruments include the MinlON, GridION, and PromethlON (Fig. 1A). The MinION is the
standard ONT flow cell (2,048 nanopores), which can be used individually with the portable MinION
sequencing device. The GridlON is a benchtop device suitable for medium-scale projects that can
accommodate up to 5 parallel runs with MinlON flow cells. The PromethlON device runs with flow
cells with 10,700 nanopores, which can be run in parallel on the same device in 24 or 48 modules,
making this instrument suitable for larger projects. Finally, the Flongle is a smaller flow cell (126
nanopores), which can be adapted to use with either the MinlON or the GridION, providing a faster
and cost-efficient solution for a low number of samples. The amount of data generated by a flow cell
during a run depends on the number of active pores, duration of the run, and translocation rate.
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Figure 1

Sample processing workflow and sequencing with long-read technologies. A) ONT instruments and
sequencing: movement of the DNA strand through the nanopore leading to data generation. B) PacBio
instruments and sequencing: SMRT cell sequencing, showing the Circular Consensus Sequencing (CCS)
process for generation of HiFi reads (Image generated with BioRender).
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3. Applications of ONT for biodiversity analysis

3a. ONT DNA Barcoding

ONT sequencing for biodiversity analysis was first used for DNA barcoding of individual specimens
covering different taxonomic groups such as terrestrial vertebrates (Menegon et al., 2017; Pomerantz
et al., 2018), dipterans (Srivathsan et al., 2018), nematodes (Knot et al., 2020), marine invertebrates
(Ip et al., 2023), insects, arachnids and plants (Krehenwinkel, Pomerantz, Henderson, et al., 2019).

Some important advantages of ONT DNA barcoding include its high multiplexing capacity and
increased throughput. In practise, these advantages translate to reduced costs by lowering the cost
per individual barcode (Hebert et al., 2025; Maestri et al., 2019; Pomerantz et al., 2018), which in
turn can be used to dramatically accelerate the population of reference databases, which is a long-
wanted resolution for the barcoding community (Hebert et al., 2018; Srivathsan & Meier, 2024). To
date, this increased throughput has enabled huge leaps in the scale of barcode generation, as
demonstrated for example with the generation of barcodes for >100,000 insect specimens in a single
run (Hebert et al., 2025), or by country wide barcode generation efforts ("megabarcoding") (Hartop
et al., 2024).

Comparisons of ONT vs Sanger generated barcodes demonstrated the same levels of accuracy
(Koblmdiiller et al., 2024), while library preparation for ONT (vs Sanger and PacBio) was also shown to
be less time consuming overall (Cuber et al., 2023). Srivathsan et al., (2019) sequenced ONT barcodes
for more than 7,000 Dipteran specimens yielding 99.99% accuracy compared to the Illlumina data. In
this case though, comparison was only possible for a 313 bp subset of the full-length barcode that
corresponded to the available length of the lllumina amplicon.

Considerable development has been made to enable ONT field-based applications using the portable
MinlON instrument. Seah et al., (2020) tested field-friendly DNA barcoding methods in different non-
invasive wildlife samples, while Vasilita et al., (2024), evaluated express protocols for species-level
sorting of insects, obtaining 250 barcodes in ~6 hours, with minimal laboratory equipment. Other such
studies have been implemented in rainforest and national parks (Gygax et al., 2025). For example
Pomerantz et al., (2018) tested the feasibility of a portable laboratory for real-time barcoding of
reptiles in the Ecuadorian rainforest, whilst Maestri et al., (2019) implemented in situ DNA extraction
and barcoding for frog and beetle species in the Temburong National Park, Borneo.

Long ONT barcode protocols have been developed aiming to improve downstream phylogenetic
analysis. For example, sequencing of the full length ribosomal cluster (~4,000 bp) enabled the
identification of arthropods with high phylogenetic resolution (Krehenwinkel, Pomerantz, Henderson,
et al., 2019). Similarly, Gajski et al. (2024) sequenced large fractions of mtDNA and nuclear genes (COlI,
Cytb, 185-28S) of arthropods with a multiplex PCR barcoding approach, which corresponded to more
than 6,000 bp of data per specimen. This approach was considerably more efficient, producing much
more sequencing data per specimen than combining individual Sanger-sequenced barcodes.
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3b. ONT PCR-based eDNA and community sequencing

Classic metabarcoding analysis focuses on short amplicons, and even more so for eDNA samples where
DNA fragmentation due to degradation occurs (Deiner, Bik, et al., 2017). Nevertheless, sequencing of
longer than the typical short fragments and full fish mitogenomes with long-range PCR have been
done from aquatic eDNA (Bista et al., 2017; Deiner, Renshaw, et al., 2017). Furthermore, longer
fragments are highly abundant in community samples and can be sequenced with long-read platforms
(Baloglu et al., 2021).

Community sample sequencing with ONT has been performed in various settings. Toxqui Rodriguez et
al. (2023) used artificial mixtures of seafood samples to evaluate the efficiency of ONT for detection
of seafood fraud. Similarly, Voorhuijzen-Harink et al. (2019) and Ho et al. (2020) sequenced fish
mixtures or highly processed seafood samples respectively for food authentication purposes.
Additionally, Voorhuijzen-Harink et al. (2019) also demonstrated that the accuracy levels of ONT vs
[llumina data from the fish mixtures were comparable. This was also shown for bulk zooplankton
(Chang et al., 2024; Semmouri et al., 2021), macrobenthos (Doorenspleet, Mailli, et al., 2025), coral
reefs (Ip et al., 2023), and bulk mosquito communities (Loh et al., 2024) which were sequenced with
both platforms.

ONT sequencing from aquatic eDNA samples is commonly used for fish diversity monitoring and
fisheries management (Table 1). In two cases where short and long amplicons were sequenced in
parallel (170 & 2,000/2,400 bp), it was shown that higher detection rate was actually achieved with
the shorter amplicons (Doorenspleet, Jansen, et al., 2025; Maggini et al., 2024). This could be due to
lower availability of longer fragments in eDNA samples due to degradation (Doorenspleet, Jansen, et
al., 2025). Nevertheless, longer fragments improved species assighnment in closely related species,
while overall detection rates were correlated to low species abundance and low genetic variance
(Maggini et al., 2024). Finally, short amplicon ONT eDNA metabarcoding (170-200 bp) (Kasmi et al.,
2024; Munian et al., 2024) was shown to outperform conventional methods of fish monitoring both
in the overall diversity detected and in terms of cost efficiency. Aquatic eDNA metabarcoding
demonstrated comparable results for detection of invasive bivalves (Egeter et al., 2022), or better
results for vertebrate detection (Gygax et al., 2025), when Illumina and ONT results were compared.
Furthermore, MinlON was used for white shark detection in the open ocean, performing all steps of
wet-lab and bioinformatic analysis on board ship within ~48 hours, thus highlighting ONT applicability
for real-time evaluation of biodiversity (Truelove et al., 2019).

ONT has also been used for pollinator and pathogen monitoring in plants. Here, eDNA collected from
flowers was used to assess the diversity of pollinators, which detected a large part of the pollinator
diversity, though lower than Illumina and traditional methods (Harris et al., 2023). Furthermore,
Theologidis et al. (2023) used ONT for detection of fungi and endophytes infecting young olive tree
shoots as a potential phyto-diagnostic method. Finally, sequencing of both long and short ONT
amplicons for the 18 rDNA region was used to characterise protist communities (Bludau et al., 2025;
Gaonkar & Campbell, 2024).

3c. ONT PCR-free (shotgun) eDNA and community sequencing

PCR-free (shotgun) sequencing of eDNA or community samples offers an alternative as a non-targeted
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biodiversity monitoring tool. Here sequencing is not limited to single gene markers but represents
fragments of all nuclear and mitochondrial genomes present in the sample (Linard et al., 2015; Peel
et al., 2019). This method bypasses potential primer bias, allowing a more universal view of the
community composition of the sample (Bista et al., 2018). Few studies have applied this approach to
eDNA samples so far. In Munian et al. (2024) PCR-free ONT sequencing was used for detection of
freshwater fish from water samples, and similarly in Nousias et al. (2024) for assessment of riverine
biodiversity. Furthermore, Koda et al. (2023) used shotgun sequencing of eDNA to detect the presence
of bobcat DNA extracted from soil samples of pawprints, while Urban et al. (2023) performed genomic
biomonitoring of the endangered kakapo bird, by analysing soil samples collected from the areas that
the birds frequented. Besides environmental samples, Shum et al. (2024) used shotgun ONT for fish
and seafood traceability to confirm identity and geographic origin with a more rapid turnaround.

4d. ONT microbial analysis in biodiversity studies

Microbial community analysis is most commonly performed through 16S amplicon or shotgun
(metagenomic) sequencing (Quince et al., 2017). Numerous studies have used ONT for microbial
community sequencing focusing on clinical applications, for review see Kim et al. (2024), hence we
briefly mention some cases where microbial analysis of environmental samples is used with
biodiversity implications. For example, 16S amplicon ONT sequencing was used to assess the impacts
of agriculture or aquaculture impacts in the environment (Stevens et al., 2023; Stoeck et al., 2024), or
the potential health impact of dust microbiomes collected from air samples (Nygaard et al., 2020).
Furthermore, an atlas of bacterial diversity in the River Cam, Cambridge was established with MinION,
aiming to monitor water quality in relation to surrounding land use (Urban et al., 2021).

Additionally, shotgun metagenomic sequencing of microbial communities provides wider
opportunities for community assessment, and the possibility of assembling whole microbial genomes
(metagenome-assembled genomes, MAGs) (Quince et al., 2017). When shotgun sequencing is used,
added value can be gained from the long reads, beyond the original aim of the project. For example,
Liu et al. (2024) were able to detect a functional shift in microbial communities related to environment
depth, while mainly aiming at investigating cichlid diversity in lake Masoko. In Clark et al. (2025) ONT
metagenomics was used to assess levels of antimicrobial resistance (AMR) in nearshore sediments
from Antarctica, while Reska et al. (2024) characterised the microbiome of air samples, confirming the
potential use of ONT metagenomics in air eDNA studies.
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Table 1: Overview of taxonomic target, gene markers, and amplicon length for published ONT and
PacBio studies discussed in this review.

Approach

Taxa targeted

Gene
marker

Fragment
size (bp)

Studies

Platform

DNA barcoding

Invertebrates
Insects
Amphibians
Reptiles
Birds
Fungi
Arthropoda

Col

16S

Cytb
rDNA

313-500

Pomerantz et al., (2018); Seah et al.,
(2020); Srivathsan et al., (2018, 2021,
2024); Ip et al., (2023); Vasilita et al.,
(2024), Hartop et al., (2024)

ONT

600-10,000

Menegon et al., (2017); Srivathsan et
al., (2018, 2019, 2021); Wurzbacher et
al., (2018); Krehenwinkel, Pomerantz,
Henderson, et al., (2019); Maestri et
al., (2019); Cuber et al., (2023); Gajski
et al., (2024); Koblmiiller et al.,
(2024); Vasilita et al., (2024); Hebert
et al., (2025)

ONT

Arthropoda
Invertebrates
Fungi
Nematodes

COI
ITS
LSU

650-10,000

Hebert et al., (2018); Wurzbacher et
al., (2018); Runnel et al., (2022);
Cuber et al., (2023)

PacBio

Metabarcoding

Sample Type

Community

eDNA

COI

128
16S
18S
Cytb
ITS

LSU

85-620

Voorhuijzen-Harink et al., (2019); Ho
et al., (2020); Srivathsan et al., (2021);
van der Reis et al., (2022); Chang et
al., (2024); Gaonkar & Campbell
(2024); van der Vorst et al., (2024);
Loh et al, (2024); Bludau et al.,
(2025); Doorenspleet, Mailli, et al.,
(2025)

ONT

650-2,758

Ho et al., (2020); Semmouri et al.,
(2021); Baloglu et al., (2021);
Srivathsan et al., (2021); Toxqui
Rodriguez et al., (2023), Dierickx et
al., (2024), Gaonkar & Campbell
(2024), Huggins et al., (2024), Bludau
et al., (2025)

ONT

585-6,300

Heeger et al., (2018); Orr et al.,
(2018); Tedersoo et al., (2018);
Gueidan et al., (2019); Kolatikova et
al., (2021); Jamy et al., (2020, 2022);
Gueidan & Li, (2022)

PacBio

95-550

Truelove et al., (2019); Egeter et al.,
(2022); Harris et al., (2023);
Theologidis et al., (2023); Munian et
al., (2024); Kasmi et al., (2024);
Maggini et al., (2024); Gygax et al.,
(2025); Doorenspleet, Jansen, et al.,
(2025)

ONT

2,000-2,400

Maggini et al., (2024); Doorenspleet,
Jansen, et al., (2025)

ONT

Shotgun

eDNA

n/a

Peel et al., (2019); Urban et al.,
(2023); Koda et al., (2023); Nousias et
al., (2024); Doorenspleet, Mailli, et al.,
(2025)

ONT
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4. Laboratory steps for ONT sequencing

Similar to other sequencing workflows, the standard steps needed for library preparation include DNA
extraction, PCR amplification (if appropriate), labelling, and adapter tagging (Bruce et al., 2021).
Library prep type for ONT can vary depending on the application such as using one or two PCR steps
to amplify DNA before sequencing (Fig. 2), or attaching barcoded tags used for multiplexing many
samples in a single run (Bohmann et al., 2022; Bruce et al., 2021).

4a. DNA extraction

The DNA extraction methods used vary based on the type of sample and the application. Ultimately
what is important is that the extracted DNA meets the quality and quantity requirements needed for
library preparation. eDNA samples are expected to contain lower concentration of DNA, with higher
degradation compared to tissue extracted DNA used for DNA barcoding, while purification steps may
be required for inhibitor removal (Bruce et al., 2021). Some of the most commonly used kits for
extraction of environmental samples from soil or water are the DNeasy Blood and Tissue kit, the
DNeasy PowerSoil, and the DNeasy PowerWater kit (Qiagen) (Supplementary Table 1). For field
applications with MinlON, the ease of DNA extraction should also be considered so that it can be
performed in a non-lab setting. Such extraction methods which are fast and require minimal
equipment, are the QuickExtract™ solution (Srivathsan et al., 2019) and the Chelex® 100 resin
(Koblmdiiller et al., 2024; Seah et al., 2020). These methods might not always support the best DNA
quality and quantity, so it is important to also assess the suitability of the DNA extract for downstream
applications. If a large field collection is planned it is also advisable to perform trials before deploying
in the field (Seah et al., 2020; Vasilita et al., 2024). Sample suitability tests include concentration and
purity checks (Qubit or Nanodrop), and fragment length verification with agarose gels, Tapestation,
or Bioanalyzer(Bruce et al., 2021).

4b. Library prep for PCR-based ONT sequencing

Following DNA extraction, the first step is amplification, labelling with different barcodes, and finally
ligation of an ONT sequencing adapter to each barcoded amplicon (Fig. 2). For library preparation,
three different strategies are commonly used in ONT amplicon studies (Figs 2. A, B, C).

1) Single-step PCR: All the samples are labelled directly during the first amplification with the use of
primers which already include unique barcodes attached to the 5’ end (barcode length 9 - 15 bp). This
strategy has been used mostly in DNA barcoding studies (Gajski et al., 2024; Harris et al., 2023; Hebert
et al., 2025; Ho et al., 2020; Koblmdiller et al., 2024; Krehenwinkel, Pomerantz, Henderson, et al.,
2019; Srivathsan et al., 2018, 2019, 2021; Vasilita et al., 2024), bacterial DNA from water samples
(Urban et al., 2021) and zooplankton communities (Chang et al., 2024).

2) Two-step PCR with “tails”: Target specific primers complemented with specific ONT tails are used
for the first amplification. These tails will allow the binding of the different barcodes in a follow-up
PCR reaction, commonly using only a low number of cycles. This strategy has been used in several DNA
barcoding (Maestri et al., 2019; Pomerantz et al., 2018; Seah et al., 2020) and eDNA metabarcoding
studies (Egeter et al., 2022; Huggins et al., 2024; Kasmi et al., 2024; Maestri et al., 2019; Pomerantz
et al., 2018; Seah et al., 2020; Stevens et al., 2023; Theologidis et al., 2023).
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3) Two-step PCR without “tails”: This strategy also uses the target specific primers but without
additional tails in the first amplification. To label each sample an extra reaction is needed to modify
the amplicons’ extremities and add barcode adapters (end-prep and barcode adapter ligation). Only
after this reaction it is possible to perform the second PCR where the different barcodes are added.
Fewer studies have used this strategy for DNA metabarcoding (Toxqui Rodriguez et al., 2023; van der
Reis et al., 2022).

When extensive multiplexing is required, it is also possible to perform dual barcoding by using inner
and outer barcodes. In this case the PCR Barcoding Expansion Kit is used (96 inner barcodes), followed
by the Native Barcode kit (24 outer barcodes), which allows multiplexing up to 2,034 samples in the
same flow cell (Supplementary Table 2). Performing clean-up steps between PCR reactions is required
to remove non-target fragments, and primers from the previous reaction, and to ensure that only the
intended amplicons are present in the final library (Fig. 2A). Usually magnetic beads (Ampure) are used
for clean-up, which can discard byproducts based on size and according to beads-to-sample ratio.

In all strategies, after labelling, the samples are pooled equimolarly, and the final library is end-
prepped, in a reaction that repairs and prepares the DNA ends for the sequencing adapter attachment
(5' phosphorylated, 3' dA-tailed ends). Then a ligation reaction will attach the ONT sequencing
adapters, consisting of an oligonucleotide and motor protein (Fig. 2B), which aids the translocation of
the DNA strands through the nanopore (Fig. 1A). Finally, another clean-up step is used, either with
Long Fragment Buffer (LFB) to enrich DNA fragments >3 kb, or with Short Fragment Buffer (SFB) to
retain DNA fragments of all sizes. The finalised library is loaded and the run, which can be monitored
in real time, can go on for up to 72 hours, or until the required number of reads has been achieved.

4c. Library prep for PCR-free ONT sequencing

For the PCR-free shotgun approach, the PCR amplification steps are omitted, and the end-prep and
ONT sequencer adapter ligation can be done directly after DNA extraction (Koda et al., 2023).
However, when multiplexing is used, a labelling step for the addition of individual barcodes needs to
be included. This can be done with an ONT Rapid Barcoding kit that uses a transposase barcode
complex to cleave gDNA and attach barcodes (Peel et al., 2019; Reska et al., 2024), or with a Ligation
Sequencing kit with Native Barcodes that will attach barcodes to fragmented gDNA after an initial end-
prep reaction (Munian et al., 2024; Reska et al., 2024).
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Figure 2

Strategies for library prep for ONT amplicon sequencing. A) library prep strategies: Single-step PCR,
two-step PCR with tails, and two-Step PCR without tails B) structure of the amplicon with all types of
adapters and barcodes, C) amplicon structure for each library preparation strategy. For PCR-free
(shotgun) sequencing, the end prep and adapter ligation are performed without intermediate
amplification steps (Image generated with BioRender).
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4d. Sample requirements for ONT sequencing

Important considerations for maximising the success of an ONT run include the quality and quantity
of the sample, the type of flow cell and chemistry, and the respective kits. Keeping the occupancy of
nanopores high ensures optimal yield and is related to the amount of input DNA, as in number of
molecules available and their size. The loading amount of the final library depends both on the
fragment size, and the type of flow cell used. Shorter fragments will require larger quantities because
they are sequenced faster, while longer fragments keep the nanopores occupied for longer, hence the
required amount is lower. However, there is not a linear relationship between the amount of DNA
loaded into the flow cell and the sequencing vyield, only a likely reduced output when these are
underloaded.

With the latest chemistry flow cells R10.4.1 (early 2025), loading approximately 35-50 fmol of good
quality library is recommended to achieve high pore occupancy (Doorenspleet, Mailli, et al., 2025;
Srivathsan et al., 2024). As these values also depend on the amount of DNA molecules and their size,
it is advised that specific ONT guidelines are considered based on the library fragment length (Table
2, Supplementary Table 2). Nevertheless, testing several input quantities of mock microbial
communities (1-1,000 ng), showed that lower DNA amounts than those recommended by ONT
guidelines could also be successful when applied to metagenomics (Simon et al., 2023). This aspect of
library prep for ONT metabarcoding has not been systematically explored to date, and comparison
between studies is challenging due to different flow cell types and fragment size used, but also due to
incomplete reporting. For future work it is important that information such as DNA input is disclosed
to enable further standardization and inter-study comparisons.

The most commonly used ONT kit for library prep for biodiversity studies is the Ligation Sequencing
Kit (SQK-LSK114), for which "barcoding" is performed beforehand either with ONT PCR Barcoding
Expansion kits (Doorenspleet, Jansen, et al., 2025; Egeter et al., 2022; Pomerantz et al., 2018) or with
customized/tagged primers (Hebert et al., 2025; KobImdiiller et al., 2024; Krehenwinkel, Pomerantz,
Henderson, et al., 2019). For this kit 100-200 fmol of amplified DNA is recommended as the optimal
input (Doorenspleet, Jansen, et al., 2025; Srivathsan & Meier, 2024). The Native Barcoding and Rapid
Barcoding kits, which include the "barcoding" and don’t require a PCR reaction, are less commonly
used. The Native Barcoding kits have a long library preparation time (~140 min) and are usually
recommended for gDNA samples (Munian et al., 2024), but can also be used with amplicons (Bludau
et al., 2025; Stoeck et al., 2024). The Rapid Barcoding kit has a shorter prep time (60min) because it
performs fragmentation and barcode attachment in the same step, though this might reduce yield
and read quality (Clark et al., 2025; Reska et al., 2024). See Table 2 for input requirements for the
Ligation Sequencing Kit, and Supplementary Table 2 for other kits.
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Table 2
Input DNA amount for library prep and flow cell loading for ONT, according to fragment length and
type of flow cell (Ligation Sequencing kit SQK-LSK114 kit). For other kits see Supplementary Table 2.

Starting Input Loading Amount
Fragment Length MinION and MinION and
Flongle Flongle
PromethlON PromethlON
<1kb 50 fmol 200 fmol 5-10 fmol 100 fmol
1-10 kb 50-100 fmol 100-200 fmol 35-50 fmol
5-10 fmol
>10 kb 500 ng 1lug 300 ng

5. Bioinformatic analysis of ONT data

In contrast to standard length Illumina data, ONT (and PacBio) can generate both long and short
fragments with varying error profiles (van der Vorst et al., 2024), hence bioinformatic tools need to be
able to accommodate these differences. During ONT sequencing, reads are generated through the
conversion of raw data collected in the form of electric signals into nucleotide sequences, called
basecalling (Wang et al., 2021). After basecalling, quality filtering and processing steps are performed
to obtain the final dataset according to each application (Fig. 3).

5a. DNA barcoding

In DNA barcoding each "barcode" corresponds to one species, and the objective is to generate a final
consensus sequence for each specimen. After demultiplexing, the adapter and "barcode" sequences
are trimmed, and the reads are filtered based on quality scores and size. A clustering step is usually
performed at a lower percentage identity, since the variation in the reads from a single specimen is
often due to sequencing error or contamination (Hebert et al., 2025; Maestri et al., 2019).
Alternatively clustering is performed for each "barcode" only keeping the reads from the most
abundant cluster or from clusters above a certain threshold (Maestri et al., 2019; Seah et al., 2020).
Then a draft consensus sequence is generated for each sample which is polished, usually by mapping
all the reads back to the draft consensus (Krehenwinkel, Pomerantz, Henderson, et al., 2019; Maestri
et al., 2019; Pomerantz et al., 2018) or by re-clustering the sequences at a higher identity percentage
and doing a new consensus calling (Hebert et al., 2025). The final consensus sequence is trimmed to
obtain the final DNA barcode sequence and then aligned to reference sequences in databases (Hebert
et al., 2025; Maestri et al., 2019). The order of the processing steps may differ between studies. The
ONTbarcoder pipeline (Srivathsan et al., 2021, 2024) is one of the most commonly used in barcoding
studies (Cuber et al., 2023; Harris et al., 2023; Koblmdiller et al., 2024; Vasilita et al., 2024).

5b. eDNA and community sample metabarcoding

Initial preprocessing steps for eDNA or community metabarcoding include demultiplexing, adapter
trimming, general quality control and size filtering, followed by clustering of Operational Taxonomic
Units (OTU) or Amplicon Sequencing Variant (ASV) processing, and taxonomic assignment (for
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metabarcoding tools see (Hakimzadeh et al., 2024) (Fig. 3). The exact order of these steps may differ
between studies. After demultiplexing, the barcode and adapter sequences are trimmed and reads
that do not have the correct primer sequence are discarded (Maggini et al., 2024). Quality assessment
and filtering of the reads is performed according to quality scores and expected fragment length,
removing low-quality reads and improving accuracy.

For OTUs, clustering is performed according to a similarity threshold, which could vary based on the
level of intraspecific diversity of the target groups (Alberdietal., 2017), the ONT kit/chemistry,
basecalling algorithm, or fragment length (Doorenspleet, Jansen, et al., 2025). Due to ONT’s error
profile, clusters with a low number of reads are often eliminated in order to reduce noise. However,
this step needs to be adjusted to each study depending on the target taxa and expected presence of
rare/low-abundance species. Subsequently, the reads in each cluster are aligned and a draft consensus
sequence is generated for each OTU, while polishing can be done to improve the accuracy of the
consensus sequences (Doorenspleet, Jansen, et al., 2025). Finally, an OTU table is built summarizing
OTU diversity and abundance.

ASV analysis is performed by identifying sequence variations directly at the single-nucleotide level
without clustering, which retains more resolution (Overgaard et al., 2024). Extra processing steps like
dereplication and removal of chimeras can also be performed (Munian et al., 2024; Semmouri et al.,
2021; van der Reis et al., 2022). Taxonomic assignment of the identified OTUs or ASVs is performed
usually by BLAST (BLASTn, MegaBLAST) against a reference database containing barcode sequences
(Doorenspleet, Mailli, et al., 2025; van der Vorst et al., 2024). Overall, accurate taxonomic
assignment for metabarcoding datasets is linked to completeness of reference databases (McGee et
al., 2019; Zinger et al., 2019).

Few ONT metabarcoding bioinformatic pipelines are currently available (Supplementary Table 3).
Some of the most complete and commonly used are DECONA (Doorenspleet, Jansen, et al., 2025),
PIMENTA (van der Vorst et al., 2024) and MSI (Egeter et al., 2022), which perform similar overall
analysis, but with some variations. The DECONA pipeline is a simple command line tool which does
not require extensive bioinformatics background (Doorenspleet, Jansen, et al., 2025). DECONA starts
by read clustering, followed by alignment and assembly of clusters. After this, the consensus
sequences obtained are re-clustered, polished, and taxonomically assigned (Doorenspleet, Jansen, et
al., 2025). Similar steps are used for PIMENTA except re-clustering which is done with all samples
together, and without polishing of consensus sequences (van der Vorst et al., 2024), while MSI
performs polishing before clustering (Egeter et al., 2022). Other pipelines also exist, including: eNano,
designed as a "simple-to-understand" tool (Dierickx et al., 2024), ASHURE which is Python based and
performing multiple processing steps of metabarcoding (Baloglu et al., 2021), and other approaches
for highly accurate consensus generation (NGSpeciesID) (Chang et al., 2024; Sahlin et al., 2021).

Method standardization for ONT data analysis is still lacking, which complicates the validation and
comparison of results between different studies (van der Vorst et al., 2024). Further development of
standardized bioinformatic pipelines, streamlining their use, and clear reporting of each step
undertaken will support ease of analysis and reproducibility of biodiversity studies in the future (Chang
et al., 2024; Harris et al., 2023; Kasmi et al., 2024; Truelove et al., 2019).

14


https://sciwheel.com/work/citation?ids=15241249&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=16544428&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4518373&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17532455&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17532455&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17607738&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17087001,14056525,17081773&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=17087001,14056525,17081773&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=17081775,17749056&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=17081939,6889604&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=17081939,6889604&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=17532455&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17081775&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12688366&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17532455&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17532455&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17532455&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17081775&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12688366&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17301858&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17081791&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=17699631,16487152&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=17081775&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=17699631,17182748,16585359,10263805&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=17699631,17182748,16585359,10263805&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0

403

404
405
406
407
408
409
410
411
412
413
414
415
416

5c. PCR-Free (shotgun)

In shotgun sequencing, data originate from across the nuclear or organelle genome instead of a
specific gene marker, and accurate assembly or species assignment can be a bioinformatic challenge.
Furthermore, since this is a non-targeted approach, there is no specific size filtering, because the
length of the random sequenced fragments is variable. To taxonomically assign reads in this case,
mapping against reference genomes or organelles is performed (Bista et al., 2018; Linard et al., 2015;
Quince et al., 2017). Most studies to date using PCR-free ONT sequencing target prokaryotes (Clark et
al., 2025; Liu et al., 2024; Reska et al., 2024). Limited resources of eukaryotic reference genomes also
make it difficult to apply this technique across many species, while higher sequencing effort than
metabarcoding would be needed for standard detection. In Peel et al. (2019) a shotgun approach was
used to analyse mixed pollen samples with a more cost effective and likely quantitative aspect than
PCR-based. A pipeline (RevMet) was also developed which does not require assembly of a reference
genome, but instead performs a genome skim, a low-coverage whole genome sequencing, which is
used for identification (Peel et al., 2019).
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6. PacBio sequencing

PacBio sequencing was developed by Pacific Biosciences and is also known as “SMRT” sequencing due
to performing Single-Molecule Real-Time sequencing (Rhoads & Au, 2015). The company became
established in long-read sequencing in the early 2000s, marketing initially the PacBio RSI and Il
systems, and subsequently releasing the PacBio Sequel (I, Il, and lle) from 2015 onwards. Current
instruments are the Revio, its bench top version the Vega, and various Sequel instruments still in use
(Fig. 1B).

Sequencing is performed in SMRT cells, in Continuous Long Reads (CLR), and with the use of Circular
Consensus Sequencing (CCS), which massively improves the final error rates. With CCS a consensus
sequence is derived after multiple passes of each individual molecule, which makes it possible to
convert noisy individual subreads into a highly accurate final read (Wenger et al., 2019) (Fig. 1B). With
the introduction of High Fidelity (HiFi) reads and using CCS, the final accuracy exceeds 99% (Phred
score 20), with a 10-30 Kb read length capability (Kucuk et al., 2023). The throughput of PacBio
platforms increased largely with the introduction of the Revio which can yield up to 120 Gb per SMRT
cell, compared to 30 Gb max throughput for the Sequel lle, while the Vega can yield approximately 60
Gb per SMRT cell.

7. Applications of PacBio in biodiversity studies

7.1 PacBio DNA barcoding

PacBio Sequel for DNA barcoding was used by Hebert et al. (2018) to test its multiplexing and read
length capabilities, by sequencing >5,000 arthropod taxa in a single run. Furthermore, PacBio has been
used for barcoding a wide diversity of fungi, including voucher specimens from herbaria and
environmental lineages of parasitic fungi (Runnel et al., 2022; Wurzbacher et al., 2019). Higher
success rate compared to Sanger was found especially in cases where polymorphic alleles were
present, or when there was presence of contamination (Runnel et al., 2022).

In a comparison of DNA barcoding performance of Sanger, ONT, and PacBio platforms it was shown
that both ONT and PacBio were suitable for DNA barcoding and biodiversity monitoring, while also
suggesting that library preparation is less time consuming when using ONT (Cuber et al., 2023).
Furthermore, high multiplexing and throughput can lower cost per barcode in comparison to Sanger
sequencing (Hebert et al., 2018). The PacBio instruments are not currently widely used by individual
labs due to their overall high annual service costs, as well as the cost of SMRT cells, which limits their
presence mostly in core facilities (Hebert et al., 2018, 2025), though PacBio services are becoming
more commonly available through sequencing providers.

7.2 PacBio metabarcoding of eDNA and community samples

Implementation of PacBio metabarcoding so far has been limited to few eukaryotic taxa, with most
applications targeting fungi or microeukaryotes. Fungi represent a good case for long-read sequencing
applications due to the known size variability and the complexity of markers used for analysis of fungal
diversity such as ITS rRNA loci (Tedersoo et al., 2022). Initial fungal metabarcoding pipelines with
PacBio RSII (CCS) (Heeger et al., 2018) or both RSIl and Sequel (Kolafikova et al., 2021; Tedersoo et al.,
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2018) aimed at generation of long amplicons (>2,500 bp) of the eukaryotic rRNA operon containing
multiple commonly targeted regions (SSU, LSU, ITS). Sequencing of multiple long amplicons can aid in
species identification, being particularly beneficial for use in phylogenetics, and to improve taxon
recovery in cases of groups with low genetic (Tedersoo et al., 2018). Lichenized fungi in particular are
interesting because individual specimens may harbour other fungi or mixed fungal communities
making them difficult to sequence with Sanger sequencing. For these reasons Gueidan & Li (2022) and
Gueidan et al. (2019) developed PacBio amplicon-based protocols for sequencing of lichen specimens
from herbaria collections.

Furthermore, few studies to date have used PacBio to characterise microeukaryote communities from
environmental or cultured samples (Jamy et al., 2020, 2022; Orr et al., 2018). For small unicellular
organisms like protists, using PacBio can help bypass the need for cloning and Sanger sequencing
which can be very laborious and costly (Orr et al., 2018). Furthermore, long amplicon data can be used
to investigate evolutionary level questions, as was demonstrated by Jamy et al. (2022), where long-
read amplicons aided in understanding habitat transitions across the eukaryote tree of life.

8. Sample prep and analysis of PacBio data

8.1 PacBio sample preparation

Extracting DNA for PacBio amplicon sequencing follows the same general considerations as with ONT.
Methods vary based on application and as PacBio has been used mostly for fungal or microeukaryote
sequencing the extraction types are more specific to these groups (Supplementary Table 1). In general,
to take advantage of long-read capabilities, it is beneficial to consider using methods preserving long
DNA fragments during extraction.

Sample preparation for PacBio-based DNA barcoding and metabarcoding involves initial PCR, with
additional steps in order to attach barcodes for multiplexing (Fig. 2). For PacBio sequencing the double
stranded DNA molecules are circularised after ligation with hairpin adaptors (Quail et al., 2012). This
circularisation process enables repeated sequencing, generating multiple subreads as part of the CCS
mode and HiFi sequencing (Cuber et al., 2023; Wenger et al., 2019).

For amplicon library preparation a SMRTbell library prep kit is used (current version 3.0) (Gueidan &
Li, 2022). The amount of input DNA required for library preparation is related to the mean size of the
target amplicons and varies for different instruments and chemistries. For example, for the latest
Revio chemistry 50ng DNA are needed for amplicons <3 kb, increasing to >300 ng for amplicons >10
kb. For optimal results it is recommended to make calculations based on the specific approach and
application of each study. Barcoding for multiplexing can be performed during the initial PCR following
one or two-step protocols, with pooling prior to subsequent library prep steps. For the SMRTbell
library preparation end-repair and A-tailing steps are also included and performed on the "barcoded"
samples prior to adapter ligation. Finally, clean-up steps are performed at intervals and for the final
library in accordance with the specific protocol (Fig. 2).

8.2 PacBio data analysis

PacBio amplicon data analysis includes steps and preprocessing similar to ONT (Fig. 3), though
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individual pipelines have been developed to address various steps of the process that need further
optimization. These include a denoising pipeline for allele phasing of PacBio data (Gueidan et al.,
2019), or a phylogeny-aware taxonomic assignment method taking advantage of phylogenetic
information available from long amplicons used to improve taxonomic classification (Jamy et al.,
2020). Identification and removal of chimeric reads which are generated during PCR, also needs to be
addressed with appropriate bioinformatic steps. A workflow developed by (Karst et al., 2021) uses
unique molecular identifiers (UMIs) to reduce error rates and chimeras in long-read data (PacBio and
ONT). UMIs, which are short sequences of 10-20 bases, are tagged to each template molecule enabling
sorting and analysis of individual reads. This method was developed for long-read sequencing of
microbial communities but could potentially be used for other amplicon applications (Overgaard et
al., 2024). To support analyses of PacBio CCS amplicon data a pipeline was also developed based on
the DADA?2 algorithm and software, which was designed to determine ASVs with a high level resolution
(single-nucleotide level) (Callahan et al., 2019).

9. Open data and reporting considerations

The principles of FAIR data reporting should be guiding all data driven scientific projects (Wilkinson et
al., 2016), while when reporting biodiversity data these principles apply to sequencing data as well as
tools, protocols, and workflows. During the development of the DNA barcoding and eDNA
metabarcoding fields, data reporting has been evolving to reach community acceptable standards
(Klymus et al., 2024). This reporting needs to be further extended to include details specific to long-
read sequencing technologies. This is especially important due to the rapidly evolving nature of these
technologies, which complicates even further method standardisation. It is suggested that the
following information should be reported: For sequencing: the specific type of flow cell or SMRT cells
and chemistry version, library preparation kit, adapter type (according to technology), and amount of
input DNA and loaded library for sequencing. For data reporting: the read length profiles achieved,
read coverage per sample, error rates, computational steps (and scripts) used for data analyses.

Most researchers submit raw data in public repositories such as INSDC which incorporates ENA and
NCBI (Arita et al., 2021), nevertheless in that form they are difficult to process as multiple
intermediate steps are required to get a usable form, such as OTUs or ASVs (Fig. 3). Submission of
processed data from metabarcoding studies in public databases needs to be promoted by the
community and is an important step for advancing reproducibility and data reuse (Berry et al., 2020).
Current plans for integration of eDNA datasets in public repositories include databases such as GBIF
(Frgslev et al., 2023). It is important to consider though that such datasets need to be filtered and
monitored before release to ensure removal of inappropriate reads, like contaminants.

Open data platforms and projects can have a considerable impact on the advancement of open
science. Reference databases such as the Barcode of Life Database (BOLD) database, are particularly
important, acting as an open data repository and supporting storage, analysis, and coordination
(BOLD.v4 (Ratnasingham et al., 2024). Large barcoding projects (e.g. BIOSCAN) also promote open
data generation for DNA barcoding resources. The Darwin Tree of Life (DTol), which focuses on long-
read whole genome sequencing, integrates DNA barcoding in their pipeline using it to support
taxonomic identification of species for genome sequencing, and to populate barcode reference
databases (Twyford et al., 2024).
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Sequencing of whole genomes and organelles is necessary for future development, especially with the
potential of long-read based biodiversity analysis. Such examples include taxon-specific organelle
databases like MitoFish (fish mitogenomes) (Zhu et al., 2023), and ChloroplastDB (chloroplast
genomes) (Cui et al., 2006). Additionally, initiatives such as the Earth BioGenome Project (EBP)(Lewin
et al., 2018), DTol, and the European Reference Genomes Atlas (ERGA)(McCartney et al., 2024) are
generating whole genome assemblies across the tree of life using long-read data. These initiatives
which make their data immediately and openly available for use, constitute valuable resources for
potential future genome-wide applications for biodiversity monitoring.

10. Limitations and future perspectives

The low concentration and degraded nature of eDNA (Goldberg et al., 2016; Thomsen et al., 2012),
could hinder the use of long-read platforms, while also limiting certain types of applications such as
shotgun sequencing. Environmental samples are known to contain inhibitors or contaminants which
could damage ONT nanopores causing sequencing failure or reduced yield. PacBio platforms are less
sensitive to such inhibitors due to different chemistry used though this has not been systematically
explored for environmental samples. Careful optimization of DNA extraction and library prep
protocols is needed to boost sequencing efficiency for long-read applications, along with eDNA grade
quality control and clean-lab procedures (Alberdi et al., 2017; Bruce et al., 2021).

New developments in ONT chemistry and bioinformatics solutions have mostly dealt with high error
rate issues. Particularly, improved basecalling algorithms, implementation of polishing steps, and
improved workflows for clustering or classification have raised ONT data reliability to lllumina-like
levels (Bludau et al., 2025; Chang et al., 2024; Sahlin et al., 2021). Similarly ONT and PacBio barcodes
have been shown to present similar accuracy levels as Sanger and lllumina (Cuber et al., 2023;
Srivathsan & Meier, 2024). Streamlining analysis and development of standardized bioinformatic
pipelines for barcoding and metabarcoding will improve reliability of these applications and support
future interstudy comparisons and reproducibility (van der Vorst et al., 2024).

Comparison of Illlumina and ONT amplicon data demonstrated similar results for short amplicons
(Egeter et al., 2022; Kasmi et al., 2024; Munian et al., 2024), but longer amplicons lacked detection
efficiency (Doorenspleet, Jansen, et al., 2025; Maggini et al., 2024). This issue could be related to
lower availability of long fragments in eDNA samples and a possible solution to improve long fragment
detection could be to increase overall sequencing depth. Using longer fragments provides added value
to the analysis by improving taxonomic assignment for closely related species or low intraspecific
divergence (Doorenspleet, Jansen, et al., 2025; Tedersoo et al., 2018).

An overall comparison of PacBio vs ONT platforms reveals a number of interesting points. PacBio
instruments require a higher financial investment for instrument purchase compared to the minimal
setup required by ONT, which also offers faster turnaround times since individual labs can set-up and
run ONT independently (Seah et al., 2020). Nevertheless, the new desktop Vega instrument from
PacBio might be more accessible to individual labs, hence potentially also reducing turnaround times.
A unique feature of the ONT MinlON, its portability, allows sequencing in the field with a host of real-
time sequencing applications which cannot currently be matched by other technologies.

Though ONT data quality is improving, PacBio read quality is already very high, especially since the
introduction of HiFi reads (Chang et al., 2024; Kucuk et al., 2023). Throughput-wise the Revio presents
a significant increase over previous instruments, reaching 120 Gb per SMRT cell, while a regular
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MinION flow cell outputs a maximum of 48 Gb. Both ONT and PacBio offer high multiplexing
capabilities (up to 10,000 samples) (Cuber et al., 2023) providing good value for money for large
projects, especially for DNA barcoding and standardised metabarcoding.

ONT platforms offer more flexibility for small and medium sized projects with the Flongle and the
MinlON, while the GridION and PromethlON instruments are more suitable for larger projects.
Additionally, washing and reusing ONT flow cells could further reduce ONT costs. For PacBio, the Revio
would be the instrument of choice for larger projects, while the Vega would be suitable for smaller
projects. Though Vega has not been used in published biodiversity work yet, it could provide a
potential solution for future applications. Selecting the most appropriate platform for a given project
should take into consideration all the above factors as per the type of application, the nature and
number of samples, and cost benefits for multiplexing.

Completeness of reference databases is an ongoing issue for DNA-based biodiversity monitoring
applications (McGee et al., 2019; Zinger et al., 2019). Using short DNA barcode reference databases
for taxonomic assignment of long-read data reduces the power of the application. In the future,
reference databases need to also host longer fragments, and make use of outputs from whole genome
and organelle sequencing efforts (Lewin et al., 2018; Theissinger et al., 2023; Zhu et al., 2023).

Sequencing whole mitogenomes from eDNA using long-read sequencers would represent a significant
increase in data content provided from environmental samples. Despite eDNA's mostly degraded
state, it has been shown that sequencing whole mitogenomes could be achieved through long-range
amplification (Deiner, Renshaw, et al., 2017). This approach has been implemented mostly for
community samples using shotgun sequencing, especially for arthropod communities (mito-
metagenomics), nevertheless this experience could be further utilised for eDNA samples.

Expanding the use of shotgun sequencing could also resolve issues such as primer bias and abundance
estimation biases (Alberdi et al., 2017; Bista et al., 2018), while offering exciting new opportunities for
analysis. Shotgun sequencing could expand the scope of the data to wider areas of the nuclear and
mitochondrial genome, moving beyond limited marker gene regions. This might make it possible to
finally address population level questions. Currently population level work from eDNA has been
limited mostly to species-specific assays (Parsons et al., 2018; Sigsgaard et al., 2016). In very few cases
[llumina shotgun sequencing data have been used for population level analyses, such as for population
inferences in cichlid fish from Lake Masoko (Liu et al., 2024), or for turtle population monitoring
(Farrell et al., 2022). Shotgun sequencing effort would be higher and thus more expensive compared
to metabarcoding if this approach was used for standard detection, nevertheless the additional gained
information goes beyond detection. Additionally, utilization of whole genome data from consortia
could contribute to further advancement of shotgun-based applications for biodiversity monitoring.

Finally, pairing long-read sequencing with other advancing technologies could be used to accelerate
sample processing and data analysis. Employing robotic platforms for sample processing can boost
operational speed and enable full use of the high multiplexing capabilities of long-read sequencing
platforms. Such examples include development of high-throughput DNA extraction methods (Hebert
et al.,, 2018), or metabarcoding sample processing workflows through liquid handling systems
(Buchner et al., 2021). Furthermore, implementing Artificial Intelligence (Al) and cloud computing
could dramatically improve analysis speed and accuracy for large datasets. Currently, Al has been
used for ecosystem status predictions through eDNA by training machine learning algorithms (Keck et
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al., 2023), and for improving annotation of eDNA reads (Fliick et al., 2022), or DNA barcodes (Nanni et
al., 2024). Overall, large potential exists for further development and use of Al solutions for DNA-based
biodiversity monitoring coupled with long-read sequencing technologies.

11. Conclusions

The increasing impact of anthropogenic disturbances causing rapid loss of biodiversity presses the
need for continued development of DNA-based applications for biodiversity monitoring. The recently
developed field of long-read sequencing for biodiversity monitoring can offer improved capabilities
and new solutions by introducing novel applications and complementing existing DNA-based
monitoring tools. Both long-read sequencing platforms, ONT and PacBio, can offer solutions to
different needs. Using long-read technologies could help push the limits of biodiversity detection to
higher standards and address questions which were previously out of reach, such as population level
assessments from environmental samples. Continuous introduction of new instruments and
chemistries, along with improved workflows and bioinformatics tools keeps raising the bar of quantity
and quality of the data offered. Nevertheless, standardisation of methodologies is still required, along
with the united efforts from the research community in support of FAIR reporting, open data access
and reproducibility, for future development.
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